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Abstract—Breast cancer diagnosis is based on radiology
reports describing observations made from medical imagery,
such as X-rays obtained during mammography. The reports are
written by radiologists and contain a conclusion summarizing
the observations. Manually summarizing the reports is time-
consuming and leads to high text variability. This paper
investigates the automated summarization of Dutch radiology
reports. We propose a hybrid model consisting of a language
model (encoder-decoder with attention) and a separate BI-
RADS score classifier. The summarization model achieved a
ROUGE-L F1 score of 51.5% on the Dutch reports, which is
comparable to results in other languages and other domains.
For the BI-RADS classification, the language model (accuracy
79.1%) was outperformed by a separate classifier (accuracy
83.3%), leading us to propose a hybrid approach for radiology
report summarization. Our qualitative evaluation with experts
found the generated conclusions to be comprehensible and
to cover mostly relevant content, and the main focus for
improvement should be their factual correctness. While the
current model is not accurate enough to be employed in clinical
practice, our results indicate that hybrid models might be a
worthwhile direction for future research.

Keywords-Abstractive Summarization, Radiology Reports,
Breast Cancer, Deep Learning, Encoder-Decoder, Attention
Mechanism

I. INTRODUCTION

Mammography is one of the diagnostic tests performed for

diagnosing breast cancer and findings of these mammogra-

phy images along with findings from some other diagnostic

tests like ultrasound and magnetic resonance imaging (MRI)

are documented by radiologists in radiology reports. The

reports need to be clear and consistent so that the findings

can be easily understood by other physicians. The Breast

Imaging Reporting & Data System (BI-RADS) is used as

a standard in breast cancer reporting [1] specifying the

structure of the reports. Reports adhering to this standard

consist of clinical data, findings from the examinations as

well as a conclusion including a BI-RADS score (ranging

Original
Input sequence:
medische gegevens: via SVOB, 
microcalcificaties R lateraal boven
verslag: matig beoordeelbaar dens klierweefsel 
beiderzijds, microcalcificaties laterale 
bovenkwadrant rechtermamma overgang 
laterale onderkwadrant diameter 2,3 cm, 
stellate laesies, echografisch onderzoek axilla 
rechts laat geen pathologische lymfomen zien
Ground Truth Conclusion:
microcalcificaties in het laterale 
bovenkwadrant van de rechtermamma, birads-
classificatie-iv, geen pathologische lymfomen 
in de axilla 
Generated Conclusion:
birads iv laesie in het laterale bovenkwadrant 
van de rechtermamma waarvoor advies 
stereotactische biopsie

English Translation
Input sequence:
clinical data: via SVOB, microcalcifications R 
lateral upper
findings: The breasts are heterogeneously 
dense on both sides, microcalcifications in the 
lateral upper quadrant of the right breast at 
the junction of the lateral lower quadrant. 
Diameter 2.3 cm, stellate lesions. Ultrasound 
of right axilla shows no pathological lymph 
nodes.
Ground Truth Conclusion:
Microcalcifications in the lateral upper 
quadrant of the right breast. BIRADS 
classification IV. No pathological lymph nodes 
in the axilla.
Generated Conclusion:
BIRADS IV lesion in the lateral upper quadrant 
of the right breast requiring stereotactic 
biopsy.

Figure 1. Example of a report containing the findings, the original and
generated conclusion of the EDA+BI-RADS model. Dutch on the left,
English translation on the right (Translated by a radiologist).

from 0 to 6, where 6 is the most severe malignancy). An

example report is shown in Figure 1. Radiologists write (or

dictate) these reports in free text, leading to variability of

the structure and writing quality of the reports. Besides, the

findings are often written during the examination, and it is

time-consuming to write a conclusion as patient data needs

to be consulted again. Therefore, a system for summarization

of the findings in the form of an automatic conclusion can

speed up the diagnostic process and contribute to human

error reduction and consistency of reports. Further, a system

that has learned the relationship between report content and

conclusion could be used for quality control and consistency

checks of radiology reporting in a hospital.

Although the BI-RADS standard [1] asks for a clear

structure, reports found in practice are partly unstructured,

do not consist of full sentences, and include typing errors [2].

Therefore, it is unclear to what extent existing automatic

summarization methods for general texts [3], [4] can result

in high-quality summaries on unstructured medical reports.
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MacAvaney et al. [5] applied a pointer-generator network

(PGN) [6] to generate the impression (summary) of English

radiology notes from a variety of imaging modalities. In

contrast to their summaries, our summaries should follow the

BI-RADS standard, which requires the summary to consist

of a classification (the BI-RADS score) and a concluding

sentence. In this paper, we compare a state-of-the-art sum-

marization method for generating the conclusion including

the BI-RADS score, and a hybrid model, where a text

classifier is used to predict the BI-RADS score separately,

which is then integrated into the summary produced by the

state-of-the-art summarization method.

More specifically, we use an encoder-decoder model with

attention (EDA) trained on Dutch radiology reports. This

model is compared to a baseline model without attention

(ED). Additionally, we investigate the prediction of the BI-

RADS score separately using classical text classification in

TF-IDF1 vector space. We evaluate the summaries w.r.t.

ROUGE scores [7], the accuracy of the BI-RADS score in

the summary, and perform an expert evaluation to judge

the correctness, relevancy, and comprehensibility of the

generated reports. We found the hybrid model, which inserts

the BI-RADS score classification results in the abstractive

summaries, to outperform the pure summarization models

by 5% in the accuracy of BI-RADS score prediction. As

the BI-RADS score is the most important clue for subse-

quent treatment, our results indicate that a combination of

multiple models (classification and text summarization) is a

worthwhile direction for future research. The source code is

available on GitHub2.

The remainder of the paper is structured as follows.

Section II presents related work. Section III describes the

algorithms and data sets. Results are shown in Section IV

and discussed in Section V.

II. RELATED WORK

In this section, we discuss some existing works on BI-

RADS classification and automatic text summarization.

A. BI-RADS Score Classification

The majority of existing methods for the classification of

BI-RADS scores using natural language processing (NLP)

are rule-based and extract specific features. Sippo et al. [8]

presented an NLP-tool for BI-RADS score classification. It

determines the BI-RADS scores through regular expressions

and string matching of selected parts of the report after some

preprocessing of the text. Their study involved training and

testing their model on 1165 instances of data from a breast

imaging center in the United States and achieved an overall

F1 score of 98%.

Castro et al. [9] enhanced this approach by extracting

certain features such as imaging study type and laterality of

1TF: Term Frequency; IDF: Inverse Document Frequency
2https://github.com/daphne12345/SummarizationRadiologyReports

the breast relevant for BI-RADS score classification. Their

best model using rules from partial decision trees was able

to achieve an overall F1 score of 91% trained and tested on

a larger dataset (2159 instances of data) of 18 hospitals in

Pittsburgh.

Banerjee et al. [10] proposed a semi-supervised NLP

pipeline for retrieving the BI-RADS score from mammog-

raphy reports. They used semantic dictionary mapping that

assigns the words in the reports to key terms. These should

capture the true semantics of the report and therefore fa-

cilitate better information extraction while keeping a low

dimensionality of information representation. They used a

logistic regression classifier, which achieved an overall F1

score of 89% on the classification task. Instead of extracting

specific features as in these works, we are using a generic

TF-IDF approach to determine important words as features.

B. Automatic Text Summarization

Text summarization is categorized into abstractive and

extractive methods. Our work uses abstractive summariza-

tion, which means that novel sentences are built from the

vocabulary. This method stands in contrast to extractive

summarization, which copies the most important sentences

from the input to generate a summary [11], [12].

There are different approaches to solve the task of ab-

stractive summarization. Most of them are based on deep

learning using sequence-to-sequence (seq2seq) models, that

are composed of an encoder and decoder. The encoder maps

the input to a context vector and the decoder generates the

summarized target sequence word-by-word. One of the first

works using seq2seq models for natural language generation

was done by Sutskever, Vinyals and Le [13]. Similar to their

work, we also use multilayered Long Short-Term Memory

(LSTM) in the encoder and decoder in our work. The method

is often further enhanced by using an attention mechanism

which was first introduced in [14]. The attention mechanism

considers the hidden state of the encoder and the decoder.

The learned weights tell the decoder the parts of the input

sequence to pay attention to produce the next word The first

studies applying seq2seq in combination with attention to the

task of summarization were Rush, Chopra and Weston [15],

and Nallapati et al. [4]. The dominant sequence transduction

models are based on the deep encoder-decoder structure with

attention [16]. The model used in our work also uses a

seq2seq model with attention.

In the biomedical domain, work has been focused on

enhancing current state-of-the-art (SOTA) models for ab-

stractive summarization with domain-specific knowledge.

Examples are summarization of biomedical publication ab-

stracts and electronic health reports [17], [18]. A recent

study [5] extended the PGN model with domain-specific

ontological information from existing medical ontologies

such as RadLex. The ontology-linked entities in the report

were provided as a separate context vector to the decoding
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Figure 2. Number of reports per BI-RADS score in the entire dataset

process. By including domain-specific knowledge, it was

found that the summaries from the extended models are

statistically better than the general SOTA models on radiol-

ogy corpora, achieving a ROUGE-L score of 37.02%. This

study illustrates the potential of abstractive summarization

in radiology to which our work is contributing.

In conclusion, there is not much work focusing on sum-

marizing Dutch medical reports and our work is among the

first to use a model similar to the state-of-the-art abstractive

summarization model [14] on Dutch radiology reports and

show some interesting insights in this direction.

III. DATA AND APPROACH

In this section, we describe our dataset and method for

automatic summarization of the radiology reports.

A. Data and Preprocessing

Our dataset comprises 47,158 breast cancer radiology

reports from the Ziekenhuis Groep Twente (ZGT), a hospital

in Hengelo, Netherlands, recorded between 2012 and 2018.

The reports are in Dutch and are written in free text. The

reports include clinical data (indication for this diagnostic

study including patient’s medical history), findings (clinical

findings from the diagnostic images - mammography, ultra-

sound and MRI) and conclusion (Final assessment including

a BI-RADS score) (see Figure 1). The clinical data and

findings are treated as the input sequence in the frame

of this work. This information usually indicates the breast

cancer severity (BI-RADS score) which is relevant for the

conclusion. The class (BI-RADS score) distribution in our

dataset shows that BI-RADS 2 is the majority class and BI-

RADS 0 is the minority class (cf. Figure 2).

For preprocessing the data, first, stop words are removed.

As we are dealing with a Dutch corpus, the Dutch stop

words from NLTK [19] were used for this task. A tokenizer

is used to create the vocabulary. For the conclusions, start

and end tokens are added. Secondly, each word in the

vocabulary is represented by an index. So, both findings and

conclusions are sequences of numbers. The maximum length

of the findings representing the input sequence is limited to

100 due to the availability of computational resources. The

maximum length of the conclusion is set to 32, to ensure

a reasonable length. This number was determined based on

the ratio of the median lengths of findings and conclusion

(46:12) × 100, plus a few words as a buffer. If the findings

and conclusions are shorter than 100 and 32 respectively,

they are padded with zeros. This represents the required

fixed length of the context vector given from encoder to

decoder.

For the BI-RADS classification, further preprocessing is

needed. The BI-RADS score needed to be extracted from the

given conclusions as they were not given in the dataset as a

separate attribute. The dataset contains data from different

radiologists which means that there is no common way

of reporting the BI-RADS score in the different reports.

Different number formats (i.e. 2, ii, twee) have been used.

Also, sometimes a word is inserted in between (e.g., “BI-

RADS rechts 2”) or it has been indicated differently (e.g.,

“BI-RADS classificatie 2”, “BI-RADS-ii”). We constructed

a set of rules for extracting all variants of the BI-RADS

scores.

B. Model

In this subsection, we will describe our 3 models - i)

text summarization model (we compared a baseline encoder-

decoder model with an encoder-decoder-attention model), ii)

BI-RADS classification model, and iii) hybrid model (text

summarization + BI-RADS classification). The text summa-

rization models were used for generating the conclusion of

the radiology reports from the clinical data and findings in

the reports. To get a more accurate BI-RADS score (to be

included in the conclusion part of the report), a separate BI-

RADS classifier was trained. To have a combined model

that contains an accurate BI-RADS score and generated

conclusion, a hybrid model was created combining the power

of the above models. An overview picture of our model can

be found in Figure 3.

1) Encoder-Decoder (ED) (Baseline model): In abstrac-

tive text summarization, seq2seq models [13] are often

used mapping an input sequence to an output sequence of

different lengths using an encoder and a decoder. The input

sequence is passed through a word embedding layer which

maps the numerical input received from preprocessing to

embeddings. The embedding is given to the LSTM-based

encoder. The LSTM units gather information about the ele-

ments in the input sequence and propagate the information

forward in the sequence. The output of the encoder is the

context vector containing the encoder hidden state with a

fixed length, which serves as the initial hidden state of the

decoder, which is a representation of the target sequence.

The decoder also contains several LSTM units. The decoder

iterates through the context vector and predicts the next word

(the one with the highest probability) given the previous

word, and starting with a _START_ token. The sequence
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Replace BI-RADS 
score of model        

by output of 
model 

Vocabulary distribution

Attention distribution

Encoder States

…

Decoder States

_START_ birads iiimedische gegevens via svob patho-
logische

lym-
fomen

zien

…

Attention weighted
context vector

laesie

Summarization Model 

birads iii
laesie in het
laterale 
bovenkwadrant
van de 
rechtermamma …

birads iv laesie in 
het laterale 
bovenkwadrant
van de 
rechtermamma …

ivInput
TF-IDF features

Output
BI-RADS Score

ML Classifier

BI-RADS Classifier 

Hybrid Model 
Output

BI-RADS Classifier 
Output

Generated 
Conclusion

2

1

3 Hybrid Model 

1

2

iii -> iv

Figure 3. Conclusion generation with hybrid model - combination of summarization model (Encoder-Decoder-Attention model) (Own diagram based
on [6]) and BI-RADS classifier.

ends once the end token is predicted or the maximum

decoding length of 32 has been reached. This is done by

calculating the probability using softmax over all the words

in the vocabulary at each decoding step. The word in the

vocabulary with the largest probability is chosen as the

next decoded token. In Figure 3, the baseline ED model is

represented by the orange (encoder), yellow (decoder) and

green (output vocabulary distribution) parts present in the

part labeled 1.

2) Encoder-Decoder-Attention Model (EDA): The EDA

model differs from the ED model by the addition of an

attention layer [14], which allows the decoder to have access

to all hidden states of the encoder at each decoding step. In

the ED model, the context vector passed from the encoder

to the decoder has a fixed length and represents the result

of the last encoding unit. Thus, all previous hidden encoder

states are discarded. This leads to a disadvantage when using

seq2seq models, as longer sequences tend to be squeezed

into this fixed-length context vector and information can

be lost. The mechanism of attention [14] is intended to

solve this issue. It makes use of these states during the

decoding process. The hidden encoder states are attended to,

depending on the current state of the decoder. This means

that certain words of the input sequence are considered in

addition. The model assigns high attention scores to those

words of the input sequence that are relevant to the current

decoder step. In Figure 3, the part with label 1 shows the

EDA summarization model with an attention layer (indicated

in blue) added to the architecture of the ED model.

We illustrate the approach with an example summarization

step in Figure 3 using the example report of Figure 1.

Note that the words “pathologische” (pathological) and

“lymfomen” (lymphoma) in the report receive higher at-

tention scores at the decoding step. In concatenation with

the context vector resulting from the encoder, this attention-

weighted context vector is fed to the next decoding unit,

which chooses “laesie” (lesion) as the next word from the

vocabulary. The blue part of Figure 3 shows the attention of

the example.

The architecture of the encoder in both ED and EDA

models consists of an input layer and three LSTM layers to

capture complex input whereas the decoder consists of an

LSTM layer, an attention layer, and a dense output layer.

All LSTM layers follow the default setting of tanh as

activation function and sigmoid as the input/output/forget

gate activation function. The implementation of the neural

network was mostly done with the library Keras [20]. The

attention layer from [14] was implemented.

3) BI-RADS Classification: The summarization model

is focused on the generation of text. A common problem

with language generation models is that they often do not

reproduce facts correctly. Therefore, a second model was

used which solely focuses on the correct prediction of the

most important fact: the BI-RADS score.

In essence, predicting the BI-RADS score from the clin-

ical data and findings is a text classification problem. We

use the common ‘bag of words’ approach where we use TF-

IDF [21] scores as the values for the word features. The TF-

IDF scores inform the classifier about the distinctiveness of

words. If a term (word) occurs in many documents (clinical

data + findings), it is not very distinctive for a class of

documents, thus it has a low TF-IDF. In contrast, if a word

only occurs in a few findings with a high frequency, it is

likely to be distinctive for that class and is quite informative,
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thus it has a high TF-IDF. The TF-IDF matrix is generated

from clinical data and findings of a report and is passed

as an input feature to a traditional machine learning (ML)

classifier to predict the BI-RADS score, which can take any

categorical value in the range of 0-6. Figure 3 contains the

BI-RADS classifier (shown with label 2).

4) EDA+BI-RADS (Hybrid Model): The hybrid model

first uses the input sequence of clinical data and findings

to generate the conclusion using the best summarization

model. Then, the BI-RADS classifier predicts the BI-RADS

score based on the clinical data and the findings using the

classification pipeline. Finally, the BI-RADS score in the

generated conclusion of the summarization model is textu-

ally replaced by the prediction of the BI-RADS classifier.

Figure 3 shows how the hybrid model is formed (shown

with label 3). The output of the model can be seen in the

‘Hybrid Model Output’ on the right in the figure.3

C. Experimental Setup

The hybrid summarization and BI-RADS classifier model

is experimentally compared with the non-hybrid EDA and

ED baseline models. For training, hyper-parameter tuning,

and testing, the dataset has been divided into a train (70%),

validation (10%), and test (20%) set.

1) Summarization models: By summarization models, we

refer to both ED and EDA models. The model has been fitted

using early stopping to prevent over-fitting. The patience

parameter was set to 20 epochs to avoid stopping the training

prematurely at a local optimum. This means that only after

20 epochs of no improvement measured by loss on the

validation set, the training will be stopped. After early

stopping, the weights of the best epoch are restored. The

sparse-categorical-cross-entropy loss function as well as the

RMSprop optimizer have been applied. Sparse-categorical-

cross-entropy is appropriate as a loss function because the

problem at hand is a multi-class problem. The RMSprop

optimizer was chosen as it is known to deal well with mini-

batches during training, which is the case.

This configuration of the model has two hyper-parameters

that need tuning: Latent dimension, which is the number of

hidden units in an LSTM layer, and the batch size during

training. For latent dimensions, we used different values

roughly around the size of the input and output sequence,

which are 100 and 32 respectively. Hence, the following

values were used in tuning of the latent dimension: 60, 80,

100, 120. For the batch size, we decided on the values of

64, 128, 256, and 512 for hyper-parameter tuning. The batch

size should not be too small so that the model has enough

data to find patterns. It cannot be too large either because

the training time increases drastically. To cover the entire

parameter space, a grid search was performed.

3The summarization model always generates a BI-RADS score in its
conclusion.

2) BI-RADS Classification: We compared different multi-

class classifiers for BI-RADS classification: Support Vector

Machine (SVM), Logistic Regression, Ridge Classifier, Gra-

dient Boosted Trees, Random Forest, K-Nearest Neighbour

(KNN) and Multinomial Naive Bayes. We used the python

implementations in Scikit-Learn [22] and Xgboost [23].

3) Evaluation Metrics: We evaluated the generated con-

clusions quantitatively and qualitatively.

Quantitative: To assess the performance of the ED and

EDA models, ROUGE scores [7] are used. ROUGE scores

are measures used to evaluate the quality of texts to an ideal

reference text. A ROUGE-n score counts the numbers of

overlaps of respective n-grams between the reference and

the text at hand. High scores indicate a high overlap between

the prediction and reference and are therefore desirable. In

the frame of this work, the measures of precision, recall,

and F1 of ROUGE-1 (unigram), ROUGE-2 (bigram), and

ROUGE-L (longest common subsequence) are determined

between the reference conclusion from the test set and the

generated conclusion by using the py-rouge library [24].

Moreover, the generated conclusion is anticipated to provide

a BI-RADS score as well. Therefore, this score is extracted

and the accuracy of the BI-RADS score classification from

the summarization is reported as well. All ROUGE scores

and BI-RADS score prediction accuracy on the test set for

ED, EDA and BI-RADS classifiers are reported for 95%

confidence interval calculated using 1.96
√

v(1−v)
N , where v

is the score or the accuracy value, N is the number of reports

in the test set and 1.96 is the z-score for 95% confidence.

The fine-tuning of the hyper-parameters is done on the

validation set. The three best performing combinations in

terms of ROUGE-L F1 are further evaluated on the test set.

For these models, the ROUGE-L F1 score and BI-RADS

accuracy are calculated. This is done to determine the best

hyperparameter combination of the summarization model

and validate the need for the separate BI-RADS classifier.

We chose the F1 score as it combines precision and recall.

For the evaluation of the BI-RADS classifier, each of the

pipelines with the different classifiers was trained on the

training set and evaluated on the validation and test set using

accuracy as a metric.

Qualitative: In addition to these metrics, a qualitative

evaluation is done with two radiologists of the ZGT hospital

in Hengelo, Netherlands. The objective of this evaluation

is to get an impression on whether the content is correct
(factual correctness of the information), relevant (medical

relevance of the content for the doctors) and comprehensible
(makes sense syntactically and semantically). For this, a

random sample of five pairs of original findings and its

generated conclusions are sent to the radiologists. Both the

radiologists discussed and rated the generated conclusions

together in terms of the 3 aforementioned criteria. Further-

more, they were asked to give free-text comments about each
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Table I
EDA PERFORMANCE FOR DIFFERENT BATCH SIZES AND LATENT

DIMENSIONS ON THE TEST SET.

Batch Latent ROUGE-1 ROUGE-2 ROUGE-L
size dimension F1 F1 F1

128 120 0.540 0.388 0.515
64 100 0.531 0.381 0.508
64 120 0.526 0.377 0.503

conclusion.

IV. RESULTS

Table IV in Appendix A shows the performance of the

different models, resulting from the hyperparameter tuning

of the EDA model on the validation set. On evaluating the 3

best performing combinations of hyperparameters on the test

set, we found that batch size of 128 and latent dimension of

120 achieved the highest ROUGE-L F1 (cf. Table I). Our ED

and EDA models were trained on the best hyperparameters

and the resulting ROUGE scores are reported in Table II.

Our EDA model outperformed the baseline ED model by

around 0.7%, achieving a ROUGE-1 F1 score of 0.54, a

ROUGE-2 F1 score of 0.388, and a ROUGE-L F1 score of

0.515. However, the ED model achieved a 1% higher BI-

RADS score accuracy compared to the EDA model.

For the classification of the BI-RADS score, seven differ-

ent supervised learning methods were inserted in the pipeline

and then compared on the validation set. The accuracy of all

the classifiers on the validation set is shown in Table III. The

three best performing models (SVM, Logistic Regression

and Ridge classifier) were also compared on the test set and

the accuracy can be found in Table III. SVM classifier was

found to be the best performing BI-RADS classifier. The

BI-RADS classification accuracies from the ED and EDA

models are stated in Table II for comparison and it can be

seen that SVM outperforms the ED model by 4%.

We have also shown a generated conclusion from a fictive

report using our hybrid model in Figure 1 (shown both the

original Dutch report along with its English translation).

As can be seen, there are many common terms between

our generated conclusion and the ground truth conclusion,

e.g. ‘birads’, ‘iv’, ‘lateral’, ‘upper’, ‘quadrant’, ‘of’, ‘the’,

‘right’, ‘breast’. Figure 3 shows that the EDA model gener-

ated a wrong BI-RADS score of iii (three) in the generated

conclusion and the BI-RADS classifier predicted the BI-

RADS score correctly as iv (four). Therefore, in our hybrid

model output, replacing the BI-RADS score of iii from the

EDA model with the BI-RADS score of iv from the BI-

RADS classifier results in a correct BI-RADS score.

The results of the qualitative evaluation with the hospital

can be found in Figure 4. The five example reports had a

correctness of 40%, relevancy of 75%, and were 85% com-

prehensible. The comments from the radiologists indicated

Table II
COMPARISON OF THE ED AND EDA MODELS FOR THE

SUMMARIZATION TASK ON THE TEST SET BASED ON ROUGE SCORE

AND BI-RADS ACCURACY REPORTED AT 95% CONFIDENCE INTERVAL.

Model ROUGE-1 ROUGE-2 ROUGE-L BI-RADS
F1 F1 F1 Accuracy

ED 0.530±0.01 0.383±0.01 0.508±0.01 0.791±0.01
EDA 0.540±0.01 0.388±0.01 0.515±0.01 0.784±0.01

Table III
COMPARISON OF DIFFERENT BI-RADS CLASSIFIERS ON VALIDATION

AND TEST SET (TEST SET VALUES REPORTED AT 95% CONFIDENCE

INTERVAL). THE BASELINE IS AN ARTIFICIAL CLASSIFIER THAT ALWAYS

PREDICTS THE MAJORITY CLASS (BI-RADS SCORE 2).

Model Accuracy
Validation Test

SVM 0.837 0.833±0.01
Logistic Regression 0.817 0.816±0.01
Ridge Classifier 0.797 0.795±0.01
Gradient Boosted Trees 0.780 0.779±0.01
Random Forest 0.773 0.768±0.01
KNN 0.696 0.695±0.01
Multinomial Naive Bayes 0.670 0.675±0.01

Baseline Majority classifier 0.523 0.542

the problems in the generated conclusions, e.g. wrong breast

side and absence of the word “geen” (“no” in English) from

the findings. This leads to some of the conclusions meaning

the opposite of the intended sense.

V. DISCUSSION

A. Interpretation of results

In this work, we automatically generated conclusions of

Dutch radiology reports including a classification of the BI-

RADS score. This was done by combining a summarization

model (EDA) which generates the conclusion with a classi-

fication model. The hyperparameters of the EDA were tuned

and the best performing model with a ROUGE-L F1 score

of 0.515 has a batch size of 128 and a latent dimension

of 120. Interestingly, other parameter combinations were

performing better on the validation set. This could be due

to overfitting during training. The ROUGE-L score is the

most informative, as it combines the other two ROUGE

scores. The score is quite high in comparison to similar

works, such as [18] which also summarized medical data

and had a ROUGE-L score of 0.347 for the same model as

ours. Our significantly higher score on a similar task with

the same model is probably due to shorter input texts of

our dataset and less complexity. The SOTA summarization

model “T5” had a ROUGE-L score of 0.407 on their best

model [25]. Again, this difference can be explained with the

given dataset.

The comparison of the final EDA model to the ED

baseline model showed that the attention mechanism helps

to generate a slightly better conclusion. The ROUGE-L F1
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Figure 4. Hospital evaluation results. Average percentage of each generated
conclusion being correct, relevant and comprehensible based on the ratings.

score of the simple encoder-decoder model scores only 0.7%

lower. This rather small improvement could be explained

by the length of the findings, which are at maximum 100

tokens. A larger increase in performance could be expected

when longer sequences are passed as input. To quantify the

uncertainty of the scores, we reported the scores at 95%

confidence interval and we found the possibility of overlap in

the scores from these two models. Therefore, no conclusion

can be drawn on the question of whether or not attention

can be beneficial in the given summarization task.

The accuracy of the EDA model in predicting the BI-

RADS score was 78.4% as compared to the accuracy of

83.3% achieved by the separate BI-RADS classifier (SVM).

Thus, a 4% improvement in accuracy indicates that a sepa-

rate model for BI-RADS score classification is beneficial.

The ROUGE score only evaluates how well the generated

conclusion text matches the human conclusion text, but it

ignores several other important aspects of good conclusions

such as correctness, relevance of the content, and under-

standability. The results from the hospital evaluation suggest

that the generated conclusions are mostly factually incorrect

(e.g. wrong breast side, wrong imaging protocol) but still

cover relevant content and are comprehensible. We cannot

report the agreement between the radiologists because they

did the evaluation together and provided a combined score.

The high scores in relevance and comprehensibility suggest

that there is potential for an effective clinically usable

automatic summarization approach if the approach can be

improved on factual correctness.

While we have not used an explicit method to handle out-

of-vocabulary (OOV) words, e.g. copy mechanism, our sum-

marization model handles OOV words using the embedding

layer present after the input sequence. Whenever the model

encounters an OOV word, the embedding layer will find the

word’s closest meaningful representation in its vector space.

We adopted a neural text summarization model for the

task of summarizing radiology reports in the Dutch lan-

guage [14]. We refrained from using a more recent model,

e.g. the T5 architecture [25], because of i) their computa-

tional intensity, and ii) the larger number of parameters that

need to be fit. There are no pre-trained models available

that are trained in medical Dutch, and our data set is

comparably small. We used a standard architecture for our

summarization task as our main objective was to test the

potential of summarizing Dutch medical reports and whether

a language model could learn to predict the BI-RADS score.

We see the hybrid model with separate BI-RADs prediction

as a solid baseline for future work.

B. Limitations

One of the complications of this work lies in the dataset.

As the dataset is in Dutch, other pretrained models for

abstractive summarization trained on English corpora could

not be used. Therefore, a new model needed to be built.

Additionally, the dataset encompasses real radiology reports

made by humans. This means that the possibility of human

errors in the dataset exists. The findings sometimes include

another BI-RADS score than the reported score in the

corresponding conclusion, which could mislead the model.

This could be either a previous score from medical history or

perhaps human error. Furthermore, the conclusions are also

written by humans, so if there are errors, they are learned

as well. Clinicians appear to have very diverse styles of

reporting [26], so it is not surprising that the model was

unable to find a standardized structure for the conclusions

as well.

The labels for the BI-RADS score were extracted from

the conclusions by looking for certain formats. We only

checked a sample of BI-RADS score extractions manually,

and cannot guarantee that our extracted labels are error-free.

Moreover, in some of the conclusions, no score could be

extracted because the phrasing was inconsistent and some

conclusions contained human errors. Due to the complexity

and variance of the underlying texts [26], neither a rule-

based nor a machine-learning based approach is likely to be

error-free.

The preprocessing eliminated stop words from the find-

ings which usually improves the performance of the model

because the model does not learn the context from irrelevant

words. The comments of the qualitative evaluation men-

tioned that the word “geen” (“no” in English) is sometimes

missing from the findings. Such words, should never be

removed as they negate the meaning of subsequent content.

A limitation of the proposed summarization model is that

it sometimes generates wrong facts: only two out of five

example reports evaluated by the hospital reviewers were

reported to contain correct content. Therefore, improving

factual correctness is an important direction for future work.

Additionally, the generated text of the current method

does not contain any grammar checks, so there is no guaran-

tee for correct sentences. However, the original conclusions

were also not written in full sentences.

Finally, the evaluation shows some limitations. Firstly, the

used ROUGE metric is not a metric for the quality of the

conclusion in terms of content. It assumes that the reference

conclusions from the dataset are the target, whereas this
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might not always be the case. Secondly, the qualitative

evaluation with the radiologists from the hospital was done

on a very small scale. Therefore, the results are only to be

treated as an indicator for the conclusion quality in terms of

comprehensibility, correctness of information, and relevance

of content instead of a general result.

C. Future Work

To improve this work, future work can address the afore-

mentioned limitations. It could look at applying the model

on an English dataset, such as radiology reports within

the MIMIC III database [27]. This would give a statement

about the cross-lingual validity of the presented model. Also,

pretrained models in English could be fine-tuned to this

dataset to investigate transfer learning between languages.

Moreover, the summarization model can be improved by

extending the data preprocessing. By further looking at the

list of stop words, we might give the model some more

valuable information that could improve performance. The

introduction of a structure to the input report [2] and its

influence on the model could be investigated. In addition, the

model could be extended with more clinically relevant fea-

tures (e.g., breast size) to ensure relevant information in the

conclusion. These features could be identified in cooperation

with medical staff with the required domain knowledge. A

structure for the targeted conclusion could also be estab-

lished together with medical staff so that a standardized way

of reporting the conclusion can be automated. Additionally,

the use of domain-specific ontologies can be investigated for

feature extraction. Also, the conclusion could be checked for

grammar after generation. Furthermore, the summarization

model itself could be extended by the calculation of a

generation probability to build a PGN [6]. To improve the

accuracy of the BI-RADS score classifier, relevant features

such as breast composition could be considered. Moreover,

a neural network, solely used for the task of predicting the

BI-RADS score, might achieve higher accuracy.

In our hybrid model, we directly replace the BI-RADS

score of the EDA model with the BI-RADS score predicted

by the classifier. Future work could investigate a tighter

integration of the classifier and the language model, e.g.,

by employing multi-task learning strategies.

Future work could also improve on the evaluation methods

used in this study. As a ground truth for the BI-RADS

scores did not exist separately, we needed to extract it

ourselves. This ground truth was used for evaluation, so

future work would need to assess its validity. In general,

this work shows that there is a need for a more informative

evaluation metric than the current ROUGE metric which is

widely used for summarization tasks. Furthermore, a larger

scale qualitative evaluation could be done with radiologists,

in order to understand the applicability of the generated

conclusion better.

VI. CONCLUSION

In this work, a hybrid model (EDA+BI-RADS) was intro-

duced for the automatic generation of conclusions including

a BI-RADS score classification for medical findings of

Dutch breast cancer reports. An encoder-decoder model with

attention was combined with an SVM classifier for the

BI-RADS score which is a severity measure and part of

the conclusion. The combined model had a ROUGE-L F1

score of 51.5% and an accuracy of 83.3% on the prediction

of the BI-RADS score. The qualitative analysis showed

that the model can generate comprehensible and relevant

conclusions, while there is potential for improvement in the

area of factual correctness.
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APPENDIX A.

RESULTS OF HYPERPARAMETER TUNING

Table IV
ENCODER-DECODER WITH ATTENTION (EDA) MODEL PERFORMANCE FOR DIFFERENT BATCH SIZES AND LATENT DIMENSIONS ON THE VALIDATION

SET

Batch Latent BI-RADS ROUGE-L ROUGE-1 ROUGE-2
size dim. accuracy F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall

64 120 0.797 0.519 0.712 0.439 0.542 0.742 0.459 0.395 0.585 0.328
64 100 0.803 0.518 0.694 0.446 0.543 0.725 0.467 0.394 0.567 0.332

128 120 0.801 0.517 0.697 0.440 0.540 0.728 0.461 0.392 0.568 0.328
64 60 0.793 0.514 0.702 0.436 0.537 0.731 0.456 0.389 0.569 0.324

128 80 0.796 0.513 0.695 0.439 0.537 0.725 0.461 0.388 0.566 0.326
128 100 0.793 0.513 0.703 0.434 0.537 0.735 0.455 0.389 0.574 0.323
256 120 0.788 0.509 0.686 0.435 0.532 0.716 0.455 0.383 0.555 0.321
128 60 0.773 0.508 0.683 0.435 0.531 0.714 0.456 0.381 0.548 0.320
64 80 0.759 0.506 0.705 0.426 0.525 0.731 0.443 0.379 0.566 0.313

256 100 0.767 0.504 0.695 0.428 0.528 0.726 0.449 0.377 0.558 0.314
512 100 0.769 0.502 0.692 0.427 0.525 0.721 0.446 0.377 0.556 0.314
512 60 0.772 0.501 0.675 0.429 0.523 0.704 0.449 0.373 0.538 0.314
256 60 0.774 0.501 0.686 0.424 0.522 0.713 0.443 0.374 0.549 0.311
512 120 0.768 0.500 0.662 0.435 0.523 0.691 0.456 0.371 0.528 0.316
256 80 0.782 0.496 0.693 0.419 0.519 0.722 0.438 0.369 0.555 0.305
512 80 0.750 0.494 0.692 0.415 0.515 0.720 0.433 0.365 0.550 0.301
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