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Abstract-we present a cognitive modeling framework 

called Neural Modeling Fields (NMF) and its 

application to situation learning and categorization.  We 

discuss how this framework is related to the perceptual 

symbol systems theory of cognition (PSS).  Essentially, 

the mathematical apparatus of NMF is a way to learn 

the frames and simulators described qualitatively by 

PSS. For the purposes of this work, a situation is 

modeled as a set of objects and relationships that exist 

among them.  Here we consider object recognition 

problem solved and demonstrate how the NMF 

framework is used to learn high level concepts such as 

situations.   

 

Index Terms-Neural Modeling Fields, Dynamic Logic 

learning, Perceptual symbol systems, Situation 

modeling, Situation learning 

I.  INTRODUCTION 

Our approach to situation modeling and learning is 

based on the cognitive modeling framework called 

Neural Modeling Fields (NMF) with its main 

operating principle referred to as Dynamic Logic 

learning [1-9]. After describing the main ideas of 

NMF in section II we relate it to the Perceptual 

Symbol Systems theory (PSS) in section III.  Both 

frameworks aim at describing a fully functional 

cognitive system capable of representing types, 

categorization, categorical inference, abstract 

concepts, among others.  We discuss how the basic 

concepts from PSS - frames and simulations – 

correspond to the basic ideas from NMF. The task of 

situation learning is a partial case of learning high 

level abstract concepts. Both NMF and PSS outline a 

hierarchical cognitive model which can be applied for 

situation learning.  

Our methodology of situation modeling is 

described in section IV.  Section V discusses the 

hierarchical model that can be built based on the 

technique presented in this contribution.  We provide 

an example of our approach with synthetic data in 

section VI. The discussion of further research in 

section VII is followed by conclusion in section VIII. 

II. NMF AND DL 

Neural Modeling Fields together with Dynamic 

Logic learning form a mathematical framework for 

learning from data.  This framework and its 

applications are described in [1]. The basic premise 

of NMF is the idea that human cognition must 

combine the prior knowledge with adaptive learning.  

Moreover, the proper balance between these two 

sides of cognition is the key to its successful 

operation.  The dominance of prior knowledge leads 

to the view that cognitive processes manipulate 

logical statements, which makes learning very 

difficult.  The dominance of adaptive learning leads 

to the connectionist approach, which does not 

provide a systematic way of maintaining the prior 

knowledge.  The NMF proposes a possible middle 

ground by giving an architecture consisting of 

parametric models corresponding to the concepts 

manipulated by cognitive processes.  The models 

provide a placeholder for the prior knowledge, and 

the model parameters are adapted by learning. 

The NMF cognitive system thus contains various 

models of external objects and also of complex 

concepts.  The models are fuzzy initially since they 

do not correspond to any particular object.  Learning 

begins when the external data come through the 

sensors and interact with the models.  The models 

must adapt to better match the data and thus better 

correspond to the reality.  Such adaptation occurs on 

multiple levels, from simple object classification to 

learning to identify complex situations. 

Dynamic Logic learning is the mechanism of 

efficient learning in the NMF system described 

above.  The main idea of DL is that learning is 

always accomplished by the gradual transition from 

fuzzy to definite model parameters and data 

associations. 
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The data association problem is a major obstacle 

to efficient learning of concepts.  Every piece of 

sensor data comes from one or sometimes several 

objects in the environment.  The number of possible 

mappings between the data and the models grows 

exponentially with the number of models and the 

amount of data.  Testing each of the possible data 

association mappings is a huge computational task.  

The DL approach is to adapt the data associations and 

the model parameters simultaneously.  In the 

beginning of the process, each model is associated 

almost equally with all of the data. As the model 

parameters begin to adapt to the data, the associations 

become more definite.  At the end of the process, 

correct data associations emerge together with correct 

model parameters.  This conceptual description has 

been formulated mathematically. 

Instead of focusing on the mappings between the 

data and the models, we can define the total 

similarity between all the models and all the data 

points.  The total similarity will depend on the 

similarity between individual data elements and 

individual models. This similarity can be described as 

 

                   

 

   

                               

 

   

 

 

 

where M stands for the set of all models, S is the set 

of model parameters, N is the total number of data 

points, H is the total number of models, and        is 

the similarity between data point n and model h.  If 

the function        is formulated in probabilistic 

terms, the total similarity can be interpreted as the 

total likelihood of the data given the models, making 

the framework similar to the finite mixture models in 

statistics.  The maximization of the total similarity 

with respect to the model parameters provides the 

best match between the data and the models. Note 

that (1) does not explicitly contain the associations.  

It seems that if we maximize L with respect to model 

parameters S, the data association problem will be 

solved automatically.  Unfortunately, the total 

similarity usually contains many local maxima and its 

maximization by itself involves combinatorial 

computational complexity.  In DL approach the 

associations are modeled explicitly as association 

weights       , for n=1...N and h=1...H.  Each of 

these quantities varies between 0 and 1 corresponding 

to weaker or stronger associations between model h 

and data element n.  The learning algorithm consists 

of iterative computation of the association weights 

and the model parameters.  The crucial difference 

between the DL algorithm and other iterative 

optimization algorithms is 1) model initialization 

guaranteeing fuzzy data association and 2) the 

presence of additional model parameters      

controlling the fuzziness of data associations in the 

course of learning.  The algorithm is summarized in 

Table 1. For more detailed description of this 

algorithm, please see [1]. 

TABLE 1 

Dynamic Logic Learning Algorithm 

1.  Initialize model parameters 

              
    

         

2.  Compute association weights 

                                 

 

    

         

3.  Estimate model parameters,   is learning rate 

           
      

                  
  

 

   

  

      

4.  Adjust fuzziness parameters        
 
   

 

5.  Repeat steps 2-4 until convergence criteria are 

satisfied 

 

III. PSS AND DL 
The perceptual symbol system was described in 

[10]. A comprehensive discussion of PSS is beyond 

the scope of this paper and we will only mention the 

main ideas related to the subject of situation learning.     

The main idea of PSS is that concepts are formed 

by cognition as a result of consolidation of multiple 

perceptual memories.  This contrasts with the idea 

that our perceptions are transformed into different 

internal structures, referred to as amodal symbols.  

Instead, the concepts remain modal, and are referred 

to as perceptual symbols. Because of the 

consolidation, the perceptual symbols stop 

corresponding to a particular external object and, 

instead, correspond to an averaged object from its 

category, essentially turning into abstract models of 

the reality.   

The key terms used by PSS are frame, simulation, 

and simulator.  A frame is a system of perceptual 

symbols used to construct a specific perceptual 

category.  For example, a frame called “car” contains 

memories of the previous encounters with cars that 

contribute to the ability to recognize cars.  A frame 

can contain a single perceptual symbol or a hierarchy 

of symbols related to different parts of a complex 

object.  For example a perceptual symbol for a car 

contains sub-symbols for doors, wheels, etc.  

Simulation is the process of constructing an instance 

of an object from the category.  It can be thought of 
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as imagining an object based on the information 

contained in the frame. The frame and all the 

simulations it produces are called a simulator.  In the 

language of PSS, object categorization is the process 

of matching the perceived entity with one of the 

simulations produced by the frames.  If one of the 

frames is capable of producing a simulation that is 

similar enough to the perception, the perceived object 

is categorized. 

Another important idea is that perceptual symbols 

do not correspond to holistic images of the perceived 

objects.  Rather they are componential.  Different 

object features are stored separately and are retrieved 

by the simulator when necessary.  This property 

allows the flexibility necessary to explain the many 

properties of a fully functional conceptual system.               

An attempt to implement a computational model of 

the PSS encounters the combinatorial complexity of 

data associations.  Indeed, learning a frame requires 

making the decisions about which features of the 

corresponding concept are important and which are 

not.  Since many frames are learned at the same time, 

the problem of data association appears, just like in 

the case of MHT. 

A parallel can be drawn between the ideas coming 

from PSS and those of NMF.  Specifically, the 

frames can be identified with models.  The 

simulations can be identified with the DL process of 

maximizing the similarity between the data and the 

models and used in the processes of learning and 

categorization. 

We suggest that the mathematical framework of 

DL is a possible implementation of the PSS.  At this 

stage we are only concerned with efficient category 

learning.  The other cognitive processes, such as 

productive reasoning, language, etc. can be addressed 

by similar methods in the future.         

IV. SITUATION MODELING 

The perception of elements in the environment and 

comprehension of their meaning are the building 

blocks of situation awareness [11].  The meaning 

refers to categorization of environment observations 

into higher level abstract categories, referred to as 

situations. In this contribution we define a situation 

as a set of objects and relationships that exist between 

them.  Other, more complex definitions can be found 

in [12],[13]. For the purposes of this demonstration, 

we limit the sensor input to image data. In this case 

the types of relationships that are allowed to exist 

between objects can be limited to spatial 

relationships. Following [14] we allow five types of 

relationships necessary to characterize a visual scene.  

For a particular object, they are 

1.  Presence: is the object present in the scene. 

2.  Size: relative size of the object 

3.  Position: where the object is located 

4.  Support: object(s) supporting this object 

5.  Interposition: objects occluding or touching the 

object 

Size and position are divided into subsets as 

follows.  Size ={big, small, medium}, Position = 

{top, bottom, left, right, middle}.   

We transform the perceived scene into a vector of 

binary features.  This is schematically illustrated in 

Fig. 1.  The left hand side of the figure contains the 

visualization of a situation.  The multi-colored 

squares correspond to different objects identified in 

the scene, the interposed objects are located next to 

each other and the supporting objects are located 

below the supported objects.  The size and the 

location of the squares correspond to the size and 

position of the objects in the scene.  The locations of 

the squares do not correspond to the locations of the 

objects in the real scene as the visualization is only 

used for illustration.  The scene is transformed into a 

binary feature vector displayed on the right hand side 

of Fig .1. 

 

 
 

Figure 1.Situation visualization (left) and transformation to 

a binary feature vector (right). The black squares stand for 

0 or 1. Please see text for more explanation. 

 

We assume that there are n object categories that 

can be recognized by our sensor.  The length of the 

binary feature vector is n + 3n + 5n + n
2
 + n

2
.  The 

terms of this expression correspond to the five 

relationships:  each object is either present or absent, 

each object has three possible sizes and five possible 

positions, there is a possible support relationship 

between each pair of objects and there is a possible 

interposition relationship between each pair of 

objects.      

V. MODEL HIERARCHY 

Obviously a scene does not enter our cognition as a 

binary feature vector.  However it is easy enough to 

imagine a hierarchical system where such 
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transformation can take place.  Such a system has 

been described in [15] and we will outline it here for 

completeness.  The bottom layer of the hierarchy 

consists of models corresponding to object 

categorization.  Examples of DL applications to 

object categorization and tracking can be found in 

[16-26] .  The level of activation of each model in the 

bottom layer can be determined based on how similar 

the model is to a subset of the data.  High level of 

model activation corresponds to the presence of the 

corresponding object in the scene and low level 

corresponds to its absence.  The normalized 

activations of the bottom layer form a vector with 

features which can be approximated by 0 and 1.  The 

size and position of each of the detected objects can 

be easily deduced from the corresponding models.  

The detection of relationships such as support and 

interposition can be done by considering model pairs.  

This can be implemented as separate NMF models.  

Thus the high and low levels of activations from the 

bottom layer form the binary feature vector, which 

serves as input to the top layers for subsequent 

categorization. 

The DL algorithm uses similar functional models for 

each scene type and a similarity measure between the 

data elements and the model.  In the case of binary 

feature vector, the model can be given by the vector 

of probabilities        
    

     
  , where Dx 

is the length of the binary vector, and each 

component of the vector stands for the probability of 

the corresponding feature to equal one.  We 

essentially assume that the feature vectors are 

generated by a multivariate binomial distribution.  

The similarity between the feature vector xn and the 

model ph representing situation h is given as the 

conditional probability of the vector given the model 

[27] 

 

           

         
       

 

  

   

                          

 

With the models and the similarities defined we 

can derive all the expressions in Table 1 and 

implement the algorithm.   The parameter 

initialization plays an important role in the proper 

initialization of this algorithm.  All the components 

of the probability vector ph must be initialized with 

values close to 0.5, corresponding to the maximum 

initial variance of the probability distribution. 

VI. NUMERIC SIMULATION 

Suppose that we want to be able to automatically 

distinguish the situation of a small group of people 

marching in a single file from the situation of a small 

group of people having a picnic, and also to 

determine when the observed situation is neither of 

the two. 

We compiled a list of possible objects, which 

includes twenty five items, such as person, road, tree, 

car, chair, building, etc (n=25). This means that the 

length of binary feature vectors equals to 1475.  The 

situations can be described as follows. 

Single file: three or four people walking after each 

other, on the road or in the field, trees, bushes, cars 

may be present. 

Picnic:  People standing or sitting on the ground, 

chairs, blankets, food may be present.  Trees, cars, 

buildings may be present. 

Random situation:  any of the objects may be 

present. 

All three situations include obvious restrictions on 

the relationships between different types of objects, 

such as that an object either supports another object 

or is supported by it; roads are located on the bottom 

or in the middle of the scene, etc. 

We used the descriptions above to generate several 

data sets to test the algorithm.  In addition to the 

essential objects and relationships characterizing each 

situation we added random objects and relationships. 

One of the data sets is illustrated in Fig. 2. 

 

 
 

Figure 2. Visualization of the training data for situation 

learning. On the left, 200 binary feature vectors are shown 

with binary features along the vertical axis. On the right, 

the mean values for each feature are shown. These values 

correspond to the probabilities that need to be learned 
 

The algorithm is initialized with H=4 models.  The 

parameters of each model are set to probabilities 

randomly distributed between 0.48 and 0.52.  This 

ensures that all the models are initially associated 

with all of the data.  In the course of the algorithm 

execution, the models quickly converge to the correct 

probabilities.  We purposely start with more models 

than there are true situations.  Since in a real world 

application the true number of situations is unknown 

we have to assume a large enough number of 

situations.  There are two mechanisms that help get 
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rid of the extra models.  The algorithm automatically 

computes the probability of each model being present 

in the data.  Low model probability means that very 

few situation instances have been associated with the 

model and therefore it can be discarded at the end.  If 

two models have similar parameters and have 

become associated with the same subset of the data, 

they can be merged into one model.  After a model is 

merged or discarded it becomes inactive and does not 

participate in the subsequent iterations of the 

algorithm.  These two mechanisms ensure that the 

algorithm finishes with the number of active models 

corresponding to the true number of distinct situation 

categories contained in the input data.      

  The execution of the algorithm on the training 

data set with 200 situation instances is illustrated in 

Fig. 3.  The top portion of the figure shows the 

evolution of model parameters and the bottom 

portion shows the evolution of the data associations.  

The top leftmost image shows the initial state with all 

of the model parameters close to 0.5.  The bottom 

leftmost image shows the corresponding data 

associations with all 200 situation instances assigned 

to all of the models.  As the algorithm executes, the 

data associations and the model parameters become 

more definite.  By iteration number 15 most of the 

data are already assigned to the correct models.   

Some of the data are assigned to the extra model that 

is discarded at a later iteration.  The final state after 

49 iterations is shown on the rightmost images where 

the model parameters and the data associations are 

definite.  

TABLE 2 

Confusion Matrices 

Training – 200 samples 

 DL Categorization 

Random Picnic File 

T
ru

th
 Random 118 2 0 

Picnic 2 38 0 

File 0 0 40 

Testing – 1000 samples 

 DL Categorization 

Random Picnic File 

T
ru

th
 Random 329 0 1 

Picnic 0 328 2 

File 0 0 340 

 

After the models have been trained on 200 

situation instances, we generated 1000 different 

situation instances and used them for testing.  In the 

testing phase the model parameters do not change.   

The data associations are computed and the testing 

data are assigned to the models with the strongest 

associations.  Since the true situation category is 

known we are able to estimate the efficiency of 

categorization.  It is illustrated in Table 2.  The 

accuracy of categorization is 99.7% in this case. 

 

VII. DISCUSSION 

 

The main motivation for this contribution was to 

demonstrate the feasibility of using NMF for 

situation learning.  We derived and implemented the 

NMF algorithm capable of learning to categorize 

large binary feature vectors representing situation 

instances.  In our synthetic examples we used 

situations with up to twenty five objects and five 

types of relations.  The results demonstrated fast and 

accurate learning of situation categories. 

The future direction of this research is the 

development of a multilevel system incorporating the 

perception and categorization of situations.  Each 

level of this multilevel system forms the input into 

the next higher level as a set of signals produced by 

models identified, learned, or recognized at the given 

level. The more general and abstract higher-level 

models at the next level are learned as combinations 

of the lower-level models in the same way as the 

situations are learned in this contribution.  In this way 

the hierarchical cognition of the mind can be 

modeled [28].   

There is a very strong connection between 

NMF/DL and PSS in that the NML/DL methodology 

provides a mathematical foundation for PSS 

explaining how the perceptual symbols can be 

efficiently learned.  We believe that combining the 

insights from PSS and NMF will result in a powerful 

cognitive architecture. 

Another important direction of future research 

involves adding linguistic capabilities to the 

cognitive model.  Language can be learned from the 

environment similarly to the way situations are 

learned [29-38] 

Finally, the hypothesis of Dynamic Logic learning 

recently received support from the neuroscience 

community.  In a recent study [39] it has been 

demonstrated that the object recognition by human 

subjects occurring in the temporal cortex is facilitated 

by the top-bottom signals originating in the 

orbitofrontal cortex.  The initial top-down signals 

have been shown to correspond to low spatial 

frequency components of the incoming image, thus 

supporting the idea of transitioning from fuzzy to 

definite in the process of visual recognition.                
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VIII. CONCLUSION 

This work demonstrated an approach to situation 

modeling and learning based on the cognitive model 

called Neural Modeling Fields.  We described the 

main ideas of NMF and discussed it relationship to 

the Perceptual symbol systems theory.  Numeric 

simulations using synthetic situation data 

demonstrated the feasibility and efficiency of our 

approach.     
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Figure 3.Visualization of the fuzzy to definite process of learning.  The probability vector of each model is shown along the vertical axis.  

In the beginning of the process, on the leftmost image, all probabilities are close to 0.5 – green color.   At the end of the process, on the 

rightmost image, the probabilities of models number 1, 3, and 4 converge to the true values – red and blue colors.  Model 2 is discarded at 

the end.  The sequence of images illustrates the gradual emergence of definite patterns of probabilities and data associations.       
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