2103.04234v4 [cs.DC] 12 Oct 2021

arxXiv

Bottlenecks in Blockchain Consensus Protocols

Salem Alqgahtani
Computer Science Department
University at Buffalo,SUNY
salemmoh @buffalo.edu

Abstract—Most of the Blockchain permissioned systems em-
ploy Byzantine fault-tolerance (BFT) consensus protocols to
ensure that honest validators agree on the order for appending
entries to their ledgers. In this paper, we study the performance
and the scalability of prominent consensus protocols, namely
PBFT, Tendermint, HotStuff, and Streamlet, both analytically via
load formulas and practically via implementation and evaluation.
Under identical conditions, we identify the bottlenecks of these
consensus protocols and show that these protocols do not scale
well as the number of validators increases. Our investigation
points to the communication complexity as the culprit. Even when
there is enough network bandwidth, the CPU cost of serialization
and deserialization of the messages limits the throughput and
increases the latency of the protocols. To alleviate the bottlenecks,
the most useful techniques include reducing the communication
complexity, rotating the hotspot of communications, and pipelin-
ing across consensus instances.

Keywords: Consensus, PBFT, Tendermint, HotStuff, Streamlet,
Byzantine fault-tolerance (BFT).

I. INTRODUCTION

LOCKCHAIN systems aim to provide trustless decentral-
ized processing and storage of transactions, immutabil-
ity, and tamper-resistance. Most of the Blockchains employ
BFT [[1] consensus protocols to ensure that the validators agree
on the order for appending new transactions to their ledgers. In
particular, the Practical Byzantine Fault Tolerance (PBFT) [2]]
protocol forms the basis for most BFT consensus protocols,
such as Tendermint [3|], Streamlet [4], and HotStuff [5].
PBFT builds on the Paxos [6] protocol and extends its crash
failure to Byzantine fault-tolerance to defend against adversar-
ial participants that can arbitrarily deviate from the protocol.
PBFT upholds the safety of consensus with up to 1/3 of the
validators being Byzantine even in the asynchronous model,
and maintains progress in a partially synchronous model. Since
PBFT provides low latency, energy efficiency [7], and instant
deterministic finality of transactions, PBFT is deemed suitable
for many E-commerce applications that cannot tolerate long
delays for transaction to be finalized and added to the ledger.
Unfortunately, the PBFT protocol has performance and
availability problems. PBFT incurs quadratic message com-
plexity and this curbs the scalability and performance of the
consensus protocol. Secondly, PBFT leverages on a stable
leader and changes it only if the leader is suspected to be
Byzantine. Triggering a leader change requires a slow, costly,
and prone to faults protocol which is called view change
protocol.
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To address these shortcomings of PBFT, blockchain systems
mostly adopt rotating leader variants of PBFT. Tendermint [3|]
incorporates the leader rotation as part of the normal consensus
path. While this adds some cost in terms of performance, it
pays off in terms of fault-tolerance, availability, and fairness.

Streamlet [4]] gives a two-phase rotating leader solution
avoiding a lot of overhead in Tendermint. HotStuff [5[] incor-
porates pipelining to rotation of leaders to improve throughput
further. It also addresses the quadratic message complexity in
PBFT and Tendermint, and provides a responsive protocol with
linear complexity.

Although these rotating leader variants improve on PBFT,
there has not been any study to investigate how they compare
with each other and how effective different strategies for leader
rotation are for alleviating bottlenecks in BFT protocols.

Contributions. In this paper, we provide a comprehensive
systematic investigation of bottlenecks in deterministic finality
BFT consensus protocols, namely PBFT, Tendermint, Hot-
Stuff, and Streamlet.

We take a two-pronged approach. First, we provide a theo-
retical analysis of complexity of these consensus protocols.
Second, we build a novel framework called PaxiBFT [8].
The purpose of the PaxiBFT framework is to implement,
benchmark, and evaluate BFT protocols performance under
identical conditions. PaxiBFT is written in Go and built in
modules that makes it easy for developers to modify and
evaluate their own protocols. On PaxiBFT [8], we built and
evaluated Paxos [2], PBFT [2], Tendermint [3]], Streamlet [4]],
and HotStuff [5]].

We study the bottlenecks of these consensus protocols and
identify the factors that limit their scalability. Our investiga-
tions point to the communication complexity as the culprit.
Even when there is enough network bandwidth, the CPU cost
of serialization and deserialization of the messages limits the
throughput and increases the latency of the protocols. We
find that HotStuff performs significantly better than the other
protocols because it (1) replaces all-to-all communication with
all-to-one communication, (2) rotates the leaders at the hotspot
of all-to-one communication across rounds to shed and balance
load, and (3) employs pipelining across rounds to improve
throughput further.

Our analysis and evaluation about the bottlenecks can pave
the way for designing more efficient protocols that alleviate
the identified performance bottlenecks. These analysis and
evaluation results will also help researchers and developers
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to choose suitable consensus protocols for their needs.

Outline of the rest of the paper. After discussing the
background and related work, we explain distributed consensus
in Section [[IIl and present rotated leader BFT consensus
protocols in Second[[V] We analyze the protocols in Section [V}
We discuss our implementations in Section and present
evaluation results in Section

II. BACKGROUND AND RELATED WORK
A. Related Work

A plethora of surveys on BFT consensus protocols in the
permissioned model have come out recently, which focus on
their comparisons on theoretical results. The survey [9] states
that there is no perfect consensus protocol and presents their
trade-offs among security and performance. A recent sur-
vey [10] provides an overview of the consensus protocols used
in permissioned blockchain and investigates the algorithms
with respect to their fault and resilience models. Another
work [[11]] investigates the relationship between blockchain
protocols and BFT protocols. A more recent work [12]
classifies consensus protocols as proof-based and vote-based,
and argues that vote-based protocols are more suitable for
permissioned blockchain whereas proof of work/stake/luck
based protocols are more suitable for public blockchains.
There have been more exhaustive theoretical surveys such
as [13]] on committee and sharding based consensus protocols.
The work summarized variants of protocols, their challenges,
and both their designs and their security properties.

While there has been a lot of work on consensus protocols,
there has not been any work for evaluating and analyzing the
performance bottlenecks in these consensus protocols. This is
due to the fact that consensus protocols are more complex and
not easy to implement. Motivated by this fact, we evaluate the
performance of consensus protocols with finality property that
work in a partial synchrony model.

III. CANONICAL CONSENSUS PROTOCOLS

Paxos is widely used in research and in practice to solve
decentralized consensus. Unlike the crash failure model in
Paxos, the byzantine failure model is more complex and uses a
number of cryptographic operations. As our best case scenario
to compare consensus protocols performances, we have chosen
Paxos as a performance bar to compare with other protocols
instead of Raft [[14]] which uses in Hyperledger Fabric and has
the same performance as Paxos [15].

Fig. 1: Paxos protocol

A. Paxos

Paxos protocol [6] was introduced for achieving consensus
among a set of validators in an asynchronous setup prone to
crash failures. Paxos requires at least NV > 2F'+1 validators
to tolerate the failure of F' validators. By using majority
quorums, Paxos ensures that there is at least one validator in
common from one majority to another, and avoids the split-
brain problem.

The Protocol: Paxos architecture is illustrated in Figure

* A candidate leader tries to become the leader by starting
a new round via broadcasting a propose message with its
unique ballot number bal. The other validators acknowl-
edge this propose message with the highest ballot they
have seen so far, or reject it if they have already seen a
ballot number greater than bal. Receiving any rejection
fails the candidate leader.

* After collecting a majority quorum of acknowledgments,
the candidate leader becomes the leader and advances to
the prepare phase, where the leader chooses a value for
its ballot. The value would be the value associated with
the highest ballot learned in the previous phase. In the
absence of any such pending proposal value, a new value
is chosen by the leader. The leader asks its followers
to accept the value and waits for the acknowledgment
messages. Once the majority of followers acknowledge
the value, it becomes anchored and cannot be revoked.
Again a single rejection message nullifies the prepare
phase, revokes leadership of the node, and sends it back
to propose phase it cares to contend for the leadership.

* Upon successful completion of the prepare phase, the
leader node broadcasts a commit message in the commit
phase. This informs the followers that a majority quorum
accepted the value and anchored it, so that the followers
can also proceed to commit the value.

B. PBFT

PBFT protocol [2] provided the first practical solution to
the Byzantine problem. PBFT employs an optimal bound of
N>3 F4l validators, where the Byzantine adversaries can only
control up to F' validators. PBFT uses encrypted messages
to prevent spoofing and replay attacks, as well as detecting
corrupted messages. PBFT employs a leader-based paradigm,
guarantees safety in an asynchronous model, and guarantees
liveness in a partially synchronous model. When the normal
path does not make progress, PBFT uses a view change
protocol to elect a new leader.
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Fig. 3: Tendermint protocol

The Protocol: PBFT architecture is illustrated in Figure

+ The leader receives the encrypted client’s request and
starts its prepare phase by proposing the client’s request
along with its view number to all followers. The followers
broadcast the client’s request either to acknowledge the
leader or reject it if they have already seen a higher view
number.

+ In the absence of a rejection, each follower waits for
N —F matching prepared messages. This ensures that the
majority of correct validators has agreed on the sequence
and view numbers for the client’s request.

x The followers advance to the commit phase, re-broadcast
the proposal, and waits for N — F' matching commit
messages. This guarantees the ordering across views.

* Finally, F'+ 1 validators reply to the client after they
commit the value.

In case of a faulty leader, a view-change protocol is triggered
by the non-faulty validators that observe timer expiration or
foul play. Other validators join the view change protocol if they
have seen F'+1 votes for the view change and the leader for
the next view tries to take over. The new leader must decide on
the latest checkpoint and ensure that non-faulty validators are
caught up with the latest states. View change is an expensive
and bug-prone process for even a moderate system size.

IV. ROTATED LEADER PROTOCOLS

In this section, we provide an overview of Tendermint,
Tendermint*, Streamlet, and HotStuff BFT protocols.

A. Tendermint BFT

Tendermint protocol [3], used by Cosmos network [16],
utilizes a proof-of-stake for leader election and voting on
appending a new block to the chain. Tendermint rotates
its leaders using a predefined leader selection function that
priorities selecting a new leader based on its stake value. This
function points to a proposer responsible for adding the block
in blockchain. The protocol employs a locking mechanism

after the first phase to prevent any malicious attempt to make
validators commit different transactions at the same height of
the chain. Each validator starts a new height by waiting for
prepare and commit votes from 2F + 1 validators and relies
on the gossip network to spread votes among all validators in
both phases.

Tendermint prevents the hidden lock problem [J3] by waiting
for § time. The hidden lock problem occurs because receiving
N — F replies from participants (up to F' of which may be
Byzantine) alone is not sufficient to ensure that the leader
gets to see the highest lock; the highest lock value may be
hidden in the other F' honest nodes which the leader did not
wait to hear from. Such an impatient leader may propose a
lower lock value than what is accepted and this in turn may
lead to a liveness violation. The rotation function that elects
a next leader enables Tendermint to skip a faulty leader in an
easy way that is integrated to the normal path of the protocol.

The Protocol: Tendermint protocol is illustrated in Figure 3]

* A validator becomes a leader if it has the highest stake
value. It starts the prepare phase by proposing the client’s
request to all followers. Followers wait § time for the
leader to propose the value of the phase. If the followers
find that the request came from a lower height than
their current blockchain height, or that they did not
receive any proposal from the leader, they gossip a nil
block. Otherwise, the followers acknowledge the leader’s
request, then gossip the request and prepared message to
other nodes.

+* Upon receiving a majority of prepared messages in the
prepared phase, a node locks on the current request and
gossips a commit message. Otherwise, a follower rejects
the prepared value and gossips the previous locked value.

* Upon receiving the majority votes in the commit phase,
the nodes commit the value and reply to the client’s
request. Otherwise, they vote nil.

x If the leader is able to finish the view and commit the
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Fig. 4: HotStuff protocol

block, all validators move to the next height of the chain.

Tendermint* is a hypothetical variant of Tendermint we
consider for evaluation purposes. It differs from Tendermint
only in two parts. It forgoes the ¢ time in commit phase and the
all-to-all communication in Tendermint, replacing that instead
with a direct communication with just the leader. Even though
the protocol violates correctness properties of BFT, we employ
it in order to demonstrate which components of the protocols
are responsible for how much performance gains/penalties and
explore these in Sections [VII] and

B. HotStuff BFT

HotStuff protocol [5], is used in Facebook’s Libra [17].
HotStuff rotates leaders for each block using a rotation func-
tion. HotStuff is responsive; it operates at network speed by
moving to the next phase after the leader receives N — F’ votes.
This is achieved by adding a pre-commit phase to the lock-
precursor. To assign data and show proof of message reception
and progression, the protocol uses Quorum Certificate(QC),
which is a collection of N — F' signatures over a leader
proposal. Moreover, HotStuff uses one-to-all communication.
This reduces the number of message types and communication
cost to be linear. The good news is that, since all phases be-
come the same communication-pattern, HotStuff uses pipeline
mechanism and performs four leader blocks in parallel; thus
improving the throughput by four.

The Protocol: HotStuff protocol is illustrated in Figure 4]

* A new leader collects new-view messages from N — F
followers and the highest prepare QC that each validator
receives. The leader processes these messages and selects
the prepare QC with the highest view. Then, the leader
broadcasts the proposal in a prepare message.

x Upon receiving the prepare message from the leader,
followers determine whether the proposal extends the
highest prepare QC branch and has a higher view than
the current one that they are locked on.

* The followers send acknowledgement back to the leader,
who then starts to collect acknowledgements from N —F'
prepare votes. Upon receiving N — F’ votes, the leader
combines them into a prepare QC and broadcasts prepare
QC in pre-commit messages.

% A follower responds to the leader with a pre-commit vote.
Upon successfully receiving N—F' pre-commit votes from
followers, the leader combines them into a pre-commit
QC and broadcasts them in commit messages.

* Followers respond to the leader with commit votes. Then,
followers lock on the pre-commit QC. Upon successfully
receiving N — F' commit votes from followers, the leader
combines them into a commit QC and broadcasts the
decide messages.

* Upon receiving a decide message, the followers execute
the commands and start the next view.

HotStuff pipelines the four phase leader-based commit to a
pipeline depth of four, and improves the system throughput to
commit one client’s request per phase. As per this pipelining,
each elected leader proposes a new client request on every
phase in a new view for all followers. Then, the leader
simultaneously piggybacks pre-commit, commit, and decide
messages for previous client requests passed on to it from the
previous leader through commit certificate.

C. Streamlet BFT

Streamlet protocol proposed in 2020 [4]. Streamlet lever-
ages the blockchain infrastructure in addition to the longest
chain rule in Nakamoto protocol [18] to simplify consensus.
Streamlet rotates its leader for each block using a rotation
function. The protocol proceeds in consecutive and synchro-
nized epochs where each epoch has a dedicated leader known
by all validators. Each epoch has a leader-to-participants and
participants-to-all communication pattern. This reduces the
number of message types, but the communication cost is
O(N?3). Streamlet has a single mode of execution and there
is no separation between the normal and the recovery mode.
Streamlet guarantees safety even under an asynchronous envi-
ronment with arbitrary network delays and provides liveness
under synchronous assumptions.

The Protocol: Streamlet protocol is illustrated in Figure [5]

* The candidate leader for epoch(e;) broadcasts a block that
extends the longest finalized blockchain it has seen.

+* Upon receiving propose message from the leader, val-
idator nodes acknowledge the proposed block with the
highest view number and the longest chain that they
have seen so far. Then validator nodes broadcasts a vote
message in the vote phase.

* Both leader and followers collect a majority quorum of
acknowledgments equals to 2N/3 for the proposal block
in epoch(e;) and mark the block as notarized block.

* If a validator node finds three consecutive notarized
blocks in the blockchain(e;, e;+1,€;+2), the validator
node finalize up the chain.
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V. ANALYSIS AND DISCUSSION

In this section, we compare the strengths and weaknesses of
the consensus protocols considered and provide back-of-the-
envelope calculations for estimating performance.

A. Theoretical analysis

Table [[] provides a synopsis of the blockchain protocols
characteristics we studied. We elaborate on these next.

Synchrony Requirements. All protocols that we consid-
ered assume partially synchronous network model [[19]. In
this model, after a period of asynchrony, the network starts
to satisfy synchrony assumptions and honest messages will be
delivered within the synchronous period.

Time Complexity. PBFT normal execution has a quadratic
complexity. When the leader is a malicious, the protocol
changes the view with a different leader using a view-change
which contains at least 2F" + 1 signed messages. Then, a new
leader broadcasts a new-view message including the proof of
2F + 1 signed view-change messages. Validators will check
the new-view message and broadcast it to have a match of
2F + 1 new-view message. The view-change has then O(N?)
complexity and O(N*) in a cascading failure [[15].

Tendermint reduces PBFT’s message complexity to O(N?)
in the worst case. Since at each epoch all validators broadcast
messages, the protocol uses O(IN?) messages. Thus, in the
worst case scenario when there is F' faulty validators, the
message complexity is O(N?3) [15]).

Paxos, Tendermint*, and HotStuff all have linear message
complexity. The worse case cost in these protocols is O(NN?)
considering worst-case consecutive view-changes.

Streamlet has message complexity O(N?3). Streamlet loses
linear communication complexity due to all-to-all communica-
tion in vote message. In the worst case when there is a leader
cascading failure, the Streamlet complexity is O(N?).

All of the protocols provide responsiveness except for the
Tendermint due to § waiting time in commit phase and for the
Streamlet due to its fixed epoch length.

B. Load and Capacity

Our considered protocols reach consensus once a quorum
of participants agrees on the same decision. A quorum can be
defined as sets containing majority validators in the system
with every pairs of set has a non-empty intersection. To select
quorums (), quorum system has a strategy S in place to do
that. The strategy decides which quorums types to choose
that leads to a load on each validator. The load ¢(S) is the
minimum load on the busiest validator. The capacity Cap(.S)

_Fig. 5: Streamlet protocol

is the highest number of quorum accesses that the system can
possibly handle Cap(S) = é—ls) [20].
In single leader protocols, tile busiest node is the leader [21]].

LS) = %(Q — 1) Num@ + (1 — %)(Q — 1 )Num@ (1)

where (@ is the quorum size chosen in both leader and fol-
lowers, NumQ is quorums number handled by leader/follower
for every transaction, and L is the number of operation leaders.
There is a % chance the validator is the leader of a request.
Leader communicates with N — 1 = () validators and we
assume N = 9. The probability of the node being a follower
is 1 — 1, where it only handles one received message in the

I’
best case. The protocols perform better as the load decreases.
(Pazxos) = 4 (2)
In Paxos, equation 2 with L = 1, quorum size Q = || +

1, and number of quorums Num( = 1. The equation [3] is a
PBFT protocol with Q = L%J and Num@ = 2.
{(PBFT)=10 3)

The equation [3] PBFT [II-B has high load which implies that
the throughput is low. In Section our evaluation illustrates
how low throughput is comparing to other protocols. This is
an indication how load is related to the throughput in our
equation [T} PBFT bottleneck becomes quicker fast due to high
load that comes form all-to-all communications.

The equation [4] is a rotated leader HotStuff protocol with a
leader Q = |2£% |, Num(@ = 4, and L = 4. Unlike PBFT,
HotStuff followers have no quorums. So, the Num@ = 0 in
the followers nodes.

L(HotStuff)=5 4

The equation [ HotStuff has lowest load which
implies that the throughput is high. In Section [VII, our
evaluation illustrates how high throughput is comparing to
other protocols. This is an indication how load is related to
the throughput in our equation HotStuff bottleneck did
not grow fast due to low load that comes form one-to-all
communications and pipeline techniques.

Tendermint has § waiting time before committing the value
and Streamlet is a synchronous clock. We eliminate them from
our load analysis because busiest node affected not by actual
workload but also by waiting time.

C. Latency

The formula [3] calculates the latency of consensus in the
protocols considered, except for Streamlet which has a fixed
epoch time due to its synchronous clock for each instance of
consensus.

Latency(S) = Critical Path + Dy, + 6 5)



Paxos [6] [ PBFT [2] [ Tendermint [3] | Tendermint* [3] [ HotStuff [5] | Streamlet 4] ]
Synchrony Partially synchronous
Communicating Node Centralized | Broadcast Gossip Centralized Centralized Broadcast
Critical Path Messages 4 5 5 8 10 4
Normal Message Complexity O(N) O(N?) O(N?) O(N) O(N) O(N?3)
Multiple View Change O(N?) O(N?) O(N?3) O(N?) O(N?) O(N%)
Responsive Yes Yes No Yes Yes No
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Critical Path is the round trip message between a designated
leader and its followers. Paxos’s critical path has a 2-message
delay as illustrated in Figure[I] With the help of a stable leader,
Paxos reduces message latency in the first phase. Dy, is the
round trip message between a client and designated leader.
In Table [l PBFT and Tendermint have a 5-message delay as
illustrated in Figures [2] and [3] Paxos and Streamlet have a 4-
message delay. § refers to the waiting time that the leader has
to wait before committing transactions.

As the number of validators increases, bottlenecks arise and
the above latency formula starts to break down, as we see in
Section The reasons are different communication patterns
along with different loads imposed on protocols.

VI. PAXIBFT FRAMEWORK

Our experiments are performed on the PaxiBFT [8] frame-
work [[] written in Go. PaxiBFT enables evaluation of BFT
consensus protocols and supports both customization of work-
loads and deployment conditions. The PaxiBFT architecture is
shown in Figure [§] The PaxiBFT’s purpose is to offer a fair
environment for comparing BFT protocols.

To implement BFT consensus protocols in PaxiBFT frame-
work, we designed BFT client library, benchmarker, message
handling modules. For the network infrastructures, we bor-
rowed the core network implementations from Paxi frame-
work [22]]. The client library can send a request to all validators
and receive F+1 replies. We also enable the benchmark to be
able to measure the latency for each request.

In PaxiBFT, all BFT protocols can be implemented by
coding the protocols’ phases, functions, and message types. In
Figure[6] we highlighted some important components that can
be modified by developers to implement new BFT protocol.

The top layer of PaxiBFT framework consists of con-
fig file, message file, and validator code. The config file

Uhttps://github.com/salemmohammed/PaxiBFT

contains all validator addresses, quorum configurations, buffer
sizes, networking parameters, and benchmark parameters. The
developers specify the message structures that need to be sent
between validators in the message file. Finally, in the validator
file, the developers write the code to handle client requests and
implement the replication protocol.

In lower layer of PaxiBFT framework, the core network net-
work implementations as we mentioned earlier borrowed from
Paxi framework [22]. The networking interface encapsulates
a message passing model, exposes basic APIs for a variety
of message exchange patterns, and transparently supports
TCP, UDP, and simulated connection with Go channels. The
Quorums interface provides multiple types of quorum systems.
The key-value store provides an in-memory multi-version key-
value datastore that is private to every node. The client library
uses a RESTful API to interact with any system node for read
and write requests. This allows users to run any benchmark
(e.g. YCSB [23]]) against their implementation in Paxi without
porting the client library to other programming languages.
Finally, the benchmarker component generates workloads with
tunable parameters for evaluating performance and scalability.

VII. EXPERIMENTAL RESULTS
A. Experimental Setup

The experiments were conducted on AWS instances EC2
mb5a.large, with 2 vCPU. The experiments were performed
with network sizes of 4 to 20 nodes. Based on our experiments
results in Section this network size is appropriate to
state and conclude our findings. To push system throughput,
we varied the number of clients up to 90 and used a small mes-
sage size. In our experiments, message size did not dominate
consensus protocols performance, but the complexity of con-
sensus protocols dominates the performance. We defined the
throughput as the number of transactions per second (tx/s for
short) that validator processes. We conducted our experiments
in LAN deployment and Wide Area Network(WAN) across
4 AWS regions(Ohio, N.California, Oregon, and N.Virginia).
In WAN, pushing the system throughput to its limit to get the
system bottlenecks was difficult while it was easy in LAN due
to the short network pipe between instances.

In Tendermint, as we discussed in Section waits ¢ time
before committing the block to solve hidden lock problem.
This § time includes one way message time and committing
time. In Streamlet protocol, as we discussed in Section [[V]
the epoch time includes round trip communication time and
propose-vote computing time. In LAN, We set § time in
Tendermint to be 2 ms and epoch time in Streamlet to be 3 ms.
In WAN, We setdand epoch time in Streamlet to be 50 ms. Our



experiments show that these choices of  and epoch durations
are sufficient and ensure safe execution of both protocols.

B. Evaluation Results

Paxos. We evaluated Paxos as our baseline system. Figure
and Figure [§] show that Paxos throughput declines as we
increase the number of validators N. For example, when N
is 4 and clients are 90, the number of transactions that the
system can process is approximately 4900 tx/s. On the other
hand, when N equals to 16, with the same number of clients,
the system can only handle 1500 tx/s. This is due to the
communication bottleneck at the single leader in Paxos [21]].
The Paxos experimental result demonstrates that the load
on single leader increased significantly which matches our
loading Formula

Latency increases as N is increased because the leader
struggles to communicate with more validators due to the
cost of CPU being utilized in serialization/deserialization of
messages.

PBFT. The throughput evaluation is shown in Figure [/| and
Figure [8| The all-to-all communication leads to a substantial
throughput penalty. PBFT is also limited by a single leader
communicating with the clients. When NV is 4 and clients are
90, the number of transactions that the system can process
is around 1750 tx/s in LAN and 870 tx/s in WAN. However,
with the same number of clients, and N =16, the system can
only handle around 500 tx/s and 350 tx/s in WAN. The PBFT
experimental result shows how significant the performance
bottlenecks become in comparison to Paxos. Theoretically, we
captured this high load in PBFT loading Formula

Tendermint. Throughput results are shown in Figure [/ and
Figure [8] The clients are configured to communicate with all
validators for all operations. Tendermint performance is bad
because the protocol inherits all of the PBFT bottlenecks and
tops them with waiting maximum network delay ¢ for solving
hidden lock problem. For N =16, Tendermint degrades to 150
tx/s in LAN and around 90 tx/s in WAN.

Tendermint*. The throughput is shown in both Figure
and Figure [8] and latency in Figure [9] Tendermint* is a
hypothetical protocol that waives the all-to-all communication
and the d time delay in Tendermint for evaluation/comparison
purposes to identify those overheads. As such we can see that
there is around 4 times improvement in throughput and latency
in Tendermint* as compared to Tendermint.

HotStuff. HotStuff achieves the best throughput compared
to the other protocols, as shown in Figure [7] and Figure
This is because HotStuff uses leader-to-all and all-to-leader
communication, as in Paxos, and introduces pipelining of 4
different leaders’ consensus slots. Compared to PBFT and
Tendermint, HotStuff enables pipelining due to normalizing all
the phases to have the same structure. It also adds an additional
phase to each view, which causes a small amount of latency,
and allows HotStuff to avoid the § waiting time.

Streamlet. The maximum throughput is around 700 tx/s
with epoch = 3 ms while 300 tx/s with epoch = 50 ms in
WAN. The synchrony clock, all-to-all communication in the

second phase, and the lack of pipeline techniques result in
a substantial loss in the protocol’s throughput. On the other
hand, the Streamlet protocol has only one phase (propose and
vote), which simplifies its architecture.
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C. Comparison of Throughput and Latency

In Figures [7] and [§] we discuss the protocols’ throughput
performance under the same experimental conditions. In both
Figures, HotStuff achieves the maximum throughput in LAN
and is close to Paxos in WAN deployment. This is due to
responsive leader rotation and 4-leader pipelining in HotStuff.
In Figure O] we explore the average latency performance for
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all protocols with the same settings. Tendermint latency is the
highest due to the § wait time. In all protocols, as N increases,
latency increases. This increase is more pronounced for PBFT
and Tendermint, because of the all-to-all communication they
employ. We also examined the relationship between the system
throughput and the latency in WAN and LAN with N=20 and
90 clients. The results are shown in Figure[I0|and[T1] The per-
formance of BFT consensus algorithms is strongly impacted
by the number of messages due to tolerance property.

VIII. CONCLUSION AND FUTURE WORK

We studied popular deterministic-finality BFT consensus
protocols. We analyzed the performance of these protocols,
implemented, benchmarked, and evaluated them on AWS
under identical conditions. Our results show that the through-
put of these protocols do not scale well as the number of
participants increases. PBFT and Tendermint suffer the most
due to all-to-all communication they employ. HotStuff resolves
that problem and shows improved throughput and scalability,
comparable to Paxos which only provides crash fault tolerance.

We believe that this work will help developers to choose
suitable consensus protocols for their needs. Our findings
about the bottlenecks can also pave the way for researchers
to design more efficient protocols. As future work, we plan to
adopt some bottleneck reduction techniques such as communi-

cation relaying nodes [24] and applying them in the considered
BFT protocols to improve performance.
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