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Abstract—Reliable automated defect detection is an integral
part of modern manufacturing and improved performance can
provide a competitive advantage. Despite the proven capabilities
of convolutional neural networks (CNNs) for image classification,
application on real world tasks remains challenging due to the
high demand for labeled and well balanced data of the common
supervised learning scheme. Semi-supervised learning (SSL)
promises to achieve comparable accuracy while only requiring a
small fraction of the training samples to be labeled. However, SSL
methods struggle with data imbalance and existing benchmarks
do not reflect the challenges of real world applications. In
this work we present a CNN-based defect detection unit for
thermal sensors. We describe how to collect data from a running
process and release our dataset of 1k labeled and 293k unlabeled
samples. Furthermore, we investigate the use of SSL under this
challenging real world task. Index Terms—quality assurance, edge
computation, imbalanced data, semi-supervised learning

I. INTRODUCTION

Defect detection is an important part of modern manufactur-
ing and automating the process with robust computer vision
applications provides a competitive advantage [1]. Convolu-
tional neural networks (CNNs) are well established in research,
providing state-of-the-art performance on many image classi-
fication challenges [2, 3]. Therefore, CNNs are now getting
adopted on various quality assurance tasks, such as for solar
panels [4] or LED chips [5]. In this work we present a CNN-
based defect detection solution for the challenging quality
assurance of thermal sensors that requires multiple images
to detect defects from different viewing angles. The new
machine learning solution should replace the existing quality
assurance system on a running industrial production line. The
current solution can only differentiate good from defective
products and the robustness is insufficient. The new system
differentiates 6 types of defects, allowing the manufacturer to
identify potential machine faults faster and react accordingly.
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Collecting image datasets specific to the manufacturing
domain is very challenging as interference of the production
needs to be minimal. Furthermore, a good production is
supposed to mainly produce good pieces, leading to problems
to identify and collect samples of the minority defect classes.
We placed a prototype on a running production line to collect
samples and to investigate the feasibility of our CNN-based
solution on the edge. Labeling has been a major challenge and
our Thermal Sensor Multi-View Defects (TSMVD) dataset,
consists of 1k labeled and 293k unlabeled samples.

Recently, the so-called semi-supervised-learning (SSL) ap-
proach has been proposed to train CNNs on labeled and
unlabeled data simultaneously [6]. State of the art SSL ap-
proaches promise comparable performance to fully supervised
counterparts while only using a small fraction of the labels [7].
Research solutions for imbalanced SSL [8, 9] only consider
imbalance ratios of up to 200 though. Furthermore, class
distribution mismatches between labeled and unlabeled data
are only considered to a limited extent. In contrast, the class
distribution on the unlabeled part of TSMVD is unknown but
expected to differ drastically from the labeled distribution.
We conduct an early investigation on using SSL for this real
world scenario and discuss challenges and potential. To enable
researchers to reproduce our results and allow for future work
on SSL under extreme imbalance and label scarcity, we make
our code and the TSMVD dataset publicly available1.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III describes our pro-
totype and the TSMVD dataset is presented in Section IV.
Experiments and results are described in Section V followed
by a conclusion in Section VI.

II. RELATED WORK

CNNs provide state-of-the-art performance on many image
classification benchmarks [2, 3]. Using multiple input images
for a single classification decision has been used on various

1https://tcdata2206.s3.eu-west-3.amazonaws.com/index.html



tasks, such as 3D shape recognition [10], or x-ray based
disease classification [11]. We build upon [10] to pool features
from multiple views while only training a single backbone
network to keep the computational effort and memory con-
sumption feasible for our embedded process.

Defect detection models are usually evaluated on surface
defect datasets, such as NEU [12], PCB [13] or the artificially
generated DAGM [14]. Real world defect datasets tend to be
small, e.g. PCB and NEU feature less then 2k samples and do
not consider unlabeled samples. In contrast, TSMVD offers
1k labeled and 293k unlabeled samples with 3 views each.

A major concern when applying CNNs for real time defect
detection is their high computational cost. Due to latency or
security concerns, it is usually preferred to handle the time-
critical process on the edge rather than outsourcing to a cloud
solution [15]. Hardware manufactures have started to design
units specifically for running neural networks on the edge.
Most notably NVIDIA’s Jetson family [16, 17] provides GPU-
acceleration for embedded machine learning. We use the low-
end Jetson Nano to run the CNN inference in our work.

Class imbalance is a common and well studied challenge
of supervised machine learning that leads to classifiers over-
fitting on the majority class [18]. [19] suggests to directly
adjust the logits based on the label distribution to improve
performance on imbalanced data. While originally developed
for supervised learning, we also use logit adjustment during
the supervised part of SSL in our experiments.

Another challenge of supervised machine learning is the
high effort for labeling the training data. Transfer learning can
be used to pre-train the classifier on data with more-readily
available labels [20]. Another important tool to help models
to generalize beyond the scope of the given training samples
is data augmentation [21]. We use the RandAugment algo-
rithm [22] which offers automated random data augmentation
and is used in other related work [7, 8]. More recently, semi-
supervised learning [6, 7, 23] (SSL) has been proposed to
generate pseudo-labels from more easily available unlabeled
data and use them to regularize the models. Approaches to
better regularize SSL on imbalanced data exist [8, 9] but
are usually evaluated on imbalance ratios of 200 or less and
distribution mismatches between labeled and unlabeled data
are only considered to a limited extent. [8] only considers
cases where the unlabeled imbalance is lower than on the
labeled data or in reversed order. In our work, the imbalance
ratio on the labeled data is 12.5 while we estimate the ratio
on the unlabeled data to be at least 400, and the possibility
of it reaching the magnitude of thousands. We argue that in
general it is more realistic to assume the labeled data to be
more balanced rather then the opposite.

III. MULTI-VIEW DEFECT DETECTION ON THE EDGE

This work has been done in collaboration with a large
supplier for the automotive industry. The targeted manufac-
turing line produces thermal sensors and features multiple
quality assurance systems after sequential production steps.
In one step, the negative-temperature-coefficient thermistor

Fig. 1: Prototype camera mount. Each red box contains a Raspberry
Pi Zero and a Raspberry Pi v2 camera module.

(NTC) is attached to a support body via two soldering points.
The soldering seams are checked directly after this step and
rejected parts are ejected from the production line.

The check is currently performed by a traditional, non
machine learning based, computer vision solution. The piece
stops in front of a single camera and is turned by a robotic
arm to produce three views. Each of the two soldering seams
gets one direct plan view and the last image shows the two
bulbs in profile. The last view is necessary as the total width
given by the peaks of the soldering bulbs cannot exceed a
predefined threshold as to avoid contact with a metal casing
that gets attached at a later stage of the production. The
legacy solution is not robust and consistent enough. Many
pieces are wrongly rejected, which lead to the manufacturer
implementing an additional manual check. At the end of each
shift, each rejected piece is manually checked and potentially
defect-free pieces are re-injected into the production cycle with
the legacy quality control inconsistently accepting pieces at the
second try. Undetected defects can lead to client rejection or
high penalties in case of failure during a warranty period.

The legacy system is to be replaced by a more robust
machine learning based solution. In addition, the new system
should not only detect defects but also differentiate between
6 defined classes of defects. It was not possible to access the
images of the legacy setup easily. Furthermore, the images
were very overexposed, as required by the legacy solution, and
changes to the lighting parameters were not possible as this
would have made continued production impossible. Hence, a
new, separate control system has been put in place. The goal
of the prototypical setup was to gather image samples and
evaluate trained CNN models on the live production. As cloud-
computation is not wanted by the manufacturer for security
reasons, the prototype should also proof the feasibility of CNN
classification inference on the edge. We chose the NVIDIA
Jetson Nano [16, 17] as our small factor compute unit. The
Nano features a quad-core ARM processor and a GPU with
128 CUDA cores to accelerate the CNN execution with a low
power consumption of 10W.

To enable us to take images in the narrow available space,
we chose the Raspberry Pi v2 camera module. Three cameras
were attached to a support to collect all three views at the same
time. The support is shown on Figure 1. The A02 revision
carrier board of the Nano features only a single camera



Fig. 2: Schematic prototype setup on the edge. The Jetson Nano
reads the PLC to trigger the cameras. Cameras are plugged via
MIPI connector to individual Raspberry PI Zeros, which in turn are
connected to the Nano via Ethernet over USB. Images and meta data
are stored locally.

connector slot, ruling out a direct connection. Instead, each
camera was connected to a Raspberry Pi Zero module which
in turn was connected via USB to the Nano. Ethernet over
USB was used to transmit images in a server-client setup with
the Nano as a single client connected to three Pi Zero servers.
The camera outputs were cropped to the area of interest before
transmitting 480x480 pixel images to the Nano, for reduced
latency. To take images at the correct time, a trigger was
required to determine when a piece is standing still in front of
the cameras. For this, the programmable logic controller (PLC)
of the production line was observed, waiting for the signal that
is used to trigger the legacy camera system. Finally, the Nano
was connected to a local storage to dump samples consisting
of the three images as well as additional metadata. Figure 2
illustrates the whole hardware prototype setup.

As classifier, a multi-view CNN (MVCNN) as suggested in
[10], was used. The authors suggest to use a single backbone
fully-convolutional model to learn and extract features from
all given views. The original classifier is replaced by a
view-pooling layer and a combination of linear, ReLU and
dropout layers. The view pooling layer receives the outputs
of the feature extractor, which are max-pooled along the
view dimension to allow the classifier to focus on the most
salient features. The MVCNN enables to learn dependencies
between several 2D views of a 3D object [10]. Furthermore,
MVCNN is more resource efficient when compared to using
individual CNNs per view, making the solution suitable for
computations on the edge with limited resources. The shared
model weights reduce the memory requirements significantly.
The computation is also more time-efficient as there is no need
to switch between models at run-time. Lastly, MVCNN also
reduces the labeling effort drastically as only one label per
sample is required instead of one label per view. We used the
ResNet18 architecture [24] as backbone and chose the small
18 layer variant to enable real-time inference on the Jetson
Nano prototype. We followed [10] to remove the original
classifier layer and replace it by two blocks of dropout-linear-
ReLU, followed by a final linear layer with 7 output neurons,
one for each target class of TSMVD.

0 good 1 miss tin

2 excess tin 3 fault ntc

4 miss ntc 5 burned

6 bad solder 6 bad solder

Fig. 3: Examples for each class of the labeled dataset with 3 views
each. Two examples provided for class 6 bad solder.

Class ID Description #Samples
0 good defect-free piece 437
1 miss tin missing tin 270
2 excess tin excess of tin 53
3 fault ntc faulty NTC 45
4 miss ntc missing NTC 35
5 burned burned support 91
6 bad solder bad soldering bulb 91

TABLE I: Distribution of labeled data

IV. TSMVD DATASET

To collect unlabeled data, the prototype was used as de-
scribed in Section III. The ratio of truly defective pieces on
the production line is estimated to be 4%. Training CNNs with
extreme class imbalance is, however, still very challenging
[8, 9]. We therefore focused on labeling samples of defective
pieces to create a more balanced dataset. Over a period of 15
days, a worker randomly selected pieces that were accepted
and rejected by the legacy system. On average, 70 pieces were
collected per day and an expert from quality assurance sorted
through the selection. Afterwards the production was stopped
for a short time period and the collected samples were injected
into the machine without processing them. This allowed to
pass the pieces in front of the hardware prototype and collect
the images while knowing the correct label.

Table I provides an overview of the labeled data distribution.
The set features 437 good and 585 defective pieces, leading
to a ratio of 1.34 in favour of the faulty samples. However,
the bad pieces are distributed between 6 classes of defects.
The defect types were defined by quality assurance experts
and reflect the errors that can be observed on the production
line. The differentiation of defects is important as an increase
of a particular kind of errors could indicate specific issues
with the production line. The goal of the manufacturer is to
use this information to detect and solve machine issues faster



and hence improve their overall productivity. Fig. 3 shows one
example for each defect type.

The defect-free class makes up for 43.76% of the data. Class
1 miss tin is the predominant defect type with 270 samples,
46% of all defective pieces. The defect is identifiable by a lack
or complete miss of tin on one or both soldering seams. The tin
is applied on a small metal plate which should be completely
covered. Without tin, the electrical circuit is not closed making
thermal readings impossible. In contrast, samples of class
2 excess tin feature an excess of tin. Excessive soldering
bulbs could make contact with a metal casing that gets attached
in a later production step. This in turn can potentially create
a short circuit and lead to unreliable thermal readings or
make the unit unusable. Samples of class 3 fault ntc are
characterized by twisted or badly positioned NTCs. Both ends
of the NTC need to be fitted in guiding channels of the support
body. When the machine fails to insert the NTC into these
channels, the NTC bends away from support. In some cases
the NTC is still able to be soldered in the next step but even
then the piece needs to be rejected as the loose end of the
NTC could touch the metal casing. The top part of the NTC
is allowed to be slightly bend as long as it still fits within
the casing. Samples of class 4 miss ntc are missing the NTC
completely. The machine either failed to attach the NTC or it
fell of before or even after soldering occurred. It might also
be that the metal plates are missing or damaged, making it
impossible to solder the NTC. Class 5 burned is caused by
the hot soldering rot touching the support body and melting
the plastic. Class 6 bad solder combines several types of
badly formed soldering bulbs. The most common shape among
class 6 bad solder are tin peaks, characteristically tall shallow
solder points which only cover a small part of the NTC.

In addition to the labeled data, we also collected a large
set of 293k unlabeled samples over the span of five months.
The minority class 4 miss ntc makes up for only 6% of the
defects in our labeled data. With an estimated 4% of defective
pieces, we could infer a maximum ratio of 0.24% minority
samples, or put differently, a minimum imbalance ratio of 1
to 400. However, it is estimated that rare defects only make
up for less than 1% and hence the true imbalance ratio on
our unlabeled data could be in the magnitude of thousands.
An additional challenge of the unlabeled data are unexpected
errors such as absent pieces or mistimed camera triggers which
lead to blurred images of samples in motion.

The TSMVD dataset offers the opportunity to investigate
SSL under real world constraints. It is linked to a domain with
clear needs, namely industrial defect detection. In contrast to
other publicly available datasets [12, 13] of this domain, it
offers a large number of unlabeled samples to explore the
potential advantages of SSL.

V. EXPERIMENTS

The labeled dataset features 1022 samples and a class
imbalance ratio of 12.5, with only 35 minority class samples.
Furthermore, there is a high visual variance among the samples
of a single class of defects. To avoid the risk that a randomly

Method Recall Precision Accuracy
SV 78.34±8.12 87.02±1.18 85.41±3.43
SV-PT 82.20±2.15 87.17±3.48 87.81±1.29
SV-PT-LA 84.29±3.79 88.42±3.94 88.85±2.86
FIX 74.10±4.40 89.78±2.73 86.51±2.46
FIX-PT 83.31±2.25 87.43±2.34 88.09±0.91
FIX-PT-LA 85.74±2.66 87.01±2.17 88.63±0.89
DASO 84.27±5.27 84.30±1.37 88.14±1.84
DASO-PT 84.29±3.22 86.24±2.77 88.47±2.26
DASO-PT-LA 87.83±3.01 86.40±3.70 89.24±2.04

TABLE II: Training results. Values are the mean and standard devi-
ation over 4 cross validation folds. Higher is better, best values are
indicated in bold. (SV:=Supervised, FIX:=FixMatch, PT:=Pretrained,
LA:=Logit adjustment)

selected test-subset would favour models overfitting on a
specific sub-type of defect, we decided to conduct a 4-fold
cross validation. In consequence, the samples of each class
were randomly split into 4 buckets. Next, 4 training runs were
performed per experiment while using 1 bucket for validation
and the remaining 3 for training. The training was performed
using a NVIDIA Tesla T4.

Motivated by the high availability of 293k unlabeled sam-
ples, we wanted to investigate if the data can be used to
improve models on the validation set. We use FixMatch [7]
and DASO [8] for our investigations. DASO extends FixMatch
and provides state-of-the-art results for balanced and imbal-
anced SSL [8]. Furthermore, we evaluate the use of transfer
learning under our scarcely labeled setup as well as logit
adjustment [19] as a re-balancing technique.

To enable a fair comparison, the following training hyper-
parameters were determined empirically from initial tests and
kept constant for the main experiments. Models were trained
for 100 epochs of 500 optimization steps each, for a total of
50k steps. Stochastic gradient decent was used with a batch
size of 10, momentum of 0.9, nesterov acceleration enabled
and weight decay set to 5e−4. The learning rate was started
at 1e−3 and reduced smoothly using the cosine annealing
scheduler without warm-restarts [25]. For transfer-learning,
pretrained ImageNet weights were used for the ResNet18
backbone. As the domain differentiates drastically from Im-
ageNet, all layers were fine-tuned and the starting learning
rate reduced to 1e−4. For the additional FixMatch and DASO
hyperparameters we followed prior works on imbalanced
SSL [8, 9]. Images were randomly transformed to better reflect
the variance that can be observed on the production line. For
example, the position of the piece with respect to the camera
can change slightly, the color of the materials are subject to
change and the illumination is not perfectly controlled with
our prototype as we could not fit a box around the camera
setup. In addition, FixMatch requires a weak and strong
augmentation setting to perform consistency regularization. In
their original work, Sohn et. al. use random horizontal flip
and crop as weak augmentation and RandAugment [22] for
the strong augmentation. In our experiments, RandAugment
was used for both weak and strong augmentations. The weak
setting was also re-used to augment the labeled samples for
supervised and semi-supervised learning. Input images are



Class
Method 0 good 1 miss tin 2 excess tin 3 fault ntc 4 miss ntc 5 burned 6 bad solder
SV 85.16±5.45 86.98±9.60 89.62±12.43 87.20±10.55 90.35±11.89 84.224±14.82 85.58±9.06
SV-PT 87.19±3.72 93.45±2.97 84.81±10.70 86.22±16.78 97.5±5.00 69.76±4.11 91.23±4.18
SV-PT-LA 87.92±3.87 93.61±3.60 79.98±7.98 89.89±10.79 97.75±4.50 78.29±11.53 91.49±9.99
FIX 82.75±3.36 92.03±6.53 91.64±9.73 90.95±18.10 100.00±0.00 82.82±7.73 88.27±11.84
FIX-PT 87.28±4.12 94.50±1.82 79.23±7.66 94.00±9.47 97.50±5.00 72.29±13.70 87.22±7.88
FIX-PT-LA 90.46±4.17 91.43±1.90 75.06±5.51 91.13±10.34 97.54±4.44 74.82±11.32 88.63±8.90
DASO 90.40±4.60 93.23±1.90 79.47±18.32 68.64±10.51 93.36±8.73 79.65±9.57 85.3±9.90
DASO-PT 89.32±3.83 93.10±3.70 72.54±5..78 83.27±13.23 97.50±5.00 80.82±14.41 87.14±10.19
DASO-PT-LA 91.52±4.13 91.87±3.90 74.50±12.23 84.47±11.75 95.72±7.39 77.32±11.58 89.41±7.80

TABLE III: Precision per class. Reported values are the mean and standard deviation over 4 cross validation folds. Higher is better, best
values are indicated in bold. (SV:=Supervised, FIX:=FixMatch, PT:=Pretrained, LA:=Logit adjustment)

Class
Method 0 good 1 miss tin 2 excess tin 3 fault ntc 4 miss ntc 5 burned 6 bad solder
SV 96.24±2.4 93.24±3.85 54.43±15.53 96.43±7.14 35.30±7.94 55.69±6.96 84.21±15.43
SV-PT 91.16±4.21 94.86±2.75 73.13±12.26 61.62±18.77 96.43±7.14 68.25±7.49 89.96±5.57
SV-PT-LA 92.66±5.48 94.63±2.37 71.50±11.53 83.47±11.27 96.43±7.14 63.62±10.95 87.70±8.96
FIX 96.61±2.01 94.06±4.43 51.51±18.31 33.66±19.28 96.43±7.14 63.62±8.54 82.78±6.91
FIX-PT 91.20±1.91 95.25±2.54 73.32±17.78 58.18±19.05 100.00±0.00 68.88±47.33 93.79±5.40
FIX-PT-LA 89.97±2.08 94.43±1.31 80.07±15.04 73.98±18.77 96.43±7.14 71.71±17.15 93.58±4.51
DASO 89.83±3.04 95.63±3.85 79.88±16.84 64.88±26.46 95.43±7.14 70.31±13.74 92.93±5.66
DASO-PT 91.23±3.12 95.55±3.91 79.74±15.88 67.80±16.21 96.43±7.14 66.75±14.96 92.55±5.04
DASO-PT-LA 90.03±2.68 94.54±2.10 86.81±11.86 81.50±21.10 96.43±7.14 72.47±15.47 93.05±4.82

TABLE IV: Recall per class. Reported values are the mean and standard deviation over 4 cross validation folds. Higher is better, best values
are indicated in bold. (SV:=Supervised, FIX:=FixMatch, PT:=Pretrained, LA:=Logit adjustment)

first randomly flipped horizontally, resized to 224x224px and
then further augmented using RandAugment. The difference
between the weak and strong settings are the addition of shear,
equalize, posterize and solarize as transformation. A full list
of hyperparameters can be found online2.

We report the precision and recall per class in Table III
and IV respectively. We take the median over the last 20
training epochs and report the mean and standard deviation
over the 4 cross validation folds. Table II shows the accuracy
and the arithmetic mean over precision and recall. DASO
with pretrained weights and logit adjustment leads to the
best recall and overall accuracy, while FixMatch from scratch
provides the best precision. Recall is higher for SSL models,
indicating the advantage of using the extensive unlabeled data.
Transfer leaning improves recall for all methods but leads to
a slight drop in precision when using FixMatch. The increase
in recall is more significant though, hence we can conclude
that pretrained weights can be useful for scarcely labeled data
even if a large set of unlabeled data is available. Using logit
adjustment further increases the overall performance.

From the per-class details (Table III and IV) we can observe
that despite the overall better performance of SSL models,
they do struggle on some classes. For example, FixMatch has
a particularly low recall on 3 fault ntc. The issue is lessened
by applying both transfer learning and logit adjustment and
the precision on the class is even the highest among all
models but the low recall is still problematic. DASO features a
relatively low recall on 0 good, while precision is high. During
production this would lead to a lower number of missed errors
but also a higher false alarm rate compared to the SV model.

2https://tcdata2206.s3.eu-west-3.amazonaws.com/index.html

VI. CONCLUSION

In this work we discuss the challenges of convolutional
neural networks (CNNs) for real world image classification,
namely label scarcity and extreme class imbalance. We present
a CNN-based defect detection solution for the quality as-
surance of thermal sensors based on multiple views. We
describe our prototypical setup that was used to collect data
and evaluate models for real time processing on the edge.
Furthermore, we make our TSMVD dataset of 1k labeled
and 293k unlabeled samples publicly available to enable
researchers to reproduce our results and allow for future
work on this challenging task. Motivated by the significantly
higher availability of unlabeled data, we conduct an early
investigation on using semi-supervised learning (SSL). SSL
methods increase the overall results on TSMVD but still
struggle on some classes. For future work we plan to explore
improvements of the investigated methods towards tasks under
the real world constraints presented in this paper.
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