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Abstract—Our life is getting filled by Internet of Things (IoT)
devices. These devices often rely on closed or poorly documented
protocols, with unknown formats and semantics. Learning how
to interact with such devices in an autonomous manner is
the key for interoperability and automatic verification of their
capabilities. In this paper, we propose RL-IoT, a system that
explores how to automatically interact with possibly unknown
IoT devices. We leverage reinforcement learning (RL) to recover
the semantics of protocol messages and to take control of the
device to reach a given goal, while minimizing the number of
interactions. We assume to know only a database of possible
IoT protocol messages, whose semantics are however unknown.
RL-IoT exchanges messages with the target IoT device, learning
those commands that are useful to reach the given goal. Our
results show that RL-IoT is able to solve both simple and
complex tasks. With properly tuned parameters, RL-IoT learns
how to perform actions with the target device, a Yeelight smart
bulb in our case study, completing non-trivial patterns with as
few as 400 interactions. RL-IoT paves the road for automatic
interactions with poorly documented IoT protocols, thus enabling
interoperable systems.

Index Terms—Reinforcement learning, IoT

I. INTRODUCTION

The popularity of IoT devices keeps growing at a fast
pace, with the number of connected devices projected to be
around 31 billion units worldwide by 2025. IoT devices are
present in many IT systems, from smart homes to drones,
from industry 4.0 scenarios to medical systems.1 These devices
rely on multiple standard protocols and technologies [1], such
as MQTT, CoAP and XMPP, but often they implement pro-
prietary and not well-documented protocols whose semantics
may be obscure.

A general approach for learning how to interact with IoT
devices would represent an important step for many appli-
cations, including interoperability and cybersecurity. In the
literature, this problem lies under the umbrella of protocol
reverse engineering, i.e., the process of learning the protocol
used by an application, having no or limited access to the
protocol specification [2]–[4]. For interoperability purposes,

1https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide

one often faces a simplified version of the problem, in which
some information about the protocol is indeed available. For
instance, protocol messages and syntax may be public, but
with little information about protocol semantics. Equally, even
if some protocol information may be available, finding the
precise operations providing a particular functionality may be
a hard task due to poor documentation.

In this work, we build a system capable of learning by
experience how to interact with IoT devices. In details, given i)
a target IoT device, e.g., a smart bulb, ii) a superset of protocol
messages (not all of them supported by the target device), iii) a
communication network, and iv) a feedback channel, we want
to learn the specific sequence of messages that allows us to
change the IoT device settings according to a desired sequence
of states. At the end, the system shall learn these messages in
the shortest possible time, ultimately unveiling the semantics
of each message.

To reach our goal, we rely on reinforcement learning
(RL) [5]. A learner stimulates the device and observes how
it reacts, obtaining a positive (negative) reward when the
device does (does not) perform the desired action. We assume
to receive a feedback from the device, for instance having
a side channel to observe how its status changes (e.g., a
camera looking at the smart bulb) or a feedback channel
directly offered by the IoT protocol. More formally, RL builds
an internal state-machine representing a portion of the IoT
protocol. The learner’s goal is to discover how to navigate
the state-machine, finding the best (e.g., shortest) sequence of
actions to reach our goal.

We present RL-IoT, a RL-based framework to automatically
interact with IoT devices. We focus on a case study of
a Yeelight smart bulb, which offers a proprietary protocol,
generically documented for all Yeelight devices. We present
the design of RL-IoT and offer a thorough set of experi-
ments, comparing different RL methods, tuning parameters,
and showing that RL-IoT is effective to control the smart
bulb, successfully completing both simple and complicated
sequences of actions.

Please cite the published version of this article at: Giulia Milan, Luca Vassio, Idilio Drago, Marco Mellia. RL-IoT:
Reinforcement Learning to Interact with IoT Devices. 2021 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS), 2021, DOI: https://doi.org/10.1109/COINS51742.2021.9524260
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Results show that not only RL-IoT is able to find the optimal
sequence of commands to control the device, but also discover
multiple solutions, combining commands that at a first sight
are not useful to reach the goal. For example, it finds out that
a command for changing the brightness of a smart bulb can
also be used to switch the light off. Among the different RL
algorithms tested, Q-learning presents the best performance.
With tuned parameters, it learns the optimal sequence of
commands after few hundreds interactions, exploring the state
space of the smart bulb, which in turn has millions of states.

RL-IoT demonstrates how RL solutions can be successfully
exploited to support semantic interoperability, opening to pos-
sible automated solutions to discover the semantics of poorly
documented IoT systems. RL-IoT is open source and freely
available to the community.2

In the remaining of the paper, after a discussion of related
work in Section II, we present the design of our RL-IoT
framework in Section III. Next, in Section IV we compare
the performance of different algorithms, perform parameter
tuning and present thorough experimental results. Section V
concludes our work, presenting possible future steps.

II. RELATED WORK

The work most similar to ours is [6] where the authors
propose the use of the Q-learning algorithm to facilitate the
interoperability of IoT systems. However, the authors only
discuss the applicability of the RL-approach to a REST-based
protocol, without introducing a general system or validating
the approach. Here we demonstrate the potentiality of the idea
without assuming a specific protocol. We also demonstrate the
feasibility of RL-IoT in practice and contribute the software
to the community.

Considering the use of RL for learning protocols, most
previous work targets security applications, such as honey-
pots. Authors of [7] develop a honeypot capable of learn-
ing commands from direct interaction with attackers. Their
self-adaptive honeypot emulates a SSH server and uses the
SARSA RL algorithm to interact with attackers. Later, the
same authors propose an improved version based on Deep
Q-learning [8]. The authors of [9] design another adaptive
honeypot, modelling the attacker as a Semi-Markov Decision
Process (SMDP) and applying RL to learn the optimal policy.

The authors of [10] present adaptive honeypots for study-
ing the security of IoT devices. They propose to use RL
to automatically obtain knowledge about the behaviour of
attackers, building an “intelligent-interaction” honeypot that
could engage attackers. Authors of [11] study IoT attacks too.
The authors argue that the diversity of protocols, software and
hardware of IoT devices, together with dynamic changes in
attacking strategies calls for automatic ways to recognize the
attacks. They use RL techniques to search for the best way to
answer attackers’ commands.

All these efforts share the RL-based approach with our
RL-IoT framework. We however target the interoperability

2https://github.com/SmartData-Polito/RL-IoT

scenario. In contrast to security applications in which attackers
often try to misuse devices and protocols, our goal is to learn
how to legitimately interact with IoT devices that may be
poorly documented.

III. METHODOLOGY

This section describes our methodology. We first summa-
rize the reinforcement learning approach and algorithms in
Section III-A. Then we introduce RL-IoT, our framework for
learning, in Section III-B, and we describe the environment in
Section III-C. In Section III-D we describe the application to
the Yeelight protocol, and in Section III-E we define the goals
for the smart bulb.

A. Reinforcement learning algorithms

Reinforcement learning is a technique to train a system
where learning is achieved by interacting with the environ-
ment. It is based on rewards and punishments [5].

Formally, an agent is in a state s ∈ S defined in function
of the environment. The agent may change state following an
action a ∈ A taken at discrete time steps. At time t, the agent
decides which action at to take given its current state st and,
as a consequence, it moves to st+1. The action then causes a
change to the system state and the agent possibly receives a
reward rt+1.

Considering the above setup, a policy π determines the
action a taken by the agent when in a particular state s.
The task of a RL algorithm is thus to determine a policy
that maximises a function of the received reward. There
exist several methods to search for optimal policies. Here we
consider well-established algorithms that operate based on a
value function V (s), that represents the expected accumulated
reward when starting from the particular state s to follow a
policy π. We include algorithms belonging to two categories:

• Temporal-Difference (TD) learning: The agent updates
V (s) after every time step as:

(st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (1)

The parameter α is the learning rate – i.e., how much
V (st) should change when updated. γ is a discount
factor that weights the importance of the destination
state V (st+1). SARSA and Q-learning are popular TD
algorithms [5]. The former is an on-policy algorithm
(i.e., the agent evaluates and improves only the policy π),
whereas the latter is an off-policy method (i.e., the agent
evaluates other policies π taking the maximum observed
V (st+1) for updating V (st)).

• TD(λ) learning: The agent takes n time steps before
updating V (st). As such, TD(λ) algorithms must memo-
rize visited states to update them later. The parameter λ
controls how the n future states influence V (st) (i.e., like
a decay parameter). The most common TD(λ) algorithms
are direct extensions of traditional TD learning methods:
SARSA(λ) and Q(λ).3

3Two different Q(λ) versions exist: Watkin’s Q(λ) and Peng’s Q(λ) [5]. In
this work we use Watkin’s version.

https://github.com/SmartData-Polito/RL-IoT
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Fig. 1: RL-IoT framework overview.

Both TD and TD(λ) algorithms need a strategy to select the
current policy. This strategy should allow continuous explo-
ration of new actions. The most used strategy is called ε-greedy
policy selection. The ε-greedy strategy balances the trade-off
between exploitation (the agent selects already tried actions
found to be effective in producing reward) and exploration
(the agent randomly selects actions in the search for better
paths). With a probability of ε, a random action is selected.
The greedy policy is instead chosen with a probability of 1−ε,
selecting the action that currently has the highest value for the
state s inside the value function V (s). ε can decrease over
time, allowing a high exploration during the initial search.

B. IoT reinforcement learning framework

Figure 1 summarizes the core RL-IoT framework. It receives
as input a Goal that the RL Module should learn how to
achieve. The Goal represents a sequence of settings the device
should follow, i.e., paths on the device state-machine. This
goal is device-specific, and we will detail it when discussing
our case study with the Yeelight smart bulb.

RL-IoT leverages an internal Message Dictionary contain-
ing a list of IoT protocol messages that can be used to interact
with devices. This dictionary can be built from protocol
specifications, via automatic reverse engineering solutions or
by traffic sniffing. It can contain a mix of messages from
different IoT protocols, vendors, versions, etc.

RL-IoT employs state-of-the-art RL algorithms, where the
Learning module builds and updates the internal State Ma-
chine. The Learning module supports the previously cited
RL algorithms – Q-Learning, Q-Learning(λ) SARSA and
SARSA(λ) [5], each with its parameters. It explores which
of the several messages in the Dictionary can be used to
change the state of the IoT device towards the given Goal. RL
algorithms exploit a reward function (custom to each path) to
evaluate the benefits of each action taken by the learner in a
given state.

The Learning module interacts with two other modules. The
Discoverer module is responsible for scanning the local net-
work in the search for IoT devices. It employs classic scanning
approaches (e.g., nmap4) for searching online devices and

4https://nmap.org/

performing an initial fingerprint to determine open ports. At
last, the Socket API module abstracts all the mechanisms to
communicate with the target IoT device. Beside sending com-
mands, it may also support the reception of feedback directly
obtained from the IoT device, if available. For instance, it can
support parsing messages that return the device state.

C. Environment definition

In general, the state of a device can be represented as the
powerset of all the current properties of the device, which
describes its behaviour and settings – e.g., whether it is
on/off and the combination of all the values of its configurable
parameters. We define the state-machine of a protocol as a
graph containing nodes for states and edges for commands
that let the device move from one state to another. A collection
of ordered states linked by commands is a path. Commands
stored in the Message Dictionary could change the IoT device
settings, i.e., the current state. With states and commands we
can define a state-action value function for the RL algorithms,
described by the value-function matrix Q.

The reward associated with the state-machine and the de-
sired path can be provided to RL-IoT as input, and it is used
by the RL agent at each time step. RL-IoT runs this procedure
many times, i.e., for many episodes. An episode ends when
the RL agent reaches the terminal state(s), or after a maximum
number of iterations. During each step in an episode, RL-IoT
accumulates reward. With such reward, the RL agent updates
the state-action matrix Q according to Equation 1, and uses
it to select which next command to send, trying to maximize
the total reward.

D. Case study: The Yeelight bulb

We use a Yeelight smart bulb as a case study to demonstrate
the feasibility of our approach.5 We select this device because
Yeelight provides generic protocol documentation valid for
all their IoT devices.6 Knowing the protocol allows us to
understand and validate what RL-IoT can learn. The protocol
offers 37 commands, and only about half of them work with
the selected smart bulb, with multiple commands that could
generate the same action. For instance, one could set a color
via a set rgb, set scene, or adjust prop message.

Yeelight devices connect to the network using Wi-Fi. After
the initial setup, the device periodically broadcasts its presence
using advertisement UDP messages. It is thus easy for the
Discoverer module to find them in the LAN. Once RL-IoT
identifies the device IP address, it starts interacting with it
sending messages from the Dictionary. Yeelight offers control
protocols running on top of both HTTP and raw TCP sockets.
The latter relies on simplistic JSON messages that carry com-
mands. Figure 2 presents one of the simplest JSON messages
to set the color of a smart bulb. The device responds to well-
formatted commands with a result message - on the bottom of
Figure 2. Other commands allow clients to obtain information

5For all experiments, we use Yeelight LED Smart Bulb 1S Color (8.5W-
E27-YLDP13YL) devices.

6https://www.yeelight.com/download/Yeelight Inter-Operation Spec.pdf

https://nmap.org/
https://www.yeelight.com/download/Yeelight_Inter-Operation_Spec.pdf


about the state of the device, to change its name, to turn light
on and off, to change light intensity, to play music, to set fan
speed, etc. As said, not all commands are supported by our
smart bulb.

Command:

{"id": 1,
"method": "set_rgb",
"params": [255, "sudden", 0]}\r\n

Answer:

{"id": 1, "result": ["ok"]}\r\n

Fig. 2: Examples of Yeelight protocol messages.

The commands can have some parameters to set. While
these parameters usually belong to finite sets, for some com-
mands the number of admissible values can be huge (like
for integer or string parameters). Indeed the combinations of
commands and their parameters result into more than 109

distinct combinations that the RL agent could send to a
Yeelight device. For our case study we simplify the definition
of our environment according to our goal. To reduce the action
space, we consider the action as only one command, with its
parameters that we randomly choose in valid ranges.

E. Case study: Definition of goals

For testing RL-IoT, we build and study two scenarios with
different state-machines of increasing complexity.

In the first scenario, given a switched-on bulb, our Goal 1 is
to learn how to change the color and the brightness of the bulb,
in whatever order. In Figure 3 we report the state-machine
for this first scenario. Each state considers different attribute
values: power p, color c and brightness b. Hence the state is
defined by the values of the tuple {p, c, b}. We disregard the
other attributes of the light configuration. Here, we have two
final states, where an episode will successfully end: either we
reach our goal ({p0 = on, c1 6= c0, b1 6= b0}) or we fail, i.e.,
we turn off the bulb too early without setting color and/or
brightness ({p1 = off, c∗, b∗}).

We perform a transition from one state to another inside
the state-machine when a command modifies one or more of
these attributes. With this strategy for defining state-machines,
we are able to condensate multiple states into a single one as
in the figure. This allows us to represent cases in which an
attribute is continuous and/or has a high number of admissible
values, i.e., the color of the smart bulb has 16777216 possible
values. In Figure 3 we draw possible transitions (arrows) only
if a command exists in the protocol to change such property.
The actions (commands and their parameters) are not specified
in the picture since there might be multiple commands that
could produce the same transition. Similarly, there exist a lot
of commands that do not change the state, represented as state
self-transition (a looped arrow). Note that it is even possible
to get back to a previous state (e.g., setting back the original
color c0).

{p0 = on, c0, b0}

{p0, c0, b1 ≠ b0}{p0, c1 ≠ c0, b0}

{p0, c1 ≠ c0, b1 ≠ b0}

+on +on+color +on+color+bright

+on +on+bright +on+color+bright

{p1 = off, c*, b*}

Fig. 3: Goal 1: Simple state-machine where we want to learn
how to change the color and the brightness of the bulb, in
whatever order. The “*” refers to whatever value.

+on +on+name +on+name+bright+off +off

Fig. 4: Optimal path for Goal 2.

On the bottom part of Figure 3 we show the optimal paths,
i.e., the shortest sequences of state changes we want to learn:
the name assigned to each box refers to the total modified
attributes so far. The optimal policy for Goal 1 visits 3 states
with 2 actions, i.e., requiring 2 time steps the least. Here, we
assign the rewards as follows: (i) each new issued command
has a small additional negative reward (−1), since we want
to reach the goal in as few steps as possible; (ii) we give
higher negative reward (−10) when the command produces an
error and the state does not change; (iii) we assign no reward
when we reach the final state without completing the path
{p1 = off, c∗, b∗}; (iv) we give large positive reward (+205)
when we reach the desired final state {p0, c1 6= c0, b1 6= b0}.
Hence, with these assigned rewards, the optimal paths will
reach a total reward of 203 (i.e., 205 minus 2 steps).

With similar considerations, we draw and implement also
another state-machine that we call Goal 2, shown in Figure 5.
The optimal path can be found in Figure 4. The specific goal
we want to learn is, in this specific order: (i) turn the bulb
on, (ii) change the device name, (iii) change brightness, and
(iv) turn the bulb off. Here our goal is more complex since
we want to learn how to move through a specific sequence
of states. Since we add the name attribute among those we
want to change, the state definition becomes {power, color,
brightness, name}. We also require the bulb color to remain
constant, and thus the color is still considered as part of the
state definition.



{p0 = off, c0, b0, n0}

{p0 = off, c0, b0, n1 ≠ n0}{p1 = on, c0, b0, n0}

{p1 = on, c0, b0, n1 ≠ n0}

{p1 = on, c1 ≠ c0, b0, n1 ≠ n0}

{p1 = on, c1 ≠ c0, b1 ≠ b0, n1 ≠ n0}

{p2 = off, c*, b*, n*}

{p1 = on, c0, b1 ≠ b0, n0}

{p1 = on, c1≠ c0, b0, n0}

{p1 = on, c1 ≠ c0, b1 ≠ b0, n0}

{p1 = on, c0, b1 ≠ b0, n1 ≠ n0}

Fig. 5: Goal 2: Complex state-machine where we want to learn how to turn on the bulb, change its name, its brightness and
finally turn it off, in this specific order and without changing the color.

We assign a large positive reward (+222) at the final state
if we pass through the desired states in Figure 4 in the right
order. If we arrive to the same final state, but in a different
sequence of the same intermediate states, we assign a positive,
but smaller reward (+200). Negative rewards are similar to
Goal 1. Here the optimal path is unique, with an optimal length
of 4 time steps, generating the maximum total reward of 218
(i.e., 222 minus 4 steps).

F. Performance metrics
We consider three metrics for evaluating results and com-

paring the performance of the various algorithms.
We summarize the notation we use in Table I. Note that

we assume that the sets of states S and actions A are finite
sets. If not, there exist methods which combine standard RL

TABLE I: Formal notation for evaluation metrics and param-
eters of the RL algorithms.

E episode
NE total number of episodes
R(E) total reward obtained in episode E
T (E) total number of time steps t in episode E
Na total number of actions performed
C(na) cumulative reward obtained after na actions
Q(s, a) action value function or Q value function
ε exploration-exploitation trade-off
α learning rate
γ discount factor
λ trace decay

algorithms with function approximation techniques, such as



neural networks [12], [13]. Having finite sets the Q value
function Q(s, a) can be represented as a matrix.

In our scenarios, a terminal state always exists. We call this
T (E), i.e., the number of time steps used in a single episode E
to reach the terminal state. We force T (E) < Tmax, Tmax =
100. We compute the total reward R(E) obtained during
episode E:

R(E) =

T (E)∑
t=1

rt(E) for E ∈ {1, ..., NE},

being NE the total number of episodes we let RL-IoT run.
These metrics can be averaged over multiple executions -

which we call runs - of the learning process. Similarly, we
compute the moving average for a specified window size w.
Average and moving average help to appreciate the learning
curve which is affected by the randomness present in each run
due to exploration.

Finally, we compute the cumulative reward C(na) from the
beginning of the learning process over the number of actions
performed na:

C(na) =

Ena∑
E=1

Tna (E)∑
t=1

rt(E) for na ∈ {1, ..., Na}

This metric takes into account not only the reward reached
within an episode E, but also how much reward cumula-
tively was obtained until that episode. Indeed, the number of
episodes to consider Ena depends on number of actions na.
Also the number of time steps to consider Tna(E) depends
on the episode: it is T (E) if E 6= Ena

; or the number of
remaining time steps to reach the limit of total number of
actions imposed by na in the last episode E = Ena

. To
compare different algorithms, we compute the average among
different runs, as for T (E) and R(E). Here, the difference
is that we “consume” the same number of actions na after a
different number of episodes Ena

in different runs.

IV. RESULTS

In this section we summarize the results. In Section IV-A
we evaluate whether RL-IoT can learn the given target paths.
In Section IV-B compare different RL algorithms with tuned
parameters. Finally, Section IV-C studies the cost of training
the RL models in terms of training time and network traffic.
For all experiments, RL-IoT runs on a x86-64 PC with 4GB
of RAM and two cores, connected to the same Wi-Fi network
as the Yeelight bulb.

A. Learning capability

We start focusing on whether RL-IoT can learn how to reach
the desired goals. We apply the Q-learning algorithm while ob-
serving the reward evolution over episodes, and the number of
time steps needed to arrive to the target state at each episode.
In order to provide an intuition of how RL-IoT interacts with
the smart bulb while exploring possible commands, we share
a video of one run at https://tinyurl.com/yws6m7ec.
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Fig. 6: Q-learning performance while learning Goal 1. ε = 0.2,
α = 0.1, γ = 0.55.
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Fig. 7: Q-learning performance while learning Goal 2. ε = 0.2,
α = 0.1, γ = 0.55.

Figure 6 reports the total reward R(E) (left plot) and the
number of time steps T (E) (right plot) of each learning
episode for Goal 1. Dotted gray line details a single Q-learning
run; solid black line reports the average of 10 runs; red line
shows the moving average over the 10-run, taking into account
a window w of 10 episodes.

Q-learning initially cannot reach the desired state. Missing
the large positive rewards, it accumulates a negative reward
on average. After few episodes, R(E) grows to the maximum
value that could be observed (203 here). However, comparing
the line for a single run to the average over 10 runs we
observe a lot of variability. This can be explained by the
random exploration component (controlled by ε) in the Q-
learning algorithm. This exploration phase may penalise the
single episode with low final reward, even if the system has
already discovered the target goal before. The right plot in
Figure 6 shows that Q-learning finds how to reach the desired
state with very few actions. After around 15 training episodes,
on average, it finds policies composed by 2 or 3 steps, thus
the average reward gets closer to the maximum. Recalling that
for the trivial Goal 1 scenario the optimal path is composed
by 2 steps, we conclude that Q-learning has already found the
best path to the goal after 15–20 training episodes.

We report the same results for Goal 2 in Figure 7. As before,
we depict only results for Q-learning, and lines show numbers
for a single run, 10-run average and moving average. The
results are qualitatively similar for Goal 2, but with slower
learning, given the higher complexity of the goal. However,
also in this case the learning phase is still able to discover
paths with positive reward after around 20 episodes. Given the
large state space to explore, the algorithm is still improving
its performance even after 100 episodes. The number of steps

https://tinyurl.com/yws6m7ec
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Fig. 8: Example of the final action-value Q matrix for Goal 2. Darker colors show commands (columns) that result in higher
expected rewards for the states (rows). ε = 0.2, α = 0.1, γ = 0.55.

(right plot) is often below 7 even after few episodes, meaning
that (on average) the algorithm is moving around the optimal
path (with 4 steps).

To give the intuition of the learning process achieved by
RL-IoT, we depict in Figure 8 the Q matrix for Goal 2 ob-
tained after 100 episodes. Rows represent states, with the first
4 rows being the desired optimal path in the second scenario
(cfr. Figure 4). Columns represent all available commands
(actions). The darker is the color, the higher is the chance to
select that command in that state. To ease the visualization,
we sort commands by increasing reward. Observing the cells
with darker colors, we see that Q-learning has indeed learned
the expected sequence of commands to follow the given
goal: when off - turn on the lamp, then set the name, the
brightness, and at last turn the lamp off. Interestingly, RL-IoT
has also identified alternative valid commands to move to the
desired state, as shown by moderately darker shades for some
commands.

For example, the algorithm is able to identify several
ways to turn the lamp off when in the +on+name+bright
state – besides the set power off command. For instance
adjust bright to 0, or set rgb to 0. In other words, RL-IoT
discovers multiple ways to perform the same task from its
interactions with the environment.

This shows the potential of RL-IoT in supporting the dis-
covery of semantics of IoT messages. With our use case we
can easily verify the actual command semantics. Yet in the
general case this could not be easy, e.g., when the protocol
uses binary format.

B. Algorithms comparison

To compare different RL algorithms and parameter impact,
we tune parameters to find the best configuration for each
algorithm. We only report results on Goal 2, since it is more
complex.

Even with the reduced commands and states, performing
an exhaustive search for all the combinations of algorithm
parameters is unfeasible. That is because RL-IoT needs around
40 minutes to execute 100 episodes, due to rate-limits caused
by the Yeelight protocol. We thus perform greedy experiments,
in which we vary only one parameter at a time to understand
its impact on results. More specifically, starting from values
suggested by [5] and [14] (i.e., ε = 0.6, α = 0.05 and
γ = 0.95), we first tune ε with α and γ fixed. Then,
we fix the best ε, and optimize α. Finally, we optimize γ
given the best ε and α. Since TD learning algorithms are
equivalent to TD(λ) learning with λ = 0, the best values for
ε, α and γ are used with SARSA(λ) and Q(λ) too, with an
extra optimization round for λ. We perform 5 independent
runs for each parameter combination, and report the average
performance.

Figure 9 shows results with Q-learning changing the value
of ε, α and γ. We see that ε (i.e., the exploration-exploitation
trade-off) and α (learning rate) are the parameters affecting the
most the RL algorithm. Indeed, Figure 9(a) shows that large ε
can even prevent the algorithm to reach the maximum reward.
In a nutshell, better not explore too much. Similar comment
applies to low values of α in Figure 9(b). I.e., better to learn
fast. The parameters γ in Figure 9(c) and λ (not shown for
brevity) have smaller impacts on results.

After parameter tuning we obtain ε = 0.2 and α = 0.1. For
SARSA and SARSA(λ) we obtain γ = 0.75, while for Q-
learning and Q(λ) we get γ = 0.55. Finally, λ = 0.9 results
the best for Q(λ), and λ = 0.5 for SARSA(λ). Notice that
in Section IV-A, we already used the tuned parameters here
described.

With these values, in Figure 10 we compare the best config-
uration for the four algorithms, in Goal 2. The top plot shows
the moving average (w = 10) of the total reward R(E), while
the bottom plot depicts the number of time steps obtained per
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Fig. 9: Q-learning performance for Goal 2: (a) tuning of ε with α = 0.05, γ = 0.95; (b) tuning of α with ε = 0.2, γ = 0.95;
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episode. Again, we compute the average per episode over 10
repetitions of each experiment.

We conclude that Q(λ) obtains the highest rewards during
the initial 50 episodes. In other words, the algorithm learns
faster than others. Yet, from episode 50 onward Q-learning
wins, reaching the maximum values at around 200 episodes.
We see in the bottom plot that Q-learning learns shorter
paths (on average) after 200 episodes. That is, it reaches the
goal with less steps, obtaining higher rewards than the other
algorithms.
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Fig. 11: Cumulative reward as a function of the number
of commands for Goal 1 (top) and Goal 2 (bottom) (200
episodes).

C. Training costs

We now evaluate the costs of training the RL algorithms in
terms of number of commands sent to the IoT devices. Since
Yeelight protocol has a rate limit on requests, we need to pace
RL-IoT to avoid passing these limits and triggering the device
protections. Therefore, RL-IoT needs to minimize the number
of commands to achieve satisfactory learning in real scenarios.

Figure 11 depicts the cumulative reward C(na) obtained by
each algorithm as a function of the number of commands na



sent to the device. The plot depicts numbers for Goal 1 and
Goal 2.7

In the plot for Goal 1 (the simplest target) all algorithms
behave similarly. After exchanging around 70 commands, all
algorithms start to accumulate a positive reward that since
then grows linearly with the number of commands. In sum, all
algorithms have learned the target path with few commands,
and more training time and exploration do not result in further
gains. The plot for Goal 2 instead shows a more interesting
pattern, since the complexity of the path better tests the
capabilities of the RL algorithms. We see that all algorithms
start with a negative accumulated reward. Some algorithms
(e.g., Q-learning) need to send around 400 commands before
starting accumulating a positive reward. In line with results
shown in Figure 10, Q(λ) is the fastest to reach positive
reward, needing around 250 commands. Whereas Q-learning
is the last one to see positive numbers, its accumulated reward
grows faster than others after sending around 600 commands,
again confirming results seen in Figure 10.

All in all, we conclude that Q(λ) is able to learn solutions
leading to positive reward faster for Goal 2. Standard Q-
learning, while requiring more commands than others, is
the algorithm able to accumulate more reward. SARSA and
SARSA(λ) show figures in between the alternatives.

V. CONCLUSIONS

We proposed RL-IoT, a system based on reinforcement
learning that learns how to automatically interact with IoT
devices. Given a dictionary of possible messages, the system
learns which ones to send to the device to achieve a given
goal. We showed the effectiveness of RL-IoT in a case study
with a Yeelight smart bulb. We were able to learn non-trivial
patterns with as few as 400 interactions while also discovering
alternative solutions. RL-IoT opens the opportunity to use rein-
forcement learning to automatically explore the state machine
of unknown protocols, thus assisting on the interoperability of
IoT devices.

As future work, we will extend our experiments to make
RL-IoT interact with devices of multiple vendors. In this way,
we will verify that RL-IoT can learn the different commands
to achieve a single goal on multiple devices, hopefully demon-
strating interoperability in practical cases.
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