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Abstract—Accurately detecting the mobile contexts, in which
public transport vehicles and their passengers operate, is key
for future intelligent context-aware services in transportation
systems. A prominent example is in-vehicle presence detection
that, for instance, can be used to provide services such as
automated ticketing, dynamic vehicle distribution, and live route
optimization. To use such services in practice, the in-vehicle
presence detection needs to be close to infallible. However, most
existing solutions in this field suffer from low spatiotemporal
accuracy. To address this challenge, in this paper we introduce
ATARAXIS, an approach to hardwareless in-vehicle presence
detection. In particular, we develop a deep convolutional neural
network that can be trained to detect if a user is inside a public
transportation vehicle such as a tram, subway, or bus from the
raw sensor events generated by the sensors in a single ordinary
smartphone. We show that this information can be used to infer
the in-vehicle presence of users over time when combined with
other sources such as the GPS trace of the user and that of
the public transport vehicles. ATARAXIS has the capability to
distinguish between the four user modes driving a car, riding
a bike, walking, and using public transport with an accuracy of
98.69%. That is higher than existing techniques for transport
mode detection. Since we are interested in applying ATARAXIS in
practice, we also made experiments on the battery consumption
and CPU overhead to be expected. The results show that the use
of ATARAXIS in smartphones incurs a negligible computational
overhead and power consumption, even though we base our
approach on sensor data collection and a deep learning model.

Index Terms—Mobile Context, In-Vehicle Presence Detection,
Transport Mode Detection, Sensor Event Streams Analysis, Deep
Learning, Intelligent Transportation

I. INTRODUCTION

Many public transportation providers offer smartphone ap-
plications that provide services such as route planning, path
finding, live updates regarding the transportation infrastruc-
ture, and ticket sales. In particular, in Northern Europe, the
providers move rapidly away from legacy systems and routines
such as ticket sales by vehicle operators or ticket-machines, the
manual control of tickets, and ticket validation machines. A
goal of shifting services to this technology is the reduction of
infrastructure- and personnel-related costs. Another advantage
is the improvement of the user experience and the removal
of unnecessary steps for the passengers which makes public
transport more attractive and is therefore a small step towards
combating climate change.

The rapid development of mobile technologies like the
Internet of Things (IoT) and cellular network infrastructures
(e.g., 5G) will lead to unprecedented opportunities making the
next generation of public transportation even more appealing.
To support such improvements, however, mobile context in-
formation [1] about passengers and the vehicles transporting
them, have to be extremely accurate. If we know with a
probability bordering on certainty whether a person is inside
a vehicle, what type of vehicle it is, and more specifically,
in which vehicle the person is travelling, we can use this
information to provide context-aware services for the providers
such as route optimization, dynamic vehicle distribution, and
live passenger flow analysis.

Another type of context-aware service is provided within
the so-called Be-In/Be-Out (BIBO) systems [2] which can
automatically issue tickets based on the exact duration/distance
traveled by users. Such a system alleviates the user from
having in-depth knowledge regarding the fare structure and
the ticketing system used.

Like the aforementioned services, a BIBO system can only
work in practice if an excellent in-vehicle presence detec-
tion accuracy can be achieved. Therefore, we proposed two
deep learning-based frameworks, called DEEPMATCH [3] and
DEEPMATCH2 [4], respectively, that provide a good accuracy
of up to 98.51%. More details about these approaches and
other BIBO technology are provided in Sec. II. An important
disadvantage of these approaches, however, is that they require
extra hardware (e.g., reference devices as fixed equipment
installed in the bus to transmit BLE signals to passengers’
smartphone) which imposes additional costs associated with
implementation and maintenance.

This calls for a solution that works without using additional
hardware. In this paper, we address this need by introducing
our new approach ATARAXIS. In particular, we propose a deep
learning model enabling hardwareless in-vehicle presence
detection. It depends only on the presence of two platforms:

• Smartphones carried by passengers that offer certain sets
of sensors like accelerometers, barometers, magnetome-
ters, gyroscopes, and GPS receivers.

• An external service providing the spatiotemporal
information—the real-time and historical locations of a
certain vehicle. In Norway, the government-funded orga-



nization Entur has set strict regulations and requirements
to what kind of hardware all vehicles operated by public
transportation providers have to be equipped with. This
entails hardware supporting the submission of real-time
data to a publicly available API [5] based on the SIRI
2.0 standard [6]. One of the requirements is the real-time
location of the vehicle, such that all vehicles have to be
equipped with GPS.

ATARAXIS is a deep convolutional neural network trained
on our own dataset collected by volunteers performing four
different activities: walking, bike, car and public transport.
The goal of the learning model is to recognize the activity of
a user based on the sensor event streams of their smartphones.
From this, we can recognize whether the user is believed to
be present inside a public transportation vehicle. If a user
is assumed to be in a public transport vehicle, we can then
compare traces of the positions of users and vehicles in their
vicinity using the Entur API [5] or a similar service, to find
out in which public vehicle they are traveling. Based on this
information, a BIBO system to ticket the users automatically
can then be realized.

The main contribution of this paper is the introduction of
our transport mode selection model while we will explain the
alignment of traveller position traces with those of vehicles
using the Entur service elsewhere. The rest of the paper is
organized as follows: Our previous work, i.e., the approaches
DEEPMATCH and DEEPMATCH2, are sketched in Sect. II. In
Sect. III we provide an in-depth presentation of our proposed
approach followed by a report on experimental evaluation
results in Sect. IV. In Sect. V, we present related works, to
which our approach is compared before we conclude the paper
with a discussion of future plans in Sect. VI.

II. DEEPMATCH AND DEEPMATCH2

Various approaches realizing BIBO systems were devel-
oped. They can be loosely divided into the two categories
described in the following.

The first category of approaches use communication tech-
nologies such as Radio Frequency Identification (RFID) and
Bluetooth Low Energy (BLE). These build up temporary
connections between the user’s mobile device and certain fixed
hardware installed in the vehicles. Examples of such systems
are SEAT [7] and EasyRide [8].

The second category relies on analyzing event streams pro-
duced by the sensors embedded in the smartphones carried by
passengers. Modern smartphones are provided with numerous
sensors such as gyroscopes, magnetometers, accelerometers,
barometers and GPS. HybridBaro [9] and RideSense [10] are
prominent solutions for sensor-based solution used to provide
in-vehicle presence detection.

In our previous work [3], [4], we argue that the accuracy of
these approaches is not good enough to use them in practice.
To alleviate this issue, we proposed two deep learning-based
frameworks, called DEEPMATCH [3] and DEEPMATCH2 [4].
In these approaches, each vehicle needs to be equipped with
a stationary Reference Device (RefDev), embedded with the

same sensors that can be typically found in modern smart-
phones. The sensor event streams generated by the on-board
reference device and that of the passenger phones believed to
be inside the vehicle are compared with one another using a
special deep learning model built and trained for this specific
purpose. If the deep learning model predicts that the two
sensor streams match, the devices are assumed to be sensing
from within the same vehicle inferring that the smartphone
and, in consequence, its user are effectively riding in the
vehicle.

Both deep learning models used to perform the in-vehicle
presence detection in DEEPMATCH and DEEPMATCH2 con-
sist of several distributed modules. Copies of one module, i.e.,
the encoder part of a Stacked Convolutional Autoencoder, are
embedded in apps installed in the smartphone carried by users
and in the RefDev in the vehicle, respectively. This encoder
module is used for sensor data compression and feature extrac-
tion. The most significant difference between both approaches
is that the compression factor of DEEPMATCH2 is four times
as high as the one used in DEEPMATCH.

The other part of each of the two models is a separate
convolutional neural network that matches the data generated
by the encoders in the RefDev and the passenger phone. It is
supposed to run on an external server, e.g., in a cloud or within
the vehicle realizing an Edge Computing solution [11]. In the
experiments for DEEPMATCH presented in [3], we achieved an
in-vehicle presence prediction accuracy of 97.81% which, as
we elaborated in the article, is sufficient to carry out passenger
trip inference with a negligible error rate. Thanks to some
further changes in the extended model DEEPMATCH2 [4], we
reached a slightly improved accuracy of 98.51% in spite of the
drastically smaller data sets transferred between the devices
and the external server.

The disadvantage of DEEPMATCH, DEEPMATCH2, and
other approaches requiring extra hardware like the RefDevs
installed in the vehicles, is the increased costs associated with
implementation and maintenance. Moreover, Public Transport
Authorities (PTA) are often reluctant to use approaches that
require extra hardware. Besides the additional costs, a reason
for this is that the PTAs often do not operate the vehicles
themselves but outsource their operation to subcontractors.
Many of the vehicle operators provide service for several
PTAs and want to have the freedom to easily move their
vehicles between different areas. When moving a vehicle
between areas, however, they have to exchange all special built
in devices which can be quite laborious. That explains the
reluctance of the PTAs and their subcontractors to additional
hardware like the RefDevs. Therefore, we decided, not to stop
with DEEPMATCH and DEEPMATCH2 but also to look at
hardware-less in-vehicle presence detection technology, which
led us to creating ATARAXIS presented in the following.

III. ATARAXIS

In this section, we provide an overview of our approach.
Then we elaborate on the hardware and system settings on
which our approach is built, followed by a presentation of how
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Fig. 1: Outline of the ATARAXIS algorithm

the data used to train our deep learning models were collected
and transformed to suitable data sets. Thereafter, we introduce
the design and architecture of our learning models, before
the training regime of our experiments is described. Finally,
we present the design rationale and experimental settings of
ATARAXIS.

A. Overview

The core algorithm of our approach ATARAXIS is depicted
in Fig. 1. A user carries a smartphone, on which an application
featuring the ATARAXIS deep learning model is installed. In
both Android and iOS, an application can be configured to run
long-living background processes which can listen for certain
triggers and then prompt other services in the application.
In ATARAXIS, the background service listens for a wake-
up signal, e.g., a user movement over a longer distance like
100m. When the wake-up signal is sensed by the device, the
application starts to register events from all relevant sensors.
After a certain fixed period, the events sensed in this period
are fed to the ATARAXIS deep learning model, which uses this
segment of data to predict whether the user is travelling in a
public transport vehicle, in a car, on a bike, or is walking.

If this model predicts that the phone and its user are, indeed,
in a public transport vehicle, the application also fetches data
from an external service like Entur [5] in Norway that provides
real-time GPS data of all public transportation vehicles in
the area. The application then filters out all transport vehicles
which are further away than a certain threshold (e.g., 20 me-
ters) and tries to match the GPS traces of the remaining ones
with the one of the user taken by the GPS receiver built into
the smartphone. If one vehicle with a similar trace as that
of the smartphone is detected, the user mode prediction is
locally stored together with the GPS matching result for further
processing. Thereafter, the algorithm starts a new loop.

The sequence of GPS matchings and user mode predictions
generated over time are thereafter used in the trip inference

step. Here, we can infer over several classifications in a
sequence to find out, if the user was in a certain user mode
over time. For that, we use a method introduced in [4] which
allows this inference with a very high accuracy even if some
classifications in the sequence are wrong.

In this method, we use the cumulative binomial probability
described by the following formulas:

P (k ≥ M) =

n∑
k=M

(
n

k

)
pk(1− p)

n−k (1)

P (k ≤ M) =

M∑
k=0

(
n

k

)
pk(1− p)

n−k (2)

The variable n refers to the number of user mode classifica-
tions performed in a single sequence while k describes the
number of classifications that are correctly predicted. Finally,
in formula (1), M describes the minimum and in (2) the
maximum number of user mode classifications, for a certain
user mode um, that needs to be in the sequence in order
to decide that the user is effectively in um for the whole
sequence. M can be calculated using equation (3):

M =

⌊
(1− fault tolerance) · n+

1

2

⌋
(3)

Here, the fault tolerance describes the percentage of all
predictions in the sequence that can be wrong whilst still
correctly inferring that the user is in a particular user mode
during this sequence.

To find an optimal value for M , where we achieve the
least amount of false positives and false negative sequence
inferences, we searched for a suitable fault tolerance value.
Our tests described in [4] show that the most accurate results
are achieved when a fault tolerance value of 40% is used.

In the rest of this section, we describe the ATARAXIS deep
learning model, the central aspect of our approach, in detail.

B. Hardware Requirements and System Settings

As mentioned in the introduction, the ATARAXIS deep
learning model requires events gathered by the typical sensors
embedded in modern smartphones in order to be able to
perform user mode classification. Through experiments, we
found out that using events from the accelerometer, magne-
tometer, and gyroscope sensors provides the highest user mode
detection accuracy, an accuracy of 98.69%. We chose to use
the raw sensor output from these sensors instead of output
from software-based sensors (such as linear acceleration),
since software-based sensors are less commonly available in
older phones.

To make correct predictions of the user activities, the
classifier needs access to additional information about the
users’ movements. For instance, the raw hardware-based sen-
sor events from the accelerometer embedded in smartphones
outputs the acceleration for a coordinate system aligned with
the chassis of the phone. In consequence, if users change the
orientations of their devices, e.g., by taking them out of their
pocket, the acceleration values will change drastically. This
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Fig. 2: The orientation of a smartphone vs. that of the carrying
user

TABLE I: Example datapoints

Mode Sensor Value Timestamp ID Device
Car Acc. X 1.582 3366... 15 75i3...
Car Acc. Y 0.285 3366... 15 75i3...
Car Acc. Z 10.468 3366... 15 75i3...
Car Mag. X 23.245 3366... 15 75i3...
Car Mag. Y 9.875 3366... 15 75i3...
Car Mag. Z -4.875 3366... 15 75i3...
Car Gyro. 0.019 3366... 15 75i3...

is quite disadvantageous, since the change in orientation is
wrongly interpreted as a change in acceleration of the user.

To solve this issue, one typically transforms the collected
accelerometer data represented along the X , Y , and Z axes of
the phone’s coordinate system to the X’, Y ′, and Z ′ axes of
the carrier’s coordinate system utilizing the angular rotations
performed around X , Y , and Z, see Fig. 2. In some works,
this reorientation is performed by handcrafted algorithms, in
contrast to learned by the model itself, before the data is fed
to the classifier [12]. The reorientation is calculated from the
accelerometer data collected on the smartphone’s coordinates,
in addition to the output from the gravity sensor, which is a
software-based sensor derived from the accelerometer together
with the magnetometer and the gyroscope. As previously
mentioned, however, the accessibility of such software-based
sensors varies. Therefore, we chose to use the raw, sensor
outputs to train our deep learning model. This forces the model
to learn to take the orientation of the device in relation to its
user into consideration. As pointed out in our empirical studies
discussed in Sect. IV, the learning models provided with input
from these three sensors, i.e., the accelerometer, magnetometer
and gyroscope, are the ones providing the highest classification
accuracy.

C. Data Collection and Dataset Creation

In the following, we describe first, how we collected and
pre-processed sensor data. Thereafter, we discuss how the
datasets, that we used to train and test the ATARAXIS model,
were created from these sensor data.

1) Collection and Preprocessing: In previous work on in-
vehicle presence detection, we developed the Android applica-
tion DataCollector [4] which makes it easy for the carrier of
a smartphone to collect, label, timestamp, and persist sensor
events gathered by all the sensors embedded in this device.
Each sensor event is stored as a datapoint in a local SQLite

TABLE II: An Example of interpolated data

Time Mode Acc.X. Mag.X. Gyro. . . .

0 ms Car 5.624 21.835 0.059 . . .
100 ms Car 5.584 22.834 0.1356 . . .
200 ms Car 5.530 24.547 0.077 . . .
300 ms Car 5.673 25.125 0.080 . . .

database. A datapoint contains the timestamp when the event
was gathered as well as the type of sensor emitting the event,
the value of the event, the device ID, and the collection ID,
see Table I. The data acquired by the application can later be
uploaded to a computer and digested by our custom made
Data Analysis Tools. The user can start and stop the data
collection anytime. Of course, that should happen when a
certain travelling mode is entered and left, respectively. All
events sensed during a data collection session are then marked
with a unique ID for later processing.

When attaching listeners to sensors using the Android
framework, the developer can configure a preferred data col-
lection rate for each individual sensor. In reality, the rate at
which the events are generated, deviates from the specified
sampling rate with an average of one to two milliseconds due
to limitations of the sensor control software. The consequence
is that not all sensors emit their events exactly at the same time
such that it is not possible to get the exact set of datapoints
at a point in time. In our approach, however, we need one
event for each sensor at the exact same timestamp. In order to
achieve that in spite of this problem, we created a set of data
analysis tools that is able to interpolate the gathered data. This
interpolation is performed through the following four steps:

1) Define a global start time. For that, we use the timestamp
of the first sensor event in a data collection.

2) Subtract the global start time from all timestamps of all
data points to get a relative timestamp.

3) Interpolate the values for each sensor event with a fixed
frequency.

4) Remove the original sensor events.
When this process is complete, we achieve a set of unified

datapoints. For example, the datapoints from Table I are
replaced by those in Table II.

2) Dataset Creation: The goal of dataset creation is to
create suitable datasets to support the development of a User
Mode Classifier able to distinguish between the four user
activities walking, using public transport, driving in a car, and
riding a bicycle, as depicted in Fig. 3.

By using our data analysis tools, we can create suitable
datasets by configuring the following parameters:

• Number of datapoints in each sample,
• Sensors, the data of which shall be included in each

sample,
• Number of samples in each dataset.

The tools guarantee that all datapoints included in a sample
are from a sequential collection done in the same trip since all
datapoints have to contain identical data collection IDs. More-
over, to find out which sensors contribute to good accuracy
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Fig. 4: ATARAXIS deep learning model architecture

results and which might be impedimental, we can also create
samples containing events only from subsets of the sensors
available. Additionally, to find the optimal length of the input
to the model, we can build datasets consisting of samples of
different lengths.

D. Design and Architecture of the Learning Model

Using various combinations of datasets created with the
data analysis tools, we conducted a plethora of tests with
different architectures. The deep learning model depicted in

TABLE III: Example dataset sample used to train ATARAXIS

sensor t0 t1 t2 t3
Acc. X 1.582 1.232 1.531 1.622
Acc. Y 0.285 0.182 0.335 0.233
Acc. Z 10.468 10.231 10.468 10.468
Mag. X 23.245 23.325 23.245 23.245
Mag. Y 9.875 9.575 9.999 9.234
Mag. Z -4.875 -4.235 -4.536 -4.658
Gyro. 0.019 0.002 0.123 0.321

Fig. 4 rendered the best results. It is a Convolutional Neural
Network (CNN, ConvNet). These networks are specially suited
to detect and extract time-invariant features in sequential data,
see [13], [14], [15], [16]. This is exactly what we need to solve
our problem.

The green boxes in Fig. 4 represent two-dimensional con-
volutional layers. They contain filters that are trained to detect
patterns in the input sensor event sequences unique to the
various user modes contained in our datasets. Each green
convolutional filter executes the three consecutive operations:
convolution, rectified linear unit activation (ReLu), and batch
normalization, see [17]. The inputs to the convolutional layers
are two-dimensional. As pointed out by the example in Ta-
ble III, the rows of the matrix refer to sensor inputs, while
the columns point to the points of time for which the sensor
values were interpolated. The texts in the green boxes describe
the size of the convolutional filter matrices used in a layer. For
instance, in the model’s outermost layer, the number of rows
of the convolutional matrix equals that of the input matrix
and the number of columns is 22, i.e., each filter processes
22 events from all sensors for each convolution. In each green
box, the size of the filter for the corresponding layer is shown
by the text on the left side, whilst the number at the right side
refers to the number of filters, e.g., 16 on the outermost layer.

The grey boxes represent layers without any trainable pa-
rameters. Two layers of this class are average pooling layers
that perform dimensionality reduction by outputting the aver-
age for every two consecutive values of their input. Thus, the
large number of dimensions of the input data can be gradually
decreased. That is important to reduce the complexity of the
overall machine learning model, i.e., the number of trainable
parameters. Reducing the complexity and size of the machine
learning model also helps us to avoid overfitting the model to
its training data.

Finally, the blue box at the bottom of the architecture
represents a dense layer. It has four outputs equaling the
number of classes, i.e., user modes, that the overall model has
to predict. Since this layer acts as the models output, the layer
uses the softmax activation function to output a probability
distribution over the four user modes.

As can be seen in Fig. 4, our model consists mainly of
convolutional layers that are interspersed with two average
pooling layers as well as one flatten layer and lastly a dense
layer. We use a significant number of dropout layers, as shown
in the figure, which helped the model in avoiding overfitting
to the training data.



TABLE IV: ADAM optimizer settings

Parameter Value
alpha (learning rate) 0.001
beta1 0.9
beta2 0.999
epsilon 1e-07

E. Model Training

In this subsection we will describe the configurations and
hyperparameters used when training our ATARAXIS deep
learning models. As described above, the datasets used as input
to our machine learning model are formed as two-dimensional
representations of the sensor events registered over a certain
time period where the rows point at specific sensor events
and the columns at points in time (see Table III). For each
input sample in the training set, there is further a true label
Y , representing the class, the sample belongs to, i.e., one of
the four user modes presented in Fig. 3. During training, the
label Y of each sample is converted to a one-hot-encoding,
i.e., a vector of length equal to the number of classes in the
training set. The output of the last layer of the deep learning
model is a probability vector with the same length, produced
by the softmax-activation function. The vector element with
the largest value is the one predicted by the model as the
correct user mode. In the following, we name the predicted
output vector as Y ′.

The goal of model training is to reduce the disagreement
between the actual one-hot encoded label Y and the element
of Y ′ with the largest value. We quantify this disagreement
using categorical cross-entropy.

L = −
n∑

i=1

yi · log(y′i)

Here, y′i represents the i-th scalar value in the model output
vector Y ′, while yi is the corresponding target value in the
one-hot encoded label Y .

Furthermore, Stochastic Gradient Descent in the form of
the ADAM optimizer [18] is used to update the trainable
parameters of the model using the disagreement found by
the loss function described above. The ADAM optimizer was
configured with setting depicted in Table IV.

F. Design Rationale behind the Deep Learning Model

When developing the deep learning model, we first started
with a very small model architecture of only three layers with
few small filters within each convolutional layer. We trained
the iterations of our model on the created datasets following
the description in Sect. III-C2 and evaluated the results using
the well-known performance metrics precision, recall, and F1-
score which are described more in-depth in Sect. IV-A.

Then we gradually and incrementally changed the hy-
perparameter configuration of the model and calculated the
performance metrics for each new iteration. We also tried
to use dense layers instead of conv layers as well as both,
bigger and smaller filter sizes in addition to varying the

number of filters within each conv layer. Furthermore, we
gradually created a deeper neural network until we reached the
architecture described in Fig. 4 that rendered better precision
metrics values than all other iterations we tried.

All experiments were carried out on a desktop PC, equipped
with an Intel i7 4.00GHz CPU, 32 GB memory and a Nvidia
GTX 1080 GPU. The Data collector application was developed
for the Android platform, while the Data Analysis tools
were implemented in Python. The deep learning models were
trained and evaluated using Google Tensorflow 2.0, version
2.0.0-rc0 [19].

IV. EVALUATION

In Sect. IV-A, we introduce the performance metrics, that
we use to evaluate the ATARAXIS deep learning model in
greater detail. Thereafter, we describe the data collected by
our volunteers, how it was collected, and the various datasets
created from it in Sect. IV-B. Finally, the battery consumption
as well as the CPU usage and run-time overhead of our
approach for the passenger smartphones are discussed in Sects.
IV-C and IV-D, respectively.

A. Definitions and Metrics for Evaluation

In our evaluations, we use a number of definitions that are
introduced as follows: A positive sample represents segments
belonging to Class 1, i.e., it covers a case in which a deep
learning model predicts the correct user mode. In contrast, a
negative sample is from Class 0, i.e., it refers to a case when
a wrong user mode is predicted. According to the common
denominations in binary classification, we further define the
following terms: True Positive (TP) as a correctly classified
positive sample, True Negative (TN) as a correctly classified
negative sample, False Negative (FN) as a positive sample that
is wrongly classified as negative, and a False Positive (FP) as
a negative sample which is falsely classified as positive.

Using these four terms, we can define the following three
metrics that are helpful to evaluate the performance of a
machine learning model:

• Precision (PR): The ratio of correct positive predictions
to the total number of predicted positive samples, i.e., out
of all samples classified as positive, how many belong to
Class 1:

PR ≜
TP

TP + FP
(4)

• Recall (RE): The ratio of correct positive predictions
to the total number of positive samples, i.e., out of all
available positive samples in the dataset, how many were
correctly classified by the model:

RE ≜
TP

TP + FN
(5)

• F1-score (F1): The harmonic mean between precision and
recall. The F1-score is useful in cases where the number
of samples from each class is not distributed evenly:

F1 ≜ 2 · PR ·RE

PR+RE
(6)



TABLE V: Data sizes and smartphone positions collected for
the different user modes

User Mode Data Size Smartphone Position
Public Transport 530 min In hand, pocket, bag
Car 530 min In hand, pocket, holder, bag
Bike 530 min Pocket, holder, bag
Walking 530 min In hand, Pocket, bag

TABLE VI: Performance metric values for the four user modes

Class PR Recall F1-Score
Public Transport 0.9975 0.9897 0.9936
Car 0.9925 0.9826 0.9875
Bike 0.9759 0.9863 0.9810
Walking 0.9818 0.9890 0.9854
Macro Avg 0.9870 0.9869 0.9869

A fourth value is the accuracy that is more meaningful
when the distribution between the classes of the dataset is
relatively similar while the F1-score is better when they
are imbalanced. Since there is significant imbalance in our
data and, in addition, the F1-score is more sensitive to false
positives and false negatives, which is particularly important
to avoid in ATARAXIS, we use it instead of the accuracy metric
in our evaluations, see also [20].

B. Datacollection and Dataset Creation

The data applied in this work was collected by volunteers,
each carrying a smartphone whilst performing one of the four
activities public transport, bike, car, or walking. The data was
collected using our DataCollector application, described in
Sect. III-C1. Copies of it were installed on the following seven
Android devices: a Huawei Nexus 5X, two Huawei Nexus P6,
a Samsung S8, a Sony Z3 Compact, a Google Pixel XL and a
Google Pixel 3a. In Table V, the amount of data collected by
our volunteers is listed. The Data Size column shows the total
amount of data collected by all our volunteers for a given user
mode, and the smartphone position describes the locations of
the phones, while the data was collected1.

The collection rate was set to 100 ms, i.e., 10 Hz, for all
sensors. This rate was selected since it is the fastest collection
frequency offered by the slowest sensors in the smart devices,
we used in our experiments. For each of the four user modes,
we have a total of approximately 318,000 events per sensor.2

Altogether, we built six different datasets with the aim
to find out which combination of input data provides the
best result for our deep learning model. Based on the results
from these experiments, we selected the best sensor modality
combination, see Sect. IV-B1.

The next test step was to find an optimal sample size, i.e.,
the duration of the sensor events segment used to build a
sample of the datasets. Thus, we created three datasets to find
out which sample lengths render the best performance results.
This is discussed in Sect. IV-B2.

1In cars, the phone was only held by passengers but never by the driver.
2The datasets will be available via GitHub.

TABLE VII: Performance comparison sensor combinations

Model PR RE F1
ATARAXIS 12.8 A 0.8919 0.8919 0.8919
ATARAXIS 12.8 B 0.7370 0.7368 0.7369
ATARAXIS 12.8 BA 0.9456 0.9451 0.9454
ATARAXIS 12.8 AM 0.9765 0.9765 0.9765
ATARAXIS 12.8 AMG 0.9870 0.9869 0.9869
ATARAXIS 12.8 AMGB 0.9836 0.9835 0.9835

In Table VI, the three performance metric values provided
by our best performing model, i.e., the one depicted in Fig. 4,
are listed for the four user modes using the k-fold cross-
validation algorithm [21]. In our experiments we set k to be 5,
resulting in an distribution of 80% training samples and 20%
testing samples of this algorithm.

1) Sensor Modalities: To make sure that we found a good
trade off between the computational and battery consump-
tion induced by our approach and the performance of the
deep learning model, we created six datasets with sample
lengths of 12.8 seconds consisting of the sensor combi-
nations Accelerometer (A), Barometer (B), Barometer and
Accelerometer (BA), Accelerometer and Magnetometer (AM),
Accelerometer, Magnetometer, and Gyroscope (AMG) as well
as Accelerometer, Magnetometer, Gyroscope, and Barometer
(AMGB).

In Table VII, the results from training ATARAXIS on these
datasets are presented. As can be seen from the performance
metrics depicted in the table, the combination AMG, i.e., the
dataset built from samples consisting of sensor events from
the accelerometer, magnetometer and gyroscope, rendered the
best results. The F1-score of this modality is 0.9869.

We believe that the reason for achieving the best results by
training the model on the AMG and the AMGB datasets is that
data from the accelerometer, magnetometer, and gyroscope
are required to translate the sensor events registered along
the X , Y and Z axes of the device to movements along the
X ′, Y ′ and ′Z axes of the person carrying the device, see
Sect. III-B. The slightly reduced performance of the model
based on AMGB comes in our opinion from the additional
noise that the barometer introduces to the input of the model.

Interestingly, this result is exactly opposite to our previous
work on DEEPMATCH and DEEPMATCH2, where using only
the sensor events generated by the Barometer rendered the best
results. As we described in [3], the Barometer is great when
the goal is to ignore the movements of the user, and rather
capture the movements of the vehicle, the user is traveling
in. This property makes it easy to compare the data of a
smartphone with other devices present in the same vehicle,
i.e., the RefDev. When predicting the user mode, however, the
Barometer does not seem to be a good source of input since
here the movements done by both, the user and the vehicle are
relevant characteristics in order to decide if the user travels in
a public bus, a car, rides a bike, or walks.

2) Sample Size Experiments: The length of the input data
used by the deep learning model in ATARAXIS is important
for a couple of factors. Firstly, the size of the input of the



TABLE VIII: Performance comparison sample sizes

Sample Length PR RE F1
3.2 sec 0.9506 0.9502 0.9504
6.4 sec 0.9845 0.9844 0.9844
12.8 sec 0.9870 0.9869 0.9869

model influences its performance, i.e., the more data, a model
can base its predictions on, the better will its accuracy be.
This is true as long as the additional amount of data contains
information still helpful to improve the pattern recognition.
However, from a certain threshold on, the added data does
not contain relevant new information, and it will not help to
increase the sample size past that. From our experiments, the
threshold is around 10 seconds.

Secondly, the size of the sample influences how often the
model can predict the users mode anew. As discussed in
Sect. III-A, the trip inference algorithm introduced in [4]
works better if more single predictions can be considered.
That also calls for using a sample size that is not too big.
Lastly, running the machine learning model on the smartphone
induces a computational overhead, that we want to keep
minimally.

In Table VIII, the results from training the ATARAXIS
model on three different sample lengths are presented. In
our tests, the samples consist of datasets that are taken in
time intervals of 3.2, 6.4, and 12.8 seconds, respectively.
Since our data collection frequency was 10Hz, this results in
sample size lengths of 32, 64 and 128 datasets, respectively.
Applying datasets where the sample lengths are multiples of
two, simplifies the creation of deep learning models using
stacks of conv. and average pooling layers. The reason for
this is that the average pooling operator divides the size of
its input in half. Since we use more than one average pooling
layer consecutively, it is therefore good to have an input size,
the half of which is also a multiple of two.

We see that the variant trained on a dataset consisting of
12.8 second long samples yields the best performance with
a F1-score of 0.9869. Nevertheless, the model trained on 6.4
second long samples performed nearly as well with an F1-
score of 0.9844.

C. Power Consumption on Smartphones

As mentioned above, in ATARAXIS, the application respon-
sible for inferring the in-vehicle presence of a user is expected
to run on the user’s smartphone. Therefore limiting the power
consumption of ATARAXIS is crucial to guarantee a high
degree of acceptance by the users.

In this subsection, we evaluate the power consumption
of our approach in practice. In particular, we check the
consumption of the three main sources of potential battery
drain, namely, sensor data collection, prediction performed by
the deep learning model, and communicating with the central
server to fetch public transport vehicle data.

The tests were carried out using the three Android phones
listed in Table IX. To consider age diversity, we used phones
that are between two and seven years old. Moreover, an

TABLE IX: Android phones used in the power consumption
tests

Battery Age Data Lear- Commun-
Phone capacity [yrs] coll. ning ication

[mAh] [mA] [mA] [mA]
Huawei P30 Pro 4200 2 12 1 1
Huawei Nexus 6P 3450 5 8 3 2
Sony Z3 compact 2600 7 24 0.5 0.5

TABLE X: Run Time and CPU overhead

Phone CPU Mean Run Time Overhead

P30 Pro
2x 2.6 GHz, 2x 1.92
GHz, 4x 1.8 GHz
Octa-Core

32 ms 2 %

P6 2.0 GHz + 1.55 GHz,
64-Bit Octa-Core 59 ms 5 %

Z3 2.5 GHz Quad-Core,
Krait 48 ms 10.2 %

important factor on battery life is the temperature of the
smartphone and its environment. To make sure our test envi-
ronment simulates that of a typical public transport vehicle,
we performed all tests indoors at an temperature of about
19◦ Celsius. Since ATARAXIS AMG with 12.8 seconds long
samples yielded the best test results, we only considered
this model for our power consumption runs. The tests were
performed by collecting battery statistics from the phones
using the Batterystats and Battery Historian tools provided
by Android [22]. To quantify the aforementioned sources of
power consumption, we constructed three scenarios for our
experiments:

• Data collection scenario: The battery used by the three
sensors continuously collecting data;

• Prediction scenario: The power consumed by the ma-
chine learning model processing data every 12.8 seconds;

• Communication scenario: The power consumption used
to communicate with a server.

The results from our battery tests are also depicted in
Table IX. They show clearly that, using just between 0.5
and 3 mAh, the deep learning model of ATARAXIS influences
the overall battery consumption only marginally. Even for the
oldest device used in the tests, the seven years old Sony Z3
compact, the total power consumption of all three scenarios
was 25 mAH. This equals only to 0.96 % of the total battery
capacity. As a result from our tests, we consider that our
approach has only a negligible impact on the overall battery
power consumption.

D. Computational Overhead on Smartphones

In addition to the battery consumption, the computational
overhead induced by applications running passively on user
smartphones is of utmost importance. In order to learn about
overhead, we therefore ran tests registering the CPU usage and
the mean run time of the machine learning model when the
phone is used to process sensor data collected by its sensors.

In our tests, we used the same devices as in the battery
tests. The results are depicted in Table X. We can see that



the CPU overhead and mean run-time is small at least for the
newer models. This is particularly true since the computational
overhead is only present during the execution of the deep
learning model, e.g., over the duration of 32ms for the P30
Pro. Furthermore, since the machine learning model is only
executed every 12.8 seconds, the machine learning model
should hardly impact any other applications or services that
are executed on the phone in parallel.

V. RELATED WORK

In Sec. II, we briefly discussed own as well other approaches
that rely on additional equipment in order to realize in-
vehicle presence detection. In this section, we mainly ex-
plore hardware-less solutions for in-vehicle presence detection.
These types of solutions are often built upon Transportation
Mode Detection (TMD) techniques. Although our work is
more than just a TMD technique, we discuss existing TMD ap-
proaches in the following and compare them with ATARAXIS.

TMD has been addressed from different methodological
angles and methods throughout the past two decades. Earlier
techniques were limited to separating only motorized from
non-motorized vehicles. In contrast, most more recent solu-
tions aim to identify more than just these two basic trans-
portation modes. Often, one distinguishes walking, bicycle,
cars, and buses, where the main challenge is to separate cars
from the rest of motorized transport [23].

From another perspective, existing techniques can be ar-
ranged in two categories, i.e., location-based [24] and sensor-
based [25] approaches. Location-based solutions often rely on
location data provided by the GPS or wireless network [26].
The issue with these approaches is that they can induce high
power consumption. Moreover, one may not always have
sufficient cellular network accessibility, e.g., when traveling in
metros operating underground or on ferries [27]. In addition,
the accuracy of detecting transport modes or vehicles such as
walking, running, cycling, motorcycles, buses, and subways
using the GPS-based techniques is reported to be just between
70% to 85%, see [28], [29].

Most works in this category rely on GPS data [30], while
others combine GPS with the use of a Geographic Information
System (GIS) platform or the map service APIs [31]. In an-
other group of approaches, GPS, accelerometer and Bluetooth
are combined with map-matching algorithms, see [32], [33],
[34]. Finally, some approaches utilize the fusion of GPS and
accelerometer data, see [33], [34].

Sensor-based transportation mode detection techniques can
be used in a more energy-efficient and reliable manner than
the location-based approaches [35]. The reason is that the data
can be sampled from sensors at higher sampling frequencies
with a considerably lower energy consumption.

Traditionally, rule-based or simple machine learning based
approaches were applied for TMD. One of the works using
shallow machine learning techniques and motion sensors on
phones was proposed by Fang et al. in [36]. As described
in [37], however, the accuracy rates decrease significantly with
the increasing number of transportation classes. Therefore,

more advanced machine learning mechanisms, in particular,
deep learning approaches, have been introduced to enhance
the classification success rate for models that shall distinguish
between large numbers of different transportation modes. Fang
et al. could increase the success rate from 83.57% to 95%
using Deep Neural Networks (DNN) [38].

Convolutional Neural Networks (CNN) is another popu-
lar DNN-based approach, that was originally designed for
image classification problems, but can be adapted to TMD.
G. Yanyun et al. reported a success rate of 98 % for four
classes using DNNs for TMD. In [39], the authors aim to
classify seven classes using a CNN. They achieved 94.48 %
success rate, but the high overlapping ratio of 87.5% is an
issue in their model since it causes additional computational
costs. T. Vu et al. introduced a Recurrent Neural Network
(RNN) for TMD [40]. The authors used Vanilla RNN as
well as some other variations of RNNs such as Control Gate-
based Recurrent Neural Networks (CGRNN) and Long-Short
Term Memory (LSTM). The most efficient one was CGRNN
with an accuracy of 94.72% for a dataset consisting of 10
classes. In another LSTM-based approach, Asci et al. [41]
use accelerometer, gyroscope, and magnetometer sensors as
inputs into a recurrent neural network to classify ten different
transport modes with an accuracy of 97.07%.

The important finding in the above approaches is that
accurate transportation mode detection is complex, and usually
a high accuracy entails either an unacceptable battery con-
sumption and a high computational overhead, or requiring very
long data sequences. In comparison to all these approaches,
ATARAXIS provides excellent results as can be seen from
Tables VI and VII. In addition, our approach uses relatively
short sample sizes as depicted in Table VIII. Moreover, it
induces a hardly noticeable power consumption as shown in
Table IX and a low computational overhead as presented in
Table X.

VI. CONCLUSION AND FUTURE WORK

Providing accurate in-vehicle presence detection is an im-
portant step towards provisioning future context-aware ser-
vices in public transport. In this paper, we addressed this
challenge through ATARAXIS, a deep learning based approach
to hardwareless in-vehicle presence detection. We presented
the ATARAXIS deep learning model that can detect the four
user modes walking, public transport, driving and riding a bike
with an accuracy of 98.69 %. The model achieves this using
only the raw sensor events generated by the accelerometer,
magnetometer, and gyroscope sensors typically embedded in
modern smartphones. We showed through empirical experi-
ments that the combination of these three sensors and an input
length of 12.8 seconds yields the best results. Furthermore, we
presented tests showing that the computational overhead and
battery consumption of ATARAXIS is low, even for a 7-year
old, used, Android phone.

In the future, we plan to implement the hardwareless in-
vehicle presence detection, together with a public transporta-
tion provider in Norway. In particular, we will combine



the user mode predictor introduced in this paper with the
open Entur API providing the real-time location of all public
transportation vehicles in the country. Moreover, we plan to
continue making improvements to the ATARAXIS deep learn-
ing model by further data collection and model optimizations.
Here, we will also include the use of electrical scooters (e-
scooters) in our datasets and model classification, since the use
of these vehicles has exploded in Norway and in many other
countries during the Covid-19 pandemic. Together with the
localization systems of the e-scooters, our method will then
allow their providers to automatically bill the users of these
devices who can simply board and dismount them without
having to think about ticketing.
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