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Abstract—Herein we delineate the relationship between poor 
joint human automation interaction (HAI) system performance 
and situation awareness (SA) focusing on the effect of system 
design. Degraded SA is one reason that human users make poor 
interaction decisions that cause joint system performance to 
suffer. One key reason for degraded SA is the hierarchical design 
where the human user is at the apex of the command hierarchy. 
Within this structure the human user is not able to be fully 
integrated into the system, which can lead to ‘out of the loop’ 
performance issues. We propose that SA could be measured in 
real time by leveraging psychophysiological methods often used 
in cognitive neuroscience research. We then discuss a potential 
framework that could not only identify degraded SA in real time, 
but could mitigate these degradations. Such a framework would 
be successful because it would genuinely integrate the human 
user into the system, essentially closing the loop that underlies 
joint system failures.  
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I.   INTRODUCTION  
     Human automation interaction (HAI) systems continue to 
pervade modern life, but HAI system performance has yet to 
completely meet expectations for multiple reasons. A key 
reason for this failure is that the inclusion of automation 
fundamentally changes the way humans perform tasks, 
typically by putting the human user into a supervisory role. 
This role most often results from hierarchical automation 
designs in which the human user is most often put at the apex 
of the command pyramid. In a supervisory role, humans tend 
to be poorly integrated with the automated systems often 
resulting in their being ‘out of the loop’ [1-4]. When the 
human user is ‘out of the loop’, or not fully integrated into the 
system SA may become degraded. This is because SA is a 
function of the human user’s available attention and working 
memory with which to acquire and interpret environmental 
information [5] and when a user is ‘out of the loop’ attention 
may not be directed to the current task. Degraded SA leads to 
decreased awareness of automation mode or knowledge of 
task completion [6-8] and has been linked to poor interaction 
between humans and automated agent [1, 2, 7] Furthermore, 

this degradation can be exacerbated by excessively high or 
low workload [10]. Degraded SA can result in tragic 
consequences in high risk domains such as in military or 
nuclear power plant applications [5, 8] 

     Given the consequences of degraded SA, identification and 
mitigation of instances when it is degraded could be 
considered an important aim in improving joint human 
automation system performance. We propose that modern 
methods for monitoring and measuring psychophysiological 
variables such as electroencephalography (EEG), galvanic 
skin response (GSR), and eye tracking might be utilized to 
identify degraded SA. This approach diverges from the 
standard approach that uses a freeze probe paradigm. Further, 
herein, we describe an extension of a control theoretic 
framework that we and our colleagues at the Army Research 
Laboratory (ARL) are developing and testing. In our particular 
application of this framework, we aim to leverage 
psychophysiological and control-systems methods in order to 
mitigate degraded SA by facilitating improved integration of 
the human user into the system in a real world application.  
This paper discusses the importance of SA to HAI system 
performance, and forwards psychophysiological methods and 
approaches that might be leveraged to effect a more seamless 
integration of the human user into the HAI system, essentially 
closing the loop, which would result in HAI systems meeting 
performance expectations. 

II.   SITUATION AWARENESS AND ITS IMPORTANCE IN HAI 
SYSTEM PERFORMANCE 

Situation awareness is critical for human operators 
interacting with automated systems. In many, if not most, 
current human-automation systems, human users assume a 
supervisory role where any human action is assumed to be 
correct. Because humans are not ideally suited to the role of a 
monitor, human users can find themselves ‘out of the loop’ 
[4], and are therefore often not fully integrated into the HAI 
system. Given enough time, humans often fail to remain 
vigilant about the current state of task completion, and of the 
automation functioning. Poor vigilance might be an important 
contributor to decreased SA, and SA is immensely important 
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to the performance of human-automation systems. The current 
lack of perfect automation means that it is necessary for a 
human user to maintain optimal SA (high vigilance) to be able 
to intervene in a timely manner, particularly in tasks of high 
consequence. However, vigilance studies have shown that 
maintaining this level of SA over time is extremely difficult 
[6]. Maintaining optimal SA requires the ability to measure 
SA levels frequently, and perhaps continuously, in order to 
determine when SA levels become suboptimal. Further, it 
would be ideal to be able to mitigate degraded SA, but this 
mitigation remains a challenge [6, 9]. 

Currently, SA levels are commonly assessed by 
instruments that query human user’s perceptions of their own 
levels of SA at discrete times, such as the Situational 
Awareness Global Assessment Technique (SAGAT) [10-12]. 
Instruments such as the SAGAT, while perhaps not 
cognitively intrusive [12], have limited temporal resolution 
because they are temporally discrete queries, and require 
interruption of the task at hand. Further, they are unable to 
objectively measure psychological states such as workload, 
and therefore, unless coupled with other instruments such as 
NASA-TLX they are unable to disentangle the interaction 
between these psychological states and vigilance based SA 
degradation. This inability means that these methods alone do 
not necessarily inform an appropriate action needed to 
improve SA [12]. These measures are valid at identifying the 
state of all three SA levels [13], and SA research   has 
provided valuable design assistance to human factors 
engineers [9], but there currently lacks a robust method to 
continuously measure SA levels without interruption to the 
human user. This lack of a continuous measure hinders 
subsequent mitigation of degraded SA in situ. Therefore real 
world applications aimed at the mitigation of degraded SA in 
HAI systems in real time, allowing true human integration, are 
currently unavailable.  

III.   THE USE OF PSYCHOPHYSIOLOGICAL METHODS TO 
IDENTIFY AND MITIGATE DEGRADED SA 

A.   Identifying and Mitigating Degraded SA 
     Non-invasive psychophysiological methods can be 
leveraged to successfully identify degraded SA [14] through 
identifying psychological and physiological correlates of 
performance metrics. We believe that these methods may 
accurately allow an inference of the possible exacerbating 
reasons for degraded SA using state estimations derived from 
the psychophysiological data. If degraded SA is identified and 
an inference can be made as to underlying causes, it can be 
mitigated.  Unlike other SA measures, these suggested 
methods can be done continuously, in real time, and without 
interruption to the user, thereby improving the probability of 
detection and mitigation of degraded SA in a real world 
application. We acknowledge that SA is a complex state, and 
will not easily be detected from simple psychophysiological 
methods. Instead we propose that identifying degraded SA 
will require fusion of information from multiple 

psychophysiological methods. Two examples are highlighted 
below. 

     One potential source of information regarding SA is event 
related potentials (ERPs) derived from EEG data [14]. ERPs 
generated in response to visual targets are significantly 
affected by whether or not a person has conscious perception 
of a stimulus [15, 16]. Detection of whether a person has 
conscious perception of a stimulus is related to the rate of 
Change Blindness, which is an important indicator of SA [6, 
17, 18]. Change Blindness is the inability to detect transient or 
intransient target changes. Algorithms designed to detect ERP 
changes indicative of Change Blindness may provide insight 
into changes in SA. While it is true that real time measurement 
of ERPs is difficult, algorithms allowing this are being 
developed for brain computer interaction applications [19-21].  

     While EEG based methods may provide insight into 
Change Blindness, eye tracking based information may 
provide insight into the focus of attention. Specifically, eye 
tracking will enable detecting attention directed towards 
important environmental information, which is central to SA 
[22]. Human gaze fixation indicates what stimuli are more 
likely being attended, and therefore gaze fixation literally 
provides a trace in time of what probable features or stimuli 
are the object of current cognitive processes [23-25]. If gaze 
fixation is not targeted on relevant information, it could be 
argued that the likelihood of degraded SA is high [26]. 
Alternatively, if gaze fixation is appropriately located, we 
might conclude that the person is potentially exhibiting good 
SA. In this case, we would rely on other measures of SA from 
other psychophysiological methods to clarify the current 
psychological state of the human user. 

     While we only present two here, many other 
psychophysiological methods could be included in a system to 
detect SA. For example, pupil diameter and EEG features 
have been related to level of arousal [27].  GSR and heart rate 
variability have been related to stress [27, 28], and a number 
of EEG based features in combination with heart rate 
variability, GSR, and pupil dilation have been linked to 
workload [27, 29-33]. Each of these states (arousal, stress, and 
workload) likely interacts with SA and thus estimates of these 
states can be coupled with the examples given above to 
provide a robust method for identifying changes in SA, or for 
disambiguating the causes for degraded SA.  

     If we are able to identify degraded SA, then the next step is 
to find techniques to mitigate this change in state. As 
discussed above, a critical cause of degraded SA, regardless of 
psychological state, is when the human user is ‘out of the 
loop’ [3, 4, 34] and not integrated within it. This lack of 
integration might be a direct function of the hierarchical 
design of most, if not all, HAI systems. It would seem, 
therefore, that central to mitigating degraded SA would be the 
genuine integration of the human into the system; to put them 
‘back into the loop’ so that the system functions as a whole. 
Genuine human automation integration would allow 
collaboration between human and automation that leverages 



each agent’s unique capabilities, and allow the automation to 
respond to the highly varying psychological states of the 
human user such that tasks can be shared dynamically. While 
there have been multiple attempts at dynamic function 
allocation [35-38], most have  adhered to the hierarchical 
design which puts the human user ‘out of the loop’ and 
assumes the human as being automatically correct, despite 
strong evidence of human variability and fallibility.  

B.   Proposed Framework for Mitigating Degraded SA 
At the Army Research Laboratory, others and we have 

been working to develop the Privilege Sensing Framework 
(PSF). The PSF aims to integrate the human user by treating 
her as a special type of sensor, one of many, but with certain 
privileges defined to dynamically account for variability in her 
performance as balanced against the consequence structure of 
the task. This approach is different than previous uses of 
psychophysiological methods to improve HAI, because the 
key here is human automation integration rather than mere 
interaction, an important point of discussion in the sensor 
fusion community [39].  

As applied to the context of SA mitigation, our application 
of this framework would appear as represented in Figure 1. 

Privilege here refers to the amount of weight given to one set 
of   sensor data, over another, during data fusion and analysis. 
The privilege each sensor is accorded is not static, but 
dynamic and would be mathematically derived, based on 
confidence estimates of data quality from each sensor, 
consequence of the task, and on the special properties of 
individual agents, such as cognitive flexibility and social 
understanding on the part of the human sensor. Simulations 
using rapid serial visual presentation and EEG data in human-
computer coupled target detection tasks done at ARL have 
shown the theoretical possibility for improving HAI 
performance by using one aspect of privilege, namely 
confidence estimates,  [40]   as a way to weight the value 
placed on data from any sensor, including a human sensor.  In 
our proposed application of this framework, 
psychophysiological data from the human user would be 
continuously monitored for SA degradation and changes in 
accompanying psychological states. If a lack of SA was 
identified, the system could dynamically change task 
allocation appropriate to the current psychological state of the 
human user. This responsiveness to the needs of the human 
user engenders a collaborative effort, and both accommodates  

 

 
Figure 1. A representation of a proposed application of our framework to identify and mitigate degraded SA by fully integrating the human user into the HAI 
system. Psychophysiological data is gathered by human user state and performance sensors and interpreted by the central framework, which then acts to correct 
degraded SA based on the current state of the human user 
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and incorporates inputs from the sometimes fallible human 
user. 

     An engineering solution to such a framework would be 
implemented as a stable closed controlled system and might 
operate in the following way. Envisage a human automation 
integrated system designed for target detection which receives 
estimates from each sensor, human or automation, on the 
likelihood of a target existing in a visual stream.  In such a 
system, psychophysiological data from the human user would 
be collected and analyzed in real time. Specifically, EEG data 
would be used to detect Change Blindness or, in conjunction 
with GSR, heart rate and pupilometry data, a change in mental 
state that would be likely to degrade SA. For example, high 
variation in pupil diameter, an increased tonic GSR level 
sampled in three-second epochs, and reduced heart rate 
variability indicates excessive workload [27, 29-33]. A central 
system, having identified degraded SA could adaptively 
respond in two important ways. First, because this is an 
integrated system where the human is allowed to be fallible, 
the system could temporarily increase the privilege of the 
automated sensor data until SA is regained, and overall joint 
system performance can be preserved. Secondly, the 
psychophysiological data can be used for inferring an 
underlying cause for SA such as increased workload or 
fatigue.  

      If an increased workload underlies the degraded SA, the 
system could adaptively respond by dynamically reallocating 
task demands, freeing up cognitive resources, and thereby 
allowing the  cognitive processes necessary for SA recovery to 
begin [41]. Alternatively, if a low workload is identified, the 
response might be to increase task demands as boredom and 
low workload exacerbate degradation of SA [42].  

IV.  CONCLUSION  
We recognize that one of the reasons HAI systems have 

not yet met considerable expectations is due to fallible human 
user decision making about how to interact with the 
automation. These interaction decisions are often negatively 
affected by degraded SA, which in part may be a result of the 
hierarchical HAI system design with the human at the top of 
the pyramid, rather than integrated into the system; making it 
possible for the human user to be ‘out of the loop.’  Optimal 
SA is critical to appropriate interaction decisions because in 
this state a human user can readily assess the state of the 
automation and understand implications of environmental 
information such that a response to an error, or an 
intervention, can be made in a time critical fashion. We 
propose that it is feasible to monitor SA in real time using 
psychophysiological methods such as eye tracking and EEG 
such that moment-to-moment levels can be measured and 
degraded SA identified.  

 We further forward the idea of using these SA estimates 
along with psychological state estimation to more fully 

integrate the human user into the HAI system; in accordance 
with the concepts forwarded in this paper, the human is no 
longer at the top of the command hierarchy. This would allow 
a real time mitigation of degraded SA. Although further 
research is necessary to implement such a system, its benefits 
include an enhanced collaboration between human and 
automation in a system that is responsive in real time. Further 
research avenues into developing robust estimates of SA levels 
with psychophysiological data are necessary, although we 
believe it is possible. In addition, research into fundamental 
techniques for sensor fusion and management is imperative 
because the data features may be derived from data with 
multiple time scales, i.e., minutes to milliseconds, and may 
also contain varying degrees of corruption or error. Future 
research into the measuring and managing of psychological 
states such as SA and workload is planned and underway. Such 
an application of this framework would be  critical for HAI 
systems across a number of application spaces.  
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