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Abstract—— One challenge faced by the automotive industry
is the shift from combustion to electrically powered vehicles. This
change strongly impacts on components such as the electric motor
and the battery, and hence on production. In this context, the low
level of expert knowledge is especially problematic. To meet these
new challenges, this paper introduces a data-driven optimization
of the production process by integrating a modular edge and
cloud computing layer, and advanced data analysis. Defects are
classified by a convolutional neural network (CNN) (predictive
analytics) and corrected (depending on the defect type) by an
automated rework (prescriptive analytics). The architecture of
the CNN achieves an accuracy of 99.21% to predict the defect
class. The automated rework process is selected through an
implemented decision tree. The edge device communicates with
a programmable logic controller (PLC) through a cyber physical
interface. As an example of its practical application, the method
is applied to hairpin welding of the stator of an electric motor
with real production data.

Index Terms—industry 4.0, cloud computing, edge computing,
machine learning, convolutional neural networks, electric motors,
hairpin, predictive analytics, prescriptive analytics, prescriptive
automation

I. INTRODUCTION

Early detection of quality deviations is very important but
poses a major challenge in the manufacturing industry [1].
Modern production processes can be continuously monitored
with the help of industrial Internet of Things (IIoT) networks.
However, traditional and manual quality monitoring using IIoT
networks is not easily accessible, and is not possible in real-
time [2]. Therefore, real-time and automated fault detection
without human intervention is essential for IIoT networks [1].
In addition to these networks, artificial intelligence offers great
potential for error detection and classification. The advantage
is that dependencies and quality deviations are not modelled
based on expert knowledge, but dependencies based on data
are learned automatically by the classification algorithm. Such
objective data-based learning is highly advantageous for the
electrical powertrain production of newly developed battery
electric vehicles. Unlike combustion engine production, almost
no expert knowledge on electric vehicle production is available
and new technologies are needed [3]. A new technology called
hairpins. Hairpins are copper rods that replace the traditional
copper windings of a stator. This can increase the efficiency
of an electric motor. However, the pair of hairpins must be

welded for electrical connection (see Section III-A). However,
this welding process is unstable and susceptible to faults. Any
welding defects must therefore be detected and classified, and
then automatically corrected.

For this purpose, we construct a CNN that automatically de-
tects and classifies weld defects in the production line. Based
on our previous research, we compare the three-dimensional
(3D) data with the black and white (BW) images as an input
to the CNN. To better compare the input data, we summarize
the results of our previously published paper [4]. As explained
in Section III, our CNN modeling is analogous to the cross-
industry standard process for data mining.

We next propose an IIoT network for real-time processing
the 3D scans or BW images by the developed CNN. As the
input images have a large file size, their real-time processing
requires computationally intensive hardware. This hardware
must be capable of receiving and processing the data without
high latency, and must adjust the production line without
human intervention. Edge computing provides the opportunity
to localize functionalities nearby by connecting directly to the
production line [5]. Our proposed architecture (described in
Section IV) combines edge- and cloud-computing, enabling
automatic defect detection by the CNN. Depending on the
predicted defect case, the edge computing device performs an
automated rework without human intervention. By virtue of its
modular design, the solution can also be integrated into other
use cases.

II. STATE-OF-THE-ART

A. Optical detection of quality deviations in automotive pro-
duction by CNNs

In the field of automobile production, there are currently
only a few approaches for the detection of quality deviations
with the help of a CNN. Examples are the detection of cavities
in blow holes and in the production of wheel rims or steering
knuckles [6]. In addition, other publications deal with the
detection and classification of welding spots on a car door [7]
or the detection of scratches in car paint [8]. Within the
production of electric drives, the authors present a CNN to
check the ultrasonic crimp connection of a stator, because
in addition to the assembly of the winding, the process of
contacting the wire ends with cable lugs offers great potential
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for optimization [9]. In addition, Mayr et al. dealt with the
detection of welding defects in hairpin welding [10].

None of the authors listed above achieved an error detection
accuracy greater than 99%. However, higher detection accu-
racy is essential for the successful implementation of serial
quality monitoring; otherwise, components that fail the quality
requirements will leave the factory, reducing the reputation
of the company and even endangering the safety of humans,
animals, or the environment. The goal of the present work is
thus to achieve an accuracy of at least 99%, which would be
a significant improvement over the current state-of-the-art.

B. Edge computing in the production industry

This Section discusses the state-of-the-art for the application
of edge- and cloud-computing in the manufacturing industry
and in automotive production. The goal of such an architecture
is the real-time detection of quality deviations (predictive
analysis) and the generation of a recommendation for ac-
tion (prescriptive analytics). Since the authors have already
published a good overview of the approaches, we refer to
their paper for a closer look [11]. In summary, however, they
figured out that no publication exists whose architecture is
suitable for short production cycle times. Furthermore, these
edge- and cloud-architectures do not have a modular structure
and cannot be managed centrally. As a result, Ref. [11]
describes and models such an architecture that solves the
deficits. However, the recommendation for action is given to
an employee who must manually intervene in the process.
Therefore, the second goal of the architecture published in
this paper is to extend the architecture of Ref. [11], in order to
automatically execute these recommendations through a closed
loop feedback system.

III. PREDICTIVE ANALYTICS

A. Business Understanding

An important production step in stator manufacturing is the
electrical and mechanical connection of the hairpins. The pins
are joined by automated laser welding [12].

The difficulty is that the automated welding of copper leads
to different welding faults. A major disadvantage is that copper
absorbs less than 5% of laser irradiation at near 1000nm
wavelengths. To overcome the strong reflective properties, the
laser beam welding requires a very intense power density [13].
However, as shown in Fig. 1, this leads to irregular weld
seams [14].

As the current production line lacks an automated error
classification system, the stator enters all processing steps until
the end-of-line test. A stator with a defective weld must first
be removed from the production line. Next, the welding tool
is disassembled, the defect is inspected visually, the stator is
aligned manually, the welding tool is reassembled, the stator
is reinstalled, and the defective welds are re-welded.

To improve the efficiency of this time-consuming and
expensive process, the welding defects must be detected
and classified in the welding station, enabling targeted and
automated re-welding in large-series production. Moreover,
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Fig. 1: Representation of the four quality classes after welding
pairs of hairpins.

the detection, classification and rework of the hairpins cannot
exceed the cycle time (30s).

The defects presented in Fig. 1 were obtained after con-
sulting a technologist in this field. When welding the hairpins
during the series production of electric motors, the possible
errors are insufficient welding (IW), welding craters (WC),
and welding spatter (WS). For comparison, a correctly welded
(CW) hairpin pair is also displayed in Fig. 1. In addition, the
severity of the error has been divided into two further classes.

B. Data Generation

The quantity, quality and distribution of classes in the
dataset strongly affect the training process of a CNN. There-
fore, the data must be generated in a structured way.

Birds’ eye views of the welded hairpins were recorded by
a camera (XR-HT40M, Keyence) and digitized as 3D data
showing the shape of the welding dome. The BW images were
digitized similarly. The data-acquisition procedure collected
approximately 560 BW pictures and 560 3D data of the welds
in each class. Fig. 2 shows a 3D image and a BW image of
the WS defect class.

As already explained, the quality of the CNN depends
on various factors, including the quantity of the used data.
Unfortunately, creating a large and balanced data set, involves
a great deal of effort in production. To generate a sufficiently

(a) Exemplary 3D-scan of a
hairpin with a WS

(b) Exemplary black and white
picture of a hairpin with a WS

Fig. 2: Recording of a hairpin welding with a weld spatter
defect.
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large dataset, the original images were duplicated by data
augmentation procedure that generates additional synthetic
images by combined rotation, displacement, and mirroring
transformations.

It is important that these synthetically generated images are
located exclusively in the training data set. For this reason,
the generated original data was divided into 80% training data
and 20% test data. Data augmentation was applied exclusively
to the training data set. Using a factor of 49, the training data
set could be expanded from approximately 1, 800 to 90, 000
images by mirroring, rotating and shifting. The resulting size
of the training and test data set is listed in TABLE I.

C. Data Preprocessing

To maximize the quality of the CNN output, the utilized data
must be pre-processed. Below we present the preprocessing
steps of the 3D scans (the preprocessing steps of the BW
images are very similar).

1) In the first step, the weld of the image is cut out in a
size of 450x450 around its center of gravity.

2) The 3D-scan of the Keyence camera is coded. Because
of this, in the second step of preprocessing colour coding
is converted into height information. The height is in a
range from 0 to 16 mm.

3) Since only the dome of the hairpin weld is of interest, the
following preprocessing step cuts the dome in a range of
6 mm in both positive and negative z direction around
the median of the hairpin.

4) Due to the high volume of the generated images, caused
by the serial production it is essential to compress the
size of the image to reduce the memory requirements.
This is done by compressing the weld to a size range
of 30x30 pixels in x and y direction. This reduction
is achieved by average pooling. Furthermore, the height
information is scaled into a range between 0 and 255.

5) In the fifth step of data preprocessing, the data is
converted into a grayscale image.

6) Finally, the image is normalized based on subtracting
the mean value of one pixel over the entire data set,
dividing the standard deviation of these pixels by the
standard deviation.

D. Architecture Modeling

The CNN is constructed from a series of convolution blocks.
Each block consists of two successive filters including batch
normalization (BN) and rectified linear unit (ReLu) activation,
followed by a pooling layer. The number of filters doubles in

TABLE I: DIVISION OF THE DATASET

Class Training set Test set Sum
IW 456 104 560
WS 455 102 557
WC 438 125 563
CW 478 126 604
Sum 1.827 457 2.284

augmented 91350 - -

each successive convolution block. The first layer uses eight
filters of size 3x3. This number doubles to 16 filters in the
second block, 32 filters in the third block, and 2n`2 filters
in the nth block. Each block (except the last) is followed
by a maximum pooling layer. The last block is followed
by global average pooling rather than maximum pooling.
This construct computes the one-dimensional average value of
each multidimensional matrix of features resulting from cross-
correlation with a filter. The one-dimensional feature vector
contains 64 entries, one for each filter in the last convolution
block (where the number of convolution blocks is four). The
convolution blocks are followed by a fully networked layer
with 32 neurons, a BN layer, a ReLU activation function, and
a dropout layer with a dropout rate of 0.5. The final layer is
an output layer with a neuron for each class and a softmax
activation function, which outputs the probability of each class.

E. Evaluation

The proposed model was implemented in Keras (version
2.2.4) using tensorflow backend (version 1.14.0). We applied
a stochastic gradient decent optimizer with a learning rate of
1e ´ 4, a decay rate of 1e ´ 6, and a Nesterov pulse of 0.9.
In this classification task, the categorical cross entropy was
selected as the loss function.

The architecture of the CNN defined in Section III-D was
validated by five-fold cross-validation. Fig. 3 displays a typical
training course of the five-fold cross-validation of the inputted
3D data and BW images. Panels (a) and (b) of this figure
track the accuracies and losses, respectively, of the training
and validation data over the training epochs.

Both courses show that the training process with the 3D data
as input of the CNN is very stable with high accuracy and low
loss. It should be emphasized that no fluctuations in the course
can be recognized and furthermore, no over-or underfitting can
be detected due to the regularization techniques built into the
network. However, the BW images as an input show strong
fluctuations.
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Fig. 3: Training and validation results of the 3D input data
(blue and orange, respectively), and of the BW input data (pur-
ple and black, respectively). Shown are the model accuracies
(left) and losses (right) obtained by five-fold cross-validation.
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TABLE II lists the average results of the five-fold cross-
validation tests. The quality of the designed network archi-
tecture was further quantified by various evaluation metrics
(precision, recall, and F1-score).

The model with the 3D data input achieved an accuracy
of 99.21%. Furthermore, the metric precision was 99.24%,
confirming the goodness and reliability of the model results.
The precision is an important metric in production processes,
as it indicates whether or not faulty parts are falsely predicted
as good parts that can be delivered to customers. This means
that a weld which is in reality a defective weld, but which was
predicted to be a good weld, is considered a false positive. The
specified metrics precission and recall, are exclusively referred
to the CW class. The recall and F1-score also exceeded 99%
in this case.

However, the BW images significantly degraded the model
performance. When the BW images were input, the accuracy
reduced to 95%, and the precision of the CW class was
98.49%, meaning that a bad weld was sometimes incorrectly
classified as a good weld. Such misclassifications increase
the chance of defective products being shipped to customers.
Moreover, the recall was only 93.8%, meaning that a correct
part was sometimes incorrectly classified as a bad part. A large
number of these misclassifications increases the workload on
the production line.

Although a simple camera is considerably cheaper than
a 3D scanner, we recommend the latter for detecting and
classifying welding defects, because defective welds delivered
to customers will incur significant economic consequences,
and will damage the company’s reputation.

IV. PRESCRIPTIVE PROCESS OPTIMIZATION

A. Mechatronic system

For a 100-percent inline inspection by a CNN and auto-
mated adjustment of process parameters an appropriate IT-
architecture is needed. As an example, we designed a system
for detecting defects in welded hairpin pairs, as described
above.

The developed system combines mechanical, electronic,
and information technology components. Fig. 4 shows the
systematic structure of a mechatronic system. According to
the VDI guideline 2206, a mechatronic system consists of
four units forming a system-internal control loop [15]. The
four units are described below.
‚ The basic system contains a mechanical, electromechan-

ical, hydraulic or pneumatic structure, or a combination
of these. The basic system (the welding station of the

TABLE II: AVERAGE ACCURACY, PRECISSION, RECALL AS
WELL AS F1 FOR ALL 5 RUNS

Input Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

3D-data 99.21 99.24 99.21 99.22
black-white

image
95.0 98.49 93.8 96.1

actors sensor

information
processing

basic system

man

information
system

power
supply

Legend:

information flow necessary unit
energy flow optional unit
material flow

HMI

environment

information
system

Fig. 4: Basic structrue of a mechatronic system.

hairpins in this paper) is the core element of the physical
layer.

‚ The sensor acquires the measured variables of the basic
system, which are transmitted to the information system.
The sensor unit is influenced by the environment. In this
paper, the sensor that inspects the welding quality is a
3D scanner.

‚ Information processing is the central component of the
logical level. This component determines the necessary
actions based on the measured values of the sensors, and
hence influences the state variables of the basic system.

‚ The actor directly influences the necessary action deter-
mined by the information system by adapting the state
variables to the basic system.

These elements are connected by material, energy and infor-
mation flows.

B. High-level design

In the present application, the basic structure of the mecha-
tronic system was implemented by a edge- and cloud- architec-
ture. The environment of the mechatronic system was divided
into three sub-environments as shown in Fig. 5.

1) The production environment includes the basic system
and its inputs and outputs. The products are processed
and transformed. In our application, the production
environment was the hairpin welding station.

Fig. 5: Architecture of edge- and cloud-system.
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2) The cyber physical system (CPS) provides the interface
between the production level and the cloud. It contains
the actuators, sensors and the information processing
system. Its close proximity to the production line enables
real-time data processing [16].

3) The cloud provides the data storage and organization
platform. It coordinates the data collected by the multi-
ple CPSs and stores them in a central location.

The main component of the CPS is the edge device. Located
at the information processing system, it contains the necessary
modules for the transformation and processing of the data
collected by sensors and the cloud. It is administrated through
the cloud by an IIoT administration platform. The modular
internal structure divides the tasks into individual modules that
can be processed in parallel. This also leads to the advantage
of an easier change and provision of the individual modules, as
the whole system never has to be replaced, but only individual
modules. One potential disadvantage of the modular structure
is the increased communication effort, but this disadvantage
does not present in practice (as elaborated in Section IV-H). In
the present application, the modules were implemented using
the docker container platform. These modules are divided
into two layers. First the cyper-physical-interface (CPI), which
includes the communication modules for the production and
cloud levels. And second the processing level, which handles
the actual data processing. The two layers are illustrated in
Fig. 5.

The overarching level is the cloud level, which (as described
above) serves as the data storage and organization platform.
Software that centrally manages multiple CPSs can manage,
modify and monitor an unlimited number of edge devices,
enabling quick deployability and therefore flexible allocation
of production units. Central management also offers central
monitoring capabilities, which can be supervised by a central
production hub. As the cloud has immense storage capabilities,
the data for the ongoing optimization of the CNN were stored
here, as described in Section III-D.

The CPS and its internal structures in the given application
will be discussed in subsequent sections.

C. Components of the Edge Device

The CPI is the central communication layer within the CPS
(see Fig. 5). Besides connecting the information technology
modules with the physical components, it enables commu-
nication between the external components such as cloud
modules or other CPSs. The modules anchored at this level
are exclusively intended for data forwarding. For example,
one module passes communications to the storage providers
as databases, and another module communicates with a PLC
via Open Platform Communications United Architecture (OPC
UA). The advantage of this approach is a clearly defined
separation of communication and processing, which simplifies
the interfaces and improves the maintainability.

These communication streams are then processed at the pro-
cessing level. The incoming data are processed and changed
by a single processing unit. The individual processing steps

are implemented as modules that independently transform any
data passed via defined inputs and outputs. The necessary
communication between the modules is bilateral. Each mod-
ule performs a specific task and forwards its results to the
respective recipients. In this way, the tasks can be parallelized.
During continuous production, the decision on how to proceed
with a hairpin and the prediction of a subsequent hairpin can
be made simultaneously. In the hairpin welding application,
the modules were divided into prediction and decision-making
modules.

D. Communication between Modules

The simultaneous processing and sending of data in dif-
ferent modules requires global communication between the
respective modules. This communication differs from external
communication, which sends bidirectional messages between
the individual modules. Each module can push its data onto
platforms called topics, and thereby distribute its data to
any number of other modules. Moreover, via a subscribe
mechanism, any module can listen to a specific topic and
receive the data pushed onto it. This mechanism directs
the data to its designated processing destination and avoids
the additional overhead of interrogation communications. The
message generation is standardized by the Message Queuing
Telemetry Transport communication protocol (MQTT), which
promises secure data transmission and fast communication.
These can be confirmed by Section IV-H.

E. Prediction modules

The prediction modules are subdivided into preprocessing
and prediction modules. The predictive-analytics modules con-
vert the data to an error estimate associated with the analyzed
stator. Note that this step of the error analysis provides an
error estimate but does not recommend an action

1) Preprocessing: The preprocessing module operates by
the procedure described in Section III-C. In the present
application, several pins simultaneously recorded by the 3D
camera were split and preprocessed individually. The image
information was then pushed onto the prediction module via
a topic.

2) Prediction: The prediction module contains the CNN
presented in Section III-D. This module receives the image
data from the preprocessing module and predicts one of the
error classes presented in Fig. 1. The CNN is hosted within the
module as a Representational State Transfer application pro-
gram interface (API), which is separated from the framework
that embeds it. Thus, updating the CNN through the cloud
leads to an update of the prediction without having to change
the actual module.

F. Decision modules

This group of decision modules forms the prescriptive part
of the analysis. The modules are divided into a decision tree
that determines the type of rework, and another decision tree
that checks the feasibility.
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1) Decision module: As shown in Fig. 6, the selected
rework strategy depends on the error class and the probability
of the prediction. First, the reliability of the CNN is checked. If
the prediction probability ppbq is below 80%, the component
must be checked by an employee. The second step determines
the type of rework based on the predicted defect class. If no
defect is present (i.e., the class is CW), the component is
forwarded to the next production step. If an error is present, it
must first be checked whether repeat tests of the stator yielded
consistently negative results (i.e., whether reworkprwq ą 1).
If true, no further rework is allowed. In the initial classifica-
tion, a WC or WS fault is reworked under a laser intensity of
70%, whereas an IW is reworked under full laser power. The
obtained decision is conveyed to the next module, which then
checks the feasibility of the separation.

2) Validation module: The feasibility of a task depends
on many and various factors, and especially on the cycle
time. The rework time of the production system must not
exceed its allocated time slot. If the rework time is too
long, the component must be rejected. To distinguish such
cases, timestamps are attached to each pin, allowing a precise
observation of the cycle time (the timestamps will be detailed
in Section IV-H). Another important factor is the status of
the production environment. The post-processing strategy is
applied only when the specified task is permitted within the
safety or environmental constraints. Otherwise, the higher-
level production system is notified and an emergency strategy
is implemented. Thus, the feasibility module performs the final
checking that prevents malfunctioning of the basic system.

G. Closing the loop

The validation module receives its data and send its results
via a communication interface with a PLC. The PLC controls
the processes in the basic system and contains the necessary
routines of the rework concepts. To acquire information on
the PLC status and the environment, the validation module
requires bidirectional communication. This is achieved by
a communication module located in the CPI. Assisted by
an OPC UA server created on the PLC, the communication
module can subscribe to the validation module, request the
status information, and set control bits. The status information

Fault type

Checkpb < 80%

Remove

No rework

70% welding 100% welding

rw > 1

CW IW

WC ∨WS

Fig. 6: Decision tree for automated rework.

is then passed to the validation module for processing and the
result is returned to the PLC (see Fig. 5).

H. Results

To evaluate the described system, the average times of the
individual modules, the communication channels, the total
time for a pin, the total time for a stator, as well as the
saved time are analyzed in the following (see Fig. 7). For
this purpose, series of measurements over 10 stators with 54
pins each were recorded on a standard industrial PC (Siemens
SIMATIC IPC427D). The respective start and end times were
stored in an external database using time stamps and evaluated
afterwards. The resulting values are listed in TABLE III.

The times ∆TPin, ∆TPreprocessing (∆TPre), ∆TPrediction

(∆TPred), ∆TDecision (∆TDec), ∆TpreprocessingToprediction

(∆Tptop) and ∆TpredictionTodecision (∆Tptod) are the differ-
ences between the individual timestamps. The comparably
small standard deviations indicate a good stability of the
system, which is particularly important in production. The
preprocessing module can be identified as the main consumer.
With an average processing time of 0.7796s it represents the
largest part of the chain. This result is expected, because the
3D-images are scaled down and transformed as explained in
section III-C. However, it also represents the greatest potential
for optimization.

A consideration of the communication times ∆Tptop and
∆Tptod shows that the modular distribution of the individual
tasks generated only little extra time and thus strongly limits
the disadvantage of the increased communication time pre-
sented in Section IV-B.

The cycle time for a complete stator ∆TStator is calculated
from the difference between the last timestamp of the last pin
and the first timestamp of the first pin (see Equation 1).

∆TStator “ TP r54sLast
´ TP r1sFirst

(1)

A relatively small standard deviation can also be determined
here, which, as with the individual modules, indicates a stable
process in the overall system. It should be noted that the
preprocessing processes two images at once, which results in
a two-fold reduction of the throughput time compared to the
sum of the times for the individual pins.

The value ∆TSaved, indicates the average time saved by
modularization and the resulting parallelization of the individ-
ual tasks. As described in Equation 2, the first time stamp
of the i+2nd pin is subtracted from the last time stamp of

∆TPin

∆TPreprocessing

T1 T6T2 T3 T4 T5

∆TPrediction
∆TDecision

∆Tpretopred
∆Tpredtodec

Fig. 7: Measuring points for determining the processing times.
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TABLE III: STATISTICS OF THE TIME DIFFERENCE BETWEEN
THE PROCESS STAGES

∆TStator

(s)
∆TPin (s) ∆TPre (s) ∆TPred

(s)
Mean 21.3501 0.7968 0.7796 0.0033

Standard
deviation

0.0415 0.0083 0.0070 0.0003

Min 21.3059 0.7744 0.7608 0.0026
Max 21.4231 0.8291 0.8092 0.0046

∆Tdec (s) ∆Tptop

(s)
∆Tptod

(s)
∆Tsaved

(s)
Mean 0.0001 0.0086 0.0052 0.0064

Standard
deviation

0.0000 0.0034 0.0013 0.0042

Min 0.0000 0.0044 0.0036 ´0.0023
Max 0.0005 0.0158 0.0137 0.0189

the i-th pin. So, we compare the last timestamp of the first
pin with the first timestamp of the third pin. The second pin
must be skipped because it was preprocessed at the same time
as the first pin by parallelization. It should be noted that the
communication times were included in the calculation and
therefore ∆Tsaved represents a pure net gain.

∆TSaved “ TP rislast
´ TP ri`2sfirst

(2)

A classification into the production technical context and the
given application case of hairpin welding allows the following
conclusions to be drawn:

V. CONCLUSION AND FUTURE WORK

This paper proposed a system that detects, classifies, and
automatically reworks faults in a hairpin welding process. The
hairpin welds are optically checked by a CNN that inputs
3D data and BW images. The second part of the paper
presented our edge– and cloud-architecture for plant-oriented
data processing. After discussing this architecture in a model-
based fashion , the individual modules were presented and
tested against the requirements. The modular design undercut
the required cycle time (30s) by a factor of 0.7, thus profiting
the production.

In future projects, we hope to develop an automated cloud-
based system that trains and evaluates the CNN. This devel-
opment would add a second optimization control loop to the
current closed loop, creating a CNN that adapts to changing
environmental parameters.
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