
Comparative Study of Causal Discovery Methods
for Cyclic Models with Hidden Confounders

Boris Lorbeer
Technische Universität Berlin

Berlin, Germany
lorbeer@tu-berlin.de

Mustafa Mohsen
Technische Universität Berlin

Berlin, Germany
m.mohsen@campus.tu-berlin.de

Abstract—Nowadays, the need for causal discovery is ubiqui-
tous. A better understanding of not just the stochastic depen-
dencies between parts of a system, but also the actual cause-
effect relations, is essential for all parts of science. Thus, the
need for reliable methods to detect causal directions is growing
constantly. In the last 50 years, many causal discovery algorithms
have emerged, but most of them are applicable only under the
assumption that the systems have no feedback loops and that
they are causally sufficient, i.e. that there are no unmeasured
subsystems that can affect multiple measured variables. This is
unfortunate since those restrictions can often not be presumed
in practice. Feedback is an integral feature of many processes,
and real-world systems are rarely completely isolated and fully
measured. Fortunately, in recent years, several techniques, that
can cope with cyclic, causally insufficient systems, have been
developed. And with multiple methods available, a practical
application of those algorithms now requires knowledge of the
respective strengths and weaknesses. Here, we focus on the
problem of causal discovery for sparse linear models which are
allowed to have cycles and hidden confounders. We have prepared
a comprehensive and thorough comparative study of four causal
discovery techniques: two versions of the LLC method [10] and
two variants of the ASP-based algorithm [11]. The evaluation
investigates the performance of those techniques for various
experiments with multiple interventional setups and different
dataset sizes.

I. INTRODUCTION

Causal analysis [15, 16] of complex systems is nowadays
an integral part of many sciences. It is heavily used in fields
as diverse as medicine, biology, cognitive science, economics,
predictive maintenance, root cause analysis, physics, and ma-
chine learning. Conventional data analysis investigates the
probabilistic properties of the data to gain insight into the
involved probability distributions which can then be used to
e.g. predict new data. Causality on the other hand serves
to not just learn the data but to learn about the system
that generates the data. For instance, consider two random
variables, one is binary and indicates the administration of
a drug that is allegedly reducing blood pressure in patients,
and the other is the patient’s blood pressure itself. Then,
ordinary data analysis can study the existence and size of a
stochastic dependency between those two random variables.
But if we are interested in the efficiency of the drug in
changing blood pressure, this purely stochastic information
is insufficient, since there can be a correlation between the
two random variables without causation, i.e. without the drug

having any effect on blood pressure. Causal analysis on the
other hand provides techniques to answer questions about
actual causation. And in this example, it answers the question
of whether the drug is actually the reason for the change
in the patient’s blood pressure and also measures the size
of this causal effect. I.e. causal analysis is concerned with
the discovery and measurement of actual mechanisms in the
underlying system, which in this case would be the patient’s
body.

A subfield of causality is causal discovery, which studies
the existence of causal relations and is not concerned with
the estimation of the size of the causal effects. Often, causal
discovery is the first step and its results serve as input for
the estimation of the effect size. This paper focuses on causal
discovery.

Most of the research in causal analysis focuses on the
acyclic situation, meaning that the considered system is pre-
sumed to have no cycles in its causal relations, i.e. there are
no feedback loops. This renders the analysis less complex but
excludes many realistic scenarios. An example from econo-
metrics would be the study of supply, price, and demand: the
demand is influencing the price but the price is also influencing
the demand.

Another assumption in standard causal analysis is causal
sufficiency: It is presumed that there are no unobserved vari-
ables, so-called hidden confounders, that causally influence
multiple observed variables. Again, this simplifies the analysis
but excludes many relevant use cases. E.g., in the example
above of a drug for blood pressure, imagine that the drug is
only given to younger people, which have lower blood pressure
anyways, thus causing bias to the results. In this case, age is
a hidden confounder.

While there are many causal discovery algorithms for the
acyclic, causally sufficient situation, very few exist that are
also applicable in the more demanding case of cyclic systems
with hidden confounders. In this paper, we compare the
properties of four of such methods, namely two techniques,
ASP-d [11] and ASP-s [4], which are variants of a constraint-
based technique using answer set programming, and two
variants, LLC-NF and LLC-F [10], of a method of moments
type estimator.

Those four approaches are evaluated on synthetic data from
linear systems, which means the causal relationships between

ar
X

iv
:2

40
1.

13
00

9v
1

 [
cs

.L
G

]
 2

3
Ja

n
20

24

the variables are linear.

II. RELATED WORK

For a complete overview of the history of causality see the
treatises [15] and [16]. Both references focus mainly on the
acyclic case but do cover, to a certain extent, the situation with
hidden confounders.

An early technique for cyclic systems, called CCD, is
described in [19], but it presumes the absence of latent
confounders. Amongst the few algorithms that allow for both
cycles and hidden confounders are LLC [10], the method
described in [11] which we refer to as ASP-d, sigmasep [4]
which we refer to as ASP-s, BACKSHIFT [20], CCI [23], and
bcause [17, 18].

Note that the methods above presume interventional data,
that is, not only data from the system itself but also from other
systems that are obtained by changing the original system in
a certain way, i.e. intervening on it. If this interventional data
is not available, causal inference becomes harder. There are,
however, several approaches for this scenario, too, like the
family of Additive Noise Models (ANM), see e.g. [8], ICA-
based methods for linear systems like LiNGAM [22], LiNG
[12], and the Two-Step algorithm [21], or Information Geo-
metric Causal Inference (IGCI), see e.g. [14]. Some of those
methods can also deal with latent confounders or cyclicity.

In recent years, the mathematical foundations of the theory
of cyclic systems with hidden confounders have advanced
considerably. A comprehensive exposition can be found in [5]
and [2].

III. DESCRIPTION OF THE METHODS

This section will present the main features of the LLC and
ASP algorithms. Note, that this is a high-level overview, pre-
senting only as much as is necessary to explain the evaluation
below. For the details, the reader should consult the pertinent
papers, see [3, 9, 10] for the LLC and [11, 4] for the ASP
variants.

A. General Concepts in Causality

The main entity in causality is the Structural Causal Model
(SCM) [2], which consists of structural equations of the
form (note that we use 1 : n as an abbreviation for the set
{1, 2, . . . , n}):

Xi = fi(X,E), i ∈ 1:n, (1)

where X = (X1, . . . , Xn) is an n-dimensional random vector
containing the observed variables, E is an m-dimensional ran-
dom vector containing the unobserved noise, and the functions
fi : Rn × Rm → R are the causal mechanisms. See [2]
for the mathematical details. Many aspects of an SCM can
be described by associating a graph that contains as nodes
both the observed variables Xi, i ∈ 1 :n and the unobserved
variables Ek, k ∈ 1 :m. It is a directed graph (DG), i.e. all
edges have exactly one arrowhead. Here, a directed edge only
goes into observed nodes Xi, no edges are pointing to noise
variables Ek, and there is an edge N → Xi from a node N to

Xi iff fi depends on N . This graph is called the augmented
graph of the SCM, see [2].

This directed graph can be reduced to a graph that contains
as nodes only the observed variables and connects any two
nodes that have a noise node as common parent by a bidirected
edge. Graphs with both directed and bidirected edges are
called directed mixed graphs (DMG). This reduced graph is
simply called the graph of the SCM.

A path (in a DG or DMG) is a tuple (ϵ1, . . . , ϵm) of
edges where two consecutive edges have a common node. In
particular, an edge can appear multiple times in a path. A path
is a directed path if none of the edges are bidirected and all
edges point in the same direction.

The directed edges in the graph of an SCM then depict
the direct causal connections between variables, symbolizing
direct causal effects, while bidirected edges describe con-
founding (see below). Directed paths consisting of more than
one edge describe indirect causal connections, generating
indirect causal effects. Note, however, that in cyclic SCMs
we can have causal effects even between nodes that are not
connected by a directed graph, see [2] section 7.1.

If this graph has cycles, i.e. directed paths that start and end
at the same node and contain at least one edge, the SCM is
called cyclic. Causal cycles describe systems with feedback
loops, which are quite common in realistic scenarios.

If an unobserved node Ek influences two different observed
nodes Xi, Xj , i.e. the augmented graph of the SCM contains
the subgraph Xi ← Ek → Xj and the graph of the SCM
contains a bidirected edge Xi ↔ Xj , then Ek is called
a hidden (or latent) confounder. A system without hidden
confounders is called causally sufficient.

A central notion in causality is that of an intervention.
We consider only surgical interventions [10], which can be
described as follows: The original SCM is changed by select-
ing a subset XI , I ⊂ 1 : n, of the observed variables, and
forcing a new distribution on XI , that is independent of all
the other random variables X1:n\I and E. An example would
be randomized drug trials, which ensure that the people who
do and do not get the drug are selected completely at random.
In this case, we have an intervention on the assignment of
the drug. The graph of the intervened SCM differs from the
graph of the original SCM in that all the edges that point into
intervened nodes are removed.

Data that is observed from a non-intervened system is called
(purely) observational data.

A common approach to causal discovery consists in
using constraint-based methods, which exploit conditional
(in)dependences between random variables to infer causal
connections. Two random variables X and Y are said to be
independent conditioned on a set of random variables S with
X,Y /∈ S, denoted by (X ⊥⊥ Y |S), if they are independent
w.r.t. their conditional probabilities, i.e.:

(X⊥⊥Y |S) ⇔ p(X,Y |S) = p(X|S)p(Y |S), (2)

presuming those conditional probabilities exist. The notion of
“conditional independence” has a pendant in graphs which is

called d-separation. To properly explain it, we first need to
define colliders: Given a path in a DMG, a node Xi on the path
is a collider on this path if both neighboring edges on the path
point into Xi, i.e. Xi−1 → Xi ← Xi+1, Xi−1 ↔ Xi ← Xi+1,
Xi−1 → Xi ↔ Xi+1, or Xi−1 ↔ Xi ↔ Xi+1. Then two
nodes Xi and Xj are said to be d-connected w.r.t. a condi-
tioning set C if there is a path from Xi to Xj such that all the
colliders on the path are in C. If two nodes are not d-connected
they are called d-separated. The notation for X being d-
separated from Y given C in the graph G is (X ⊥G Y |C).

The idea of constraint-based methods is based on two
assumptions (see [15, 16] for details):

1) The probability distribution of an SCM is Markovian
w.r.t. the graph G of the SCM, i.e.:

(X ⊥G Y |C) ⇒ (X⊥⊥Y |C). (3)

For linear, possibly cyclic SCMs, which is the case we
are considering, this assumption holds under mild con-
ditions. See Theorem A.7 in [5] for a precise statement
of those conditions.

2) The probability distribution of an SCM is faithful w.r.t.
the causal graph G of the SCM, i.e.:

(X⊥⊥Y |C) ⇒ (X ⊥G Y |C). (4)

There are situations when this implication does not hold.
E.g., imagine for an edge X → Y a second path
X → Z → Y which creates an effect from X on Y
that is exactly the opposite of that of the edge X → Y .
Thus, the two effects cancel out, and, even though the
system has a proper mechanism that links X and Y , it
is invisible in the data.

Now, constraint-based methods usually presume those two as-
sumptions and use them to obtain information about the causal
graph structure from stochastic (in)dependence properties of
the observational and interventional data. The advantage of the
constraint-based approach is that it is nonparametric, i.e. we
don’t have to presume a specific model for the SCM. Note,
however, that it only provides the structure of the graph of
the SCM. For the quantitative estimation of the causal effects,
one has to use further techniques on top of the constraint-based
methods.

Note, that with constraint-based methods one tries to obtain
the non-symmetric property “X causes Y ” from symmetric
stochastic (in)dependence properties which is usually not
possible. Thus, one has to apply interventions: If X causes Y ,
i.e. X → Y , then both Y is stochastically dependent on X and
X is stochastically dependent on Y . But with intervention on
X , the dependence still holds, while intervening on Y removes
the dependence, thus breaking the symmetry.

B. The LLC algorithm
This section gives a high-level overview of the LLC algo-

rithm; for more details, see [10].
LLC is a method of estimating the parameters of a linear

causal system of the form:

x = Bx+ e (5)

where x, e ∈ Rn,B ∈ Rn×n. Here, x contains the measure-
ments of the observed variables X and e the hidden values
of the unobserved variables E. For E, we only presume the
expectation to be zero, E[E] = 0, and the covariance of E
is abbreviated with Σe. Note, that we do not require any
particular distribution for E, the only restriction is E[E] = 0,
and even that can be lifted, see [10]. However, since this
change has no bearing on our evaluation, we stick to the
simple case E[E] = 0. The (i, j)-coefficient of the matrix
B is denoted by bij and can be identified as the direct causal
effect of variable Xj on variable Xi. B is allowed to describe
cyclic paths in the causal graph. The covariance Σe is allowed
to have off-diagonal elements, which can be interpreted as
confounding. B is required to have a zero diagonal:

bii = 0, i = 1, . . . , n, (6)

which translates to the system not having self-loops.
The measurement of an intervened system, possibly with an

empty intervention, is called an experiment. Experiments are
denoted by Ek := (Jk,Uk), k ∈ 1:K, where K is the number
of considered experiments and each (Jk,Uk) is a partition of
1 : n, i.e. Jk ∩ Uk = ∅ and Jk ∪ Uk = 1 : n. Here, Jk is
the set of indices of the nodes which are intervened on and
Uk of those that are not. To each experiment Ek = (Jk,Uk)
a pair of diagonal matrices (Jk,Uk) is assigned: using the
indicator function I(·), which equals one if its argument is true
and zero otherwise, the diagonals of Jk and Uk are given by
Jk,ii = I(i ∈ Jk) and Uk,ii = I(i ∈ Uk), resp. This allows us
to write the structural equations for the experiment Ek in a very
compact form. Let c be the vector containing at the indices Jk
the intervention values (the values the pertaining variables are
forced to), and zeros elsewhere. Then the structural equations
for the experiment Ek are given by:

x = UkBx+Uke+ c. (7)

For LLC to work, it is required that the SCM be weakly
stable, i.e. for every experiment Ek = (Jk,Uk), the matrix
I−UkB must be invertible.

Next, we consider the covariance matrix Ck
x of the measure-

ments X in experiment Ek. A covariance cui in Ck
x is called

the total causal effect of xi on xu with intervention set Jk,
and is abbreviated as t(xi ⇝ xu||Jk). A central identity of
LLC provides the connection between those total causal effects
and the matrix B, i.e. the direct causal effects. This identity
reads:

t(xi ⇝ xu||Jk) = bui +
∑

j∈Uk\{u}

t(xi ⇝ xj ||Jk)buj , (8)

which is a linear equation in the bij . Gathering all those
equations for all conducted experiments results in a system
of linear equations:

t = Tb, (9)

where t contains all the total effects on the left-hand side of
(8), b is the concatenation of all the rows of B without the
diagonal, i.e. b ∈ Rn2−n, and T contains the total effects

from the right-hand side of (8). In [10] it is shown, that for
T in (9) to have zero null space, the experiments {Ek}Kk=1

need to satisfy the pair condition, which requires that for each
ordered pair of indices (i, j), i, j ∈ 1:n, there is an experiment
E = (J ,U) such that i ∈ J , j ∈ U .

Thus, the method of LLC becomes clear: First, the covari-
ances Ck

x are estimated from the data, those total effects are
used to build the linear system (9), and finally, this linear
system is solved for b.

But LLC also provides an estimate for the covariance matrix
Σe, which describes the confounding in the system. If purely
observational (i.e. non-intervened) data is available, equation
(5) applies and since we obtained an estimate for B from (9),
we can simply compute Σe as:

Σe = (I−B)C0
x(I−B)T , (10)

where C0
x is the covariance matrix of x for no intervention. If

there is no purely observational data, we can still obtain Σe

from the experiments: from (7) it follows for any experiment
Ek = (Jk,Uk) that:

(Σe)Uk,Uk
=

[
(I−UkB)Ck

x(I−UkB)T
]
Uk,Uk

. (11)

Depending on the experiments, for a given pair (i, j) there can
be multiple experiments Ek = (Jk,Uk) with i, j ∈ Uk, so it
makes sense to compute the average of the covariances over
all such experiments, i.e.:

Σe,ij = avg
{[

(I−UkB)Ck
x(I−UkB)T

]
i,j
|i, j ∈ Uk

}
.

(12)
Thus, to obtain the complete covariance Σe, we need for each
pair (i, j) at least one experiment Ek = (Jk,Uk) such that
i, j ∈ Uk, which is called the covariance condition.

Finally, if all conditions above are satisfied, LLC returns
the pair (B,Σe). Note, that in causal discovery, we are only
interested in the causal graph, i.e. we only need to know which
bij and Σe,ij are zero.

C. The LLC-F algorithm

Note, that LLC is not a constraint-based method, and does
not presume faithfulness. However, the question is whether
combining LLC with constraint-based methods could improve
the accuracy of LLC. This has been investigated in [9] and
the pertinent algorithm is called LLC-F, with the additional
letter “F” indicating that now, faithfulness is presumed. We
use the abbreviation LLC-NF to refer to the LLC variant that
does not use constraint-based methods and does not presume
faithfulness.

The idea is to add to the linear system (9) more linear
equations obtained from conditional independences in the
purely observed and intervention data. The following four
methods are applied:

1) If, for some experiment Ek = (Jk,Uk), for two variables
Xi, Xj with i, j ∈ Uk there exists a set S of variables
with Xi, Xj /∈ S such that (Xi⊥⊥Xj |S), then we have,
by faithfulness, bij = bji = Σe,ij = 0.

2) If, for some experiment Ek = (Jk,Uk) and two variables
Xi, i ∈ Jk and Xu, u ∈ Uk, there exists a set S of
variables with Xi, Xu /∈ S such that (Xi⊥⊥Xu|S), then
we have, by faithfulness, bui = 0.

3) If, for some experiment Ek = (Jk,Uk) and three indices
i ∈ Jk and u, v ∈ Uk, we have t(xi ⇝ xu||Jk) ̸= 0
and t(xi ⇝ xv||Jk) = 0, then it follows that bvu = 0
by faithfulness.

4) If, for some experiment Ek = (Jk,Uk) and three indices
i ∈ Jk and u, v ∈ Uk, we have t(xi ⇝ xu||Jk) ̸= 0
and (xi⊥⊥xv|{xu}) in Ek, then it follows that buv = 0
and Σe,uv = 0.

Apart from extending the linear system (9) with those equa-
tions, the algorithm does not differ from LLC-NF.

D. ASP-d

Next, we give an overview of the ASP-d algorithm, follow-
ing [11]. ASP is an abbreviation of “Answer Set Program-
ming”, which is a declarative programming language, see [7].

The ASP-d algorithm belongs to the class of constraint-
based methods and thus infers the causal graph from con-
ditional independences as has been described above. It differs
from most other constraint-based techniques in that it allows
for cyclic causal graphs with hidden confounders and that it
can deal with data from multiple experiments with different in-
terventions. The conditional independences are obtained from
independence hypothesis tests which have a certain probability
of error. That means they can contradict each other. The
innovation of ASP-d is to handle this issue by formulating this
causal discovery problem as an optimization problem: let K be
a set of conditional (in)dependence relations that are obtained
from a given dataset, and let w(k) ∈ R≥0 be a nonnegative
weight assigned to each k ∈ K, describing how confident we
are that k is indeed true. Then the task is to find a graph G∗

which minimizes the following loss function:

L(G) :=
∑

k∈K,G⊭k
w(k), (13)

where G ⊭ k means that the graph does not entail, via d-
separation, the (in)dependence k. Since the loss function is
using d-separation, ASP-d is applicable to acyclic SCMs that
are linear or nonlinear, and to cyclic SCMs that are linear; see
the description of ASP-s below for more details.

Several possibilities for how to determine the weights w(k)
have been proposed, see e.g. [11, 4, 18]. We will presume that
the constraints k ∈ K have been obtained using conditional
independence hypothesis tests with significance level α and
then use weights as in [4]:

w(k) = | log pk − logα|, (14)

where pk is the p-value of the hypothesis test of k.
The optimization of (13) is done by encoding the problem

as an ASP program which can then be solved by some ASP
solver like e.g. clingo [6].

E. ASP-s

In constraint-based methods, the (in)dependences obtained
from the measurements must be matched with the graph of the
SCM to discover its causal structure. This matching is done,
as explained above, via d-separation. However, it should be
noted that for nonlinear cyclic SCMs, d-separation in general
fails to be Markovian, see [5].

I.e., for nonlinear cyclic models, d-separation must be
replaced with another separation property. This new separation
property σ-separation has been introduced in [5]. The basic
idea here is roughly that nodes in loops are so strongly
connected that conditioning cannot separate them, so they
behave as if they would be fully connected. That means, if
loops are replaced by fully connected subgraphs, an operation
which is called an acyclification, see [5, 2] for details, the
resulting acyclic graph exposes d-separation properties that
again correspond to the conditional (in)dependences of the
original cyclic SCM. In [5] the authors then formulated a
separation property for cyclic graphs, σ-separation, which is
the “pull back” of d-separation via the acyclification operation.

Then, the authors of [4] took the ASP-d algorithm and
changed the ASP encoding slightly to now use σ-separation
instead of d-separation. In [18] this algorithm got further
improved to the ASP-s algorithm we use in this paper.

Thus, ASP-s differs from ASP-d only in the type of sepa-
ration that is used. In particular, ASP-s, too, is a constraint-
based, nonparametric, optimization algorithm that minimizes
(13), except that for ASP-s the notation G ⊭ k under the sum
now refers to σ-separation.

It is important to note, however, that ASP-d and ASP-s
have different application fields. While ASP-d can be used for
acyclic and linear cyclic SCMs with hidden confounders, see
above, ASP-s applies to acyclic and nonlinear cyclic SCMs
with hidden confounders. In particular, linear cyclic SCMs
are not faithful w.r.t. σ-separation, see [5, 4]. Thus, those two
application fields have only the acyclic SCMs in common.
And since this paper only examines linear SCMs, ASP-s is not
strictly applicable here. However, we included ASP-s in the set
of algorithms to compare. Since linear models are “of measure
zero” inside the set of all SCMs, one might be tempted to
always use σ-separation. This could be problematic, because
nonlinear SCMs that are nearly linear could provide data that
is only bearly distinguishable from that of linear SCMs. Thus,
it would be instructive to see how much worse ASP-s performs
compared to ASP-d on linear cyclic models.

IV. EVALUATION

Here we describe our evaluation of the four methods LLC-
NF, LLC-F, ASP-d, and ASP-s. The source code of our
implementation in Python and R is available online1, and
uses publicly available code for LLC from Antti Hyttinen’s
homepage2 and for ASP from the GitHub repository of [4]3.

1The code will be made available upon publication.
2https://www.cs.helsinki.fi/u/ajhyttin/
3https://github.com/caus-am/sigmasep

For various types of data, we measure the methods’ capa-
bilities of detecting features of the underlying SCM. Those
features are edges and bidirected edges (confounders), which
can be either absent or present. The evaluation thus consists
of measuring the performance of binary predictions for each
single feature. Recall that there are requirements on the exper-
imental setups for the SCMs to be theoretically identifiable.
Below, we consider the performances of the methods for both
cases, where the experimental setups do and do not satisfy
those requirements.

As described in Section III-B, the LLC variants are based
on solving the system (9). For real data this system must be
expected to contain contradicting equations. This could be
handled by solving it as a least squares problem. However,
as stated above, the system could also have a non-zero null
space if there are not sufficiently diverse experiments to satisfy
the pair condition. This would result in the indeterminacy of
some or all of the coefficients in b. To avoid this, we chose to
use the version of LLC that applies a penalty term (L1 or L2)
to (9), see the code base of [10], which also has the useful
effect of regularization and promoting sparsity.

The covariance matrix is fully determined if the covariance
condition is satisfied, see Section III-B. This is ensured by
adding the “null-experiment”, i.e. the experiment without any
intervention, to each of our experimental setups.

The ASP-based methods, being constraint-based methods,
might not be able to determine the presence of some features
if there are not sufficiently many interventions available. One
possible approach in this scenario is to fix the presence of
undetermined features according to domain knowledge. For
example, if it is known that the system under consideration
corresponds to a sparse causal graph, a straightforward practice
is declaring those undetermined features as being absent. This
can be considered as an ensemble of two methods, the ASP
algorithm and a weak classifier which classifies everything
as absent. The ensemble consists in applying first ASP and
returning its result unless it is undetermined in which case
the weak classifier is applied. Most real-world causal graphs
are sparse, so it is reasonable to confine our evaluations to
data from sparse causal graphs and to always use the above
ensemble. Thus, below, whenever we refer to ASP-s or ASP-d,
we actually refer to this ensemble.

Since there are almost no real-world datasets with known
causal ground truth available, let alone in sufficient quantities
and satisfying the particular constraints required by our eval-
uation, we restrict our study to synthetic data. Because of the
high computational complexity of the methods, in particular
of the ASP variants, we simulate only graphs with five nodes
and two confounders. The edges are randomly distributed with
the constraint that the in-degree of any node is not larger
than two. As a result, the average number of edges in our
simulated graphs is 6.1 and that of bidirected edges is two,
i.e. the simulated graphs are sparse.

The coefficients of the linear equations in the SCM are sam-
pled from the uniform distribution over the set [−1.1,−0.1]∪
[−0.1, 1.1]. The effect sizes are thus bounded away from zero,

assuring detectability. Furthermore, It is ascertained that each
simulated SCM has at least one cycle (which is not a self-
loop). The study in this paper is based on data generated by
150 such randomly sampled SCMs.

For the evaluation of the methods, we need a metric. Both
the LLC and the ASP algorithms return for each feature a score
determining how strongly the algorithm “believes” this feature
to be present. The code from [10] also provides a bootstrapped
version of LLC which means we obtain for each coefficient bij
and Σe a collection of estimates of which we can compute the
z-score. This is the score we use for both LLC algorithms. For
the ASP variants, we utilize a score proposed in [13]: the ASP
algorithm is run twice for every single feature, once with the
additional constraint that the feature is present and once with
the additional constraint that it is absent. The score is then the
difference between the loss under the constraint of absence
and the loss under the constraint of presence. We call this the
ASP confidence score and use this as our scoring function for
both ASP variants.

Building on those two score definitions, we can now define
the two metrics that we will base our evaluation on. The
first is the area under the ROC curve, AUC ROC, given by
those scores, and the second is the accuracy of the binary
classification obtained by defining a threshold for those scores:
if the score of a feature is below this threshold, the feature is
considered absent, otherwise, present. While we compute the
accuracy for each SCM separately, we compute the AUC ROC
over the combined data of all the 150 SCMs.

The full evaluation procedure works as follows: We ran-
domly choose 150 SCMs as described above and use them to
create datasets of observations that are then used as input for
the four models. The edges and bidirected edges estimated by
the models are then compared with those of the original SCMs.
Those datasets are created in different ways, varying in the size
of the dataset and the structure of the applied interventions.

More precisely, we consider 21 different experimental se-
tups that are applied to the random SCMs. Those 21 setups
consist of five groups: The first row of Table I shows the first
group, consisting of a single setup containing only the purely
observational experiment, i.e. no interventions are applied. The
second row contains setups with an intervention size equal to
one. For instance, the setup with ID 11 contains two datasets
from each random SCM, the purely observational dataset
(denoted by “[]”) and the dataset obtained from intervening
on the first node (denoted by “[1]”). As another example, the
setup with ID 15 consists of six datasets per random SCM,
the purely observed one [] and the five datasets obtained
from single node interventions on all the available nodes:
intervention only on node 1 denoted by [1], intervention only
on node 2 denoted by [2], and similarly for the other nodes. In
this setup 15 the input for the four causal discovery algorithms
consists of the union of those six datasets. The setups of size
two have a similar structure, except that the intervention sets
now have size two. For example, the setup with ID 23 creates
as input to the four algorithms the union of four datasets,
which consists of the measurements of the purely observational

TABLE I: The experimental structure of the evaluation

Int.
Size

Setup
ID

Intervention Sets

0 0 []

1

11 [], [0]
12 [], [0], [1]
13 [], [0], [1], [2]
14 [], [0], [1], [2], [3]
15 [], [0], [1], [2], [3], [4]

2

21 [], [0,1]
22 [], [0,1], [1,2]
23 [], [0,1], [1,2], [2,3]
24 [], [0,1], [1,2], [2,3], [3,4]
25 [], [0,1], [1,2], [2,3], [3,4], [4,0]

3

31 [], [0,1,2]
32 [], [0,1,2], [1,2,3]
33 [], [0,1,2], [1,2,3], [2,3,4]
34 [], [0,1,2], [1,2,3], [2,3,4], [3,4,0]
35 [], [0,1,2], [1,2,3], [2,3,4], [3,4,0], [4,0,1]

4

41 [], [0,1,2,3]
42 [], [0,1,2,3], [1,2,3,4]
43 [], [0,1,2,3], [1,2,3,4], [2,3,4,0]
44 [], [0,1,2,3], [1,2,3,4], [2,3,4,0], [3,4,0,1]
45 [], [0,1,2,3], [1,2,3,4], [2,3,4,0], [3,4,0,1], [4,0,1,2]

experiment and those of three (overlapping) interventions each
of size two. And finally, setups in the last row of Table I
contain the experiments of size four. Thus, each experimental
setup can be described by the combination of the size of
each applied intervention and the number of such interventions
used. This enters the setup ID, where the first digit is the
intervention size and the second digit is the intervention count.

Note, that we use the same size n of the dataset per
intervention setting. Thus, since we use in each experimental
setup the union of the datasets of each intervention, we get
different data sizes for different setups. If the size n of a
dataset is e.g. 1000, the setup with ID 0 will create a dataset of
size 1000, while 15 will create one of size 6000. In summary,
we construct 16 datasets from 150 randomly generated SCMs
each, i.e. there are in total 2400 datasets for a given n. Each
of our four models in the study will be evaluated on those
datasets.

We also consider different sizes n of datasets. We investigate
sizes 1000, 10,000, 100,000, and infinite. Here, the word
“infinite” does not refer to actually infinite amounts of data,
but rather a version of the experiments that correspond to its
asymptotic behavior when n→∞. More precisely, this means
the following (see also [10]): When creating random SCMs,
the matrices B and Σe are sampled as described above. Then,
we can obtain the covariance matrix Cx of the observations
as follows, similar to (10):

C0
x = (I−B)−1Σe(I−B)−T . (15)

To obtain datasets with finite size n, we then sample from
a Gaussian distribution with mean 0 and covariance C0

x,
similarly for non-zero interventions. LLC then estimates the
covariance matrix from the data and uses the estimated co-
variances as total causal effects. But if we instead use the
covariances in (15) as the total causal effects directly, without
the detour of sampling and covariance estimation, we obtain

Fig. 1: Accuracies sample size 1000

Fig. 2: Accuracies sample size 10,000

the total effects that we would get for an infinite amount of
data. That is meant by “infinite” data size for the LLC models.
For the ASP methods the approach is different: These models
use the data to obtain conditional independences. This is done
by classical hypothesis tests, see Section III-D. The weights
in (13) can become infinite for independences but stay finite
for dependences for n → ∞. To avoid those asymmetries,
for the infinite scenario we skip the independence tests and
collect a complete system of correct conditional dependence
and independence relations from the ground truth (we know
the SCM that generated the data) into the set K, which is thus
free of contradictions, and assign to each k ∈ K the weight
one, w(k) = 1. So this construction does not exactly behave
like ASP for n→∞, but it corresponds to it in so far as the
set K is free of contradictions, which is why we will use the
word “infinite” for brevity.

The methods we study have certain parameters that need to
be fixed. For LLC-NF it is the penalty type, L1 or L2, and
the belonging regularization parameter λ. For LLC-F we also
have to fix the significance level αLLC of the conditional inde-
pendence tests. Furthermore, when using accuracy as metric,
we need to choose a threshold tLLC for the scores. For ASP
we have the significance level αASP for the conditional inde-
pendence tests and, in the case of using accuracy as a metric,
again a threshold tASP for the score. As with all unsupervised
learning tasks, the proper choice of those hyperparameters is
tricky in practical applications. Here, we don’t consider the
problem of finding optimal hyperparameters but are rather
interested in the performance of the studied techniques if the
hyperparameters are chosen roughly appropriately, however,

Fig. 3: Accuracies infinite sample size

Fig. 4: Average accuracies by dataset size

this is achieved. Since in our simulations we have access to the
ground truth, we can optimize the hyperparameters. For this,
we conducted rather comprehensive hyperparameter optimiza-
tion studies for the type of SCMs that get generated by our
adopted sampling scheme which produces sparse, small, cyclic
models with hidden confounders as described above. This was
done using the optimization tool Optuna [1]. As usual, we
used one set of models for hyperparameter optimization and
a different one for evaluation. Based on these optimization
studies we chose the following hyperparameters for the LLC
methods: penalty type L1, λ = 0.05, αLLC = 0.05, and
tLLC = 5. For ASP we used αASP = 0.05 and tASP = 0.

With those hyperparameters fixed, we ran the evaluations
on the randomly sampled SCMs with different interventional
setups and multiple dataset sizes as described above. Thus, for
each combination of experimental setup, dataset size, metric,
and causal discovery method, we get 150 values for the
pertaining metric. To examine those results, we first collect the
studies with accuracy as metric and a dataset size of n = 1000
in Figure 1. Here, for each experimental setup, we plot the
accuracy mean together with error bars with length equal to
the standard deviation. The plots are grouped according to
the groups of the experimental setups and the four causal
discovery methods are coded by color as given in the legend.
The horizontal green line is the average accuracy of the weak
classifier used in the ASP-ensembles, which just classifies
every edge as absent.

Several things can be noticed: The worst performance is

Fig. 5: AUC ROC sample size 1000

Fig. 6: AUC ROC sample size 10,000

measured for the purely observational experiments, showing
the relevance of interventions. Next, it is clearly visible
that combining the data of several different interventions is
beneficial in all cases, as the plots are increasing in each group.
Also, LLC requires a considerable amount of intervention data
to beat the weak classifier. Furthermore, there seem to be no
large deviations between the different sizes of the intervenion
sets, since the differences between the four large groups are
small compared to the size of the error bars. There is a slight
decline in the last groups, though, which can be explained by
the fact that intervening on all except one node removes all
confounding effects, thus confounders cannot be detected.

Maybe most importantly, the performance of the ASP meth-
ods (recall that we use here the ensemble with the weak,
sparsity-presuming classifier) seems better than that of the
LLC methods, but for the setups with five experiments, this
difference is well within the error margin. Note, that the
five-experiment setups all provide sufficient interventions to
satisfy the pair condition. It is interesting that there is almost
no difference between ASP-d and ASP-s, even though we
made sure that there is at least one cycle in each SCM. This
encourages the universal use of ASP-s even if it is not clear
whether the underlying SCM is linear. The difference between
LLC-F and LLC-NF seems to switch signs within each group.
This effect is quite consistent, but its origin is not entirely
clear to us, so we leave this to future research.

In Figure 2 for dataset size n = 10, 000, we see roughly
the same behavior, except that, compared to n = 1000, LLC
seems to be worse for smaller experiment counts and better
for larger ones, beating ASP for setups that satisfy the pair

Fig. 7: AUC ROC infinite sample size

Fig. 8: Average AUC ROC by dataset size

condition. The larger dataset size seems to have no effect on
ASP performance.

There is not much difference when changing to n = ∞,
except that the switch between LLC-F and LLC-NF within a
group is not visible anymore, and LLC-F improves consider-
ably compared to LLC-NF. This suggests that this switching
effect for finite n is due to incorrect conditional independence
tests for finite data. As the last plot for the accuracy metric, we
have averaged the performance over all experimental setups
and compared it as a function of the dataset size in Figure
4. Here, we see that, overall, the ASP methods have a larger
median accuracy and smaller interquartile range.

In figures 5 to 8 we visualize the performance with respect
to the total AUC ROC metric. Since it is the AUC ROC of the
combination of all the 150 SCMs, we have in each situation
only a single value which is why there is no error bar as with
the accuracy metric. The conclusion from those plots is similar
to that for the accuracy metric. There is not much difference
between ASP-d and ASP-s, despite the presence of cycles.
Also, again ASP is better than LLC for fewer experiments but
when the pair condition is satisfied, LLC can beat ASP. The
switching between LLC-F and LLC-NF for finite n is not very
prominent, although LLC-F gets worse for higher intervention
counts. Furthermore, a larger dataset size improves the metric.
Finally, the plot in Figure 8 again shows higher medians and
smaller interquartile range for ASP.

V. CONCLUSION

We have evaluated four causal discovery methods that allow
for cycles and hidden confounders: two LLC-based variants

LLC-NF and LLC-F, and two simple ensembles based on ASP-
d and ASP-s. The study focused on sparse linear SCMs with
only five nodes and two confounders since the LLC variants
presume linearity and the ASP variants do not scale well with
the number of nodes. We considered the dependence of the
model’s performance on various interventional setups and the
size of the dataset and measured them with the metrics accu-
racy and AUC ROC. All models show very good discovery
capabilities when applied to datasets with a sufficient amount
of interventions. There is not much difference between ASP-
d and ASP-s even though each sampled SCM contains at
least one cycle. LLC-F is better than LLC-NF for datasets
with fewer interventions and often worse for datasets with
more interventions. For datasets with an insufficient amount
of interventions, mainly thanks to the weak classifier in the
ensemble, ASP is better than LLC.

REFERENCES

[1] Takuya Akiba et al. “Optuna: A Next-generation Hyper-
parameter Optimization Framework”. In: Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2019.

[2] Stephan Bongers et al. “Foundations of structural causal
models with cycles and latent variables”. In: The Annals
of Statistics 49.5 (2021), pp. 2885–2915.

[3] Frederick Eberhardt, Patrik Hoyer, and Richard
Scheines. “Combining experiments to discover linear
cyclic models with latent variables”. In: Proceedings
of the Thirteenth International Conference on Artificial
Intelligence and Statistics. JMLR Workshop and Con-
ference Proceedings. 2010, pp. 185–192.

[4] Patrick Forré and Joris M Mooij. “Constraint-based
causal discovery for non-linear structural causal models
with cycles and latent confounders”. In: arXiv preprint
arXiv:1807.03024 (2018).

[5] Patrick Forré and Joris M Mooij. “Markov properties
for graphical models with cycles and latent variables”.
In: arXiv preprint arXiv:1710.08775 (2017).

[6] Martin Gebser et al. “Potassco: The Potsdam answer set
solving collection”. In: Ai Communications 24.2 (2011),
pp. 107–124.

[7] Michael Gelfond and Vladimir Lifschitz. “The sta-
ble model semantics for logic programming.” In:
ICLP/SLP. Vol. 88. Cambridge, MA. 1988, pp. 1070–
1080.

[8] Patrik Hoyer et al. “Nonlinear causal discovery with
additive noise models”. In: Advances in neural infor-
mation processing systems 21 (2008).

[9] Antti Hyttinen, Frederick Eberhardt, and Patrik O
Hoyer. “Causal discovery for linear cyclic models with
latent variables”. In: Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models (PGM
2010). Citeseer. 2010, pp. 153–160.

[10] Antti Hyttinen, Frederick Eberhardt, and Patrik O
Hoyer. “Learning linear cyclic causal models with la-
tent variables”. In: The Journal of Machine Learning
Research 13.1 (2012), pp. 3387–3439.

[11] Antti Hyttinen, Frederick Eberhardt, and Matti
Järvisalo. “Constraint-based Causal Discovery: Conflict
Resolution with Answer Set Programming.” In: UAI.
2014, pp. 340–349.

[12] Gustavo Lacerda et al. “Discovering cyclic causal mod-
els by independent components analysis”. In: arXiv
preprint arXiv:1206.3273 (2012).

[13] Sara Magliacane, Tom Claassen, and Joris M Mooij.
“Ancestral causal inference”. In: Advances in Neural
Information Processing Systems 29 (2016).

[14] Joris M Mooij et al. “Distinguishing cause from effect
using observational data: methods and benchmarks”. In:
The Journal of Machine Learning Research 17.1 (2016),
pp. 1103–1204.

[15] Judea Pearl. Causality. Cambridge university press,
2009.

[16] Jonas Peters, Dominik Janzing, and Bernhard
Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

[17] Kari Rantanen, Antti Hyttinen, and Matti Järvisalo.
“Discovering causal graphs with cycles and latent con-
founders: An exact branch-and-bound approach”. In:
International Journal of Approximate Reasoning 117
(2020), pp. 29–49.

[18] Kari Rantanen, Antti Hyttinen, and Matti Järvisalo.
“Learning optimal cyclic causal graphs from interven-
tional data”. In: International Conference on Probabilis-
tic Graphical Models. PMLR. 2020, pp. 365–376.

[19] Thomas S Richardson. “A discovery algorithm
for directed cyclic graphs”. In: arXiv preprint
arXiv:1302.3599 (2013).

[20] Dominik Rothenhäusler et al. “BACKSHIFT: Learning
causal cyclic graphs from unknown shift interventions”.
In: Advances in Neural Information Processing Systems
28 (2015).

[21] Ruben Sanchez-Romero et al. “Causal discovery of
feedback networks with functional magnetic resonance
imaging”. In: bioRxiv (2018), p. 245936.

[22] Shohei Shimizu et al. “A linear non-Gaussian acyclic
model for causal discovery.” In: Journal of Machine
Learning Research 7.10 (2006).

[23] Eric V Strobl. “A constraint-based algorithm for causal
discovery with cycles, latent variables and selection
bias”. In: International Journal of Data Science and
Analytics 8 (2019), pp. 33–56.

	Introduction
	Related Work
	Description of the Methods
	General Concepts in Causality
	The LLC algorithm
	The LLC-F algorithm
	ASP-d
	ASP-s

	Evaluation
	Conclusion

