
Object-Associated Telepointer for Real-Time Collaborative Document Editing

Systems

Steven Xia
Griffith University

Brisbane, QLD 4111,

Australia

David Sun
University of California

at Berkeley

Berkeley, CA, USA

Chengzheng Sun
Nanyang Technological

University

Singapore 639798

David Chen
Griffith University

Brisbane, QLD 4111,

Australia

Abstract

Telepointers are a real-time groupware interface feature

to indicate where other users are pointing. None of

existing telepointer techniques, however, is capable of

tracking the reference object and preserving the relative

position in the face of dynamic content and view changes

in real-time collaborative document editing systems. In

this paper, we report a novel Object-Associated

Telepointer (OAT) technique with the following features

in the face of dynamic content and view changes: (1)

relocating telepointers to track the reference object, (2)

preserving the position relative to the reference object,

and (3) providing feedback of the telepointer relocation to

the local user with a virtual local cursor. The key

technique for supporting OAT is to extend the operational

transformation technique with a generic Refer operation

to support adjusting the reference object position. The

OAT technique has been implemented in the CoWord

system based on the transparent adaptation approach so

that it can provide the OAT support to a range of real-

time collaborative applications.

1. Introduction

Telepointers are avatars of local users’ mouse cursors
displayed on remote participants’ screens in real-time

groupware systems. As an important groupware interface

element, telepointers are able to provide a variety of
group awareness information including presence, location

and activity. In addition, telepointers can act as a
communication channel by conveying gestural messages

[9][10]. These features make telepointers a powerful

means for providing users with a collaboration context,
helping users coordinate the group work and improving

groupware usability [8][11].

We are particularly interested in the telepointer
techniques in real-time collaborative document editing

systems which allow multiple users to edit any objects in

the shared document at any time. In these systems,

awareness of other participants’ presence, location, and
activity are important for collaboration and coordination,

so telepointers can be a useful tool.

For users to obtain meaningful location and activity
information from a telepointer, it is important that the

telepointer points to precisely the same reference object

as the local cursor does. This reference object is usually

the one existing at the local cursor position on the user

interface. However, in different situations, the types of
the reference object can be different. For example, the

reference object can be an interface widget (e.g. a button)

in the shared window or a content object in a shared
document (e.g. a character in a text widget).

In existing telepointer techniques, the reference object

pointed to by a telepointer is static in the sense that the
object identifier does not change [6][14]. For example,

while referring to a window widget, the telepointer is
associated with the target widget identifier, which never

changes. While referring to a character within a text

viewing widget, the telepointer is associated with a
constant widget identifier plus a constant index of the

character in the text buffer. The invariable object

identifiers ensure the correctness of the static reference
scheme in a range of groupware systems.

Unfortunately, the static reference scheme does not

work in real-time collaborative document editing systems.
This is because in such systems, users can edit any

objects in the shared document at any time. As a result,
positional references of content objects are subject to

dynamic changes. These changes may cause problems to

telepointing under two circumstances. First, when a
telepointer is about to be relocated to a new reference

object in response to the local cursor movement, the

reference object may have been moved or changed by
editing operations concurrent with the cursor movement,

causing the telepointer to point to an incorrect object.

Second, after a telepointer is relocated to a reference
object, the reference object may be moved by subsequent

editing operations or view changes, which may also cause
the telepointer to point to an incorrect object.

1-4244-0030-9/05/$20.00 ©2005 IEEE

The root of these problems is that the static reference
scheme assumes a one-to-one and static correspondence

between the object identifier and the object itself and

simply associates telepointers with object identifiers. If
the correspondence between the object and its identifier

changes dynamically, telepointers may fail to point to the

correct object.
To address this object-association problem in dynamic

and concurrent shared workspaces such as real-time
collaborative document editing systems, we propose an

Object-Associated Telepointer (OAT) technique in this

paper. The basic idea is to adjust telepointer reference
parameters by means of Operational Transformation

(OT) [17] so that a telepointer is always associated with a

reference object in the face of dynamic content and view
changes. The OAT technique is devised in the

Transparent Adaptation (TA) [21] framework, which is

able to convert single-user commercial applications into
collaborative versions without changing the source code.

This framework provides the necessary technical
infrastructure for implementing the OAT technique and

facilitates the application of the OAT technique to a range

of existing commercial single-user applications.
The rest of this paper is organized as follows. First,

background knowledge about OT and TA is briefly

introduced. Afterwards, problems with existing
telepointer techniques are discussed as the motivation of

this work. Next, the effects that the OAT technique

should achieve are discussed. Then technical issues
related to achieving OAT effects are discussed and OT-

based solutions are proposed. Furthermore, issues related
to implementing OAT in the CoWord system are

discussed. Finally, contributions and future work are

summarized.

2. Background on OT and TA

2.1 Basics of the OT Technique

OT was originally designed to support multiple users
to insert and delete characters in replicated text

documents concurrently [4][17]. Due to its unique

capability in achieving system consistency without
imposing any restrictions on users, OT has become the

choice of consistency maintenance and group undo
technique for many collaborative editing systems [1][12]

[19].

The basic idea of OT can be illustrated by using a
simple text-editing scenario as follows. Given a text

document with a string "abc" replicated at two

collaborating sites; and two concurrent operations: O1 =
Insert [0, "x"] (to insert character "x" at position "0"), and

O2 = Delete [3, "c"] (to delete the character "c" at

position "3") generated by two users at collaborating sites

1 and 2, respectively. Suppose the two operations are
executed in the order of O1 and O2 (at site 1). After

executing O1, the document becomes "xabc". To execute

O2 after O1, O2 must be transformed against O1 to
become: O2’ = Delete [4, "c"], whose positional

parameter is incremented by one due to the insertion of

one character "x" by O1. Executing O2’ on "1abc" shall
delete the correct character "c" and the document

becomes "xab". However, if O2 is executed without
transformation, then it shall incorrectly delete character

"b", rather than "c".

In summary, the basic idea of OT is to transform an
editing operation (e.g. O1) defined on a previous

document state according to the effects of executed

concurrent operations (e.g. O2), so that the transformed
operation (e.g. O2’) can achieve the correct effect in the

current document state.

2.2 Basics of the TA Approach

TA is an innovative approach to converting exiting or

new single-user applications for multi-user real-time

collaboration, without changing the source code of the
original application [21]. The TA approach is based on a

replicated system architecture where the shared single-

user application is replicated at all collaborating sites, the
use of the single-user application’s API (Application

Programming Interface) to intercept and replay the user’s

interactions with the shared application, and the use of the
OT technique to manipulate the intercepted user

operations for supporting responsive and unconstrained
(i.e. concurrent and free) multi-user interactions with the

shared application. The central idea of the TA approach is

to adapt the data address and operation models of the
shared application’s API to that of the OT technique.

More precisely, the TA approach can be described by

a reference model, as shown in Figure 1. This reference
model consists of three components: Single-user

Application (SA), Collaboration Adaptor (CA), and

Generic Collaboration Engine (GCE). The main
functionalities of these components are sketched below.

The SA component provides conventional single-user
interface features and functionalities. This component can

be either an existing commercial off-the-shelf single-user

application, or a new single-user functionality component
in a multi-user collaborative system, but this component

itself has no knowledge about multi-user collaboration.

The CA component provides application-specific
collaboration capabilities and plays a central role in

adapting the SA for collaboration. This component has

the knowledge of the SA API but not its internals. At the
center of this component is the module of Adapted

Operation (AO), which represents the SA functionalities

exposed by the API. The AO can be generated by the
Local Operation Handler (LOH) module by intercepting

local user’s interactions, or received by the Remote

Operation Handler (ROH) module from remote users.

With the AO residing between the API and OT, the task

of adaptation between the API and OT is decomposed
into two modules:

API

A OCA

GCE

Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming

Interface

API

Adapted OperationAO

Group UndoGU

Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming

Interface

API

Adapted OperationAO

Group UndoGU

SA

API-AO Adaptation

AO-PO Adaptation

L

O

H

R

O

H

O T

W A

S M

C

M

G

U

Figure 1: The TA reference model.
1. The API-AO Adaptation module is responsible for

bridging the semantic gap between the API and the

AO so that the AO can be correctly replayed on the

SA.
2. The AO-PO Adaptation module is responsible for

mapping between the AO and OT-supported
Primitive Operation (PO) so that the underlying OT

technique can be used to ensure the correctness of the

AO parameters in the presence of concurrency.
The GCE component provides application-

independent collaboration capabilities. This component

has no knowledge of the single-user application
functionality and therefore can be used in adapting

different applications. This component encapsulates a

package of collaboration supporting techniques, including
Consistency Maintenance (CM), Group Undo (GU),

Workspace Awareness (WA), and Session Management

(SM), etc. OT is at the core of this component for

supporting consistency maintenance, user-initiated undo,

and workspace awareness (e.g. the telepointer discussed
in this paper) in a collaborative environment. For

comprehensive discussions of the techniques

encapsulated in the OT module, the reader is referred to
[19][17][18][20].

3. Related Work

The telepointer has a history almost as long as the

pointing device (mouse) [5]. The telepointer’s reference

scheme has been evolving over the years.

3.1 Window Coordinate-Associated Telepointers

In early application sharing and teleconference

systems like Colab [16] and MMConf [3], a telepointer is

associated with the coordinates in the shared window
space. In these systems, a strict WYSIWIS view mode is

adopted. As a result, all users have exactly the same view

of the shared window. This ensures that each object is
placed at the same position in the shared window, and the

same coordinates point to the same object at all sites, so

the window coordinates are sufficient for a telepointer to
locate any objects in the shared window.

3.2 Widget-Associated Telepointers

In a relaxed WYSIWIS view mode, a shared window

can have different layout among participating sites. To

accommodate the view difference, techniques associating
telepointers with window widgets have been proposed,

including Smart Telepointer [14] and GroupKit [15].
With these techniques, a telepointer is associated with

identifiers of a window widget, and provided with the

relative position inside the widget space. For example, in
Smart Telepointer, the telepointer’s reference parameters

include a path in the widget tree from the root to the leaf-

level widget which contains the telepointer and relative
position information within the leaf-level widget space.

3.3 Object Position-Associated Telepointers

Some widgets may have internal structures or contents

(e.g. a text editor or an HTML viewer). In a relaxed

WYSIWIS view mode, the internal content may be
formatted and displayed differently due to different view

customization among collaborating sites. For such

widgets, the widget association is not enough. Smart
Telepointer associates a telepointer with the content

object position by attaching the index of the reference
object (e.g. the character index in a text buffer) in the

telepointer reference parameters, so that the telepointer

can point to the same content object as the local cursor
does. This technique is also adopted in GroupWeb [7] and

Flexible JAMM [1].

Although these telepointer techniques work well in
their own environments and could achieve the effects they

were designed for, they are not applicable for telepointing

content objects in real-time collaborative document
editing systems due to dynamic content and view

changes. To solve this problem, an Object-Associated
Telepointer (OAT) technique is proposed in this paper.

Unlike existing telepointer techniques, the OAT

technique really associates a telepointer with the
reference object rather than its position. It is able to

correctly point to the reference object in the face of

dynamic content and view changes caused by both
concurrent and sequential editing operations. In

particular, it is able to achieve the object-associated

effects which will be discussed in the next section.

4. Object-Associated Effects for Telepointing

In this section, we shall discuss the object-associated
effects that the OAT technique should achieve.

4.1 Positional Reference Adjusting (PRA) Effect

The telepointer identifies the reference object by its

positional reference in the document. The telepointer

should be able to adjust its positional reference in order to
track the reference object in the face of dynamic content

changes caused by editing operations. Examples of the

PRA effect are shown in Figure 2. At the initial state
(Figure 2-(a)), the telepointer is pointing to the character

“p” at position 4. After the execution of an insert or delete

operation, the positional reference of the object may be
changed. To achieve the PRA effect, the telepointer

positional reference must be adjusted so that it still points
to the character “p”, as shown in Figure 2-(b) and (c). It

should be pointed out that editing operations could be

generated concurrently with or sequentially after a
telepointer moving operation, the PRA effect must be

achieved under all circumstances.

3

e

10987654210

ep o i n t rleT

3

e

10987654210

ep o i n t rleT

30

T

1

h

2

e

1413121110987654

epo i n t releT

30

T

1

h

2

e

1413121110987654

epo i n t releT

StevenSteven

StevenSteven

(a)

(b)
StevenSteven

7654321

ep o i n t r

7654321

ep o i n t r

StevenSteven

(c)
StevenSteven

Figure 2: The PRA effect (the telepointer
tracks the reference character “p”). (a)
The initial state; (b) The state after
executing an insert; and (c) The state
after executing a delete.

4.2 Relative Position-Preserving (RPP) Effect

The telepointer’s position relative to the reference
object should be preserved in the face of dynamic

changes to the document. An example of the RPP effect is

shown in Figure 3. At the initial state (Figure 3-(a)), the
telepointer is pointing at the center of the picture. After

the execution of a size-updating operation, the picture is
resized to 50% of the original size. To achieve the RPP

effect, the telepointer position must be adjusted to

accommodate the effect of the updating operation on the

object so that it still points to the center of the picture
(Figure 3-(b)).

StevenSteven

StevenSteven

StevenSteven

Resizing

(a) (b)

Figure 3: The RPP effect. (a) The initial
state; (b) The state after executing a
resize operation: the telepointer remains
inside the picture.
When the user is performing gestures with the cursor,

the cursor is more often outside, rather than inside, the
reference object. The RPP effect should also be achieved

when the telepointer is outside the reference object or in a

blank area. In this case, we associate the telepointer with
the nearest object.

An example is shown in Figure 4. In the initial state

(Figure 4-(a)), the telepointer is in the blank area near the
picture. After the picture is resized, the telepointer is

relocated accordingly so that it still points at the same

position relative to the reference object (Figure 4-(b)).

StevenSteven

StevenSteven

(a) (b)

Resizing

StevenSteven

Figure 4: The RPP effect when the
telepointer is in a blank area. (a) The
initial state; (b) The state after executing a
resize operation on the picture: the
telepointer remains outside the picture.

4.3 The Virtual Local Cursor

Telepointers are used to represent the positions of their
corresponding local cursors, and therefore they should be

kept consistent with the local cursors. To achieve the

PRA and RPP effects, telepointers may be relocated
dynamically to track the reference objects. After

relocation of the telepointers, the positions of these

telepointers at remote sites may no longer be consistent
with their corresponding local cursor.

One way to keep them consistent is to relocate the
local cursor as well, but this can be disruptive to the user.

To solve this problem, we introduce the notion of a

virtual local cursor, which is the same as a telepointer but
displayed at the local site. When relocation of any

telepointer occurs at a remote site, the virtual local cursor

shall be relocated to track the reference object, but the
local cursor is not moved. This virtual local cursor

provides a feedback to the local user about the locations

of his/her telepointers at remote sites.

3

e

10987654210

epoi nt rleT

3

e

10987654210

epoi nt rleT

30

T

1

h

2

e

1413121110987654

epoi nt releT

30

T

1

h

2

e

1413121110987654

epoi nt releT

(b)(a)

The virtual local cursor

Inserting

Figure 5: The virtual local cursor for
tracking the reference object. (a) The
initial state; (b) The state after the
reference object is pushed to the right,
the virtual local cursor follows the
reference object, but the real local cursor
is not affected.
Consider the example shown in Figure 2. When the

string “The ” is inserted, the telepointer is relocated to

track the character “p” (Figure 2-(b)). What happens at
user Steven’s local site at the same time is shown in

Figure 5. In the initial state (Figure 5-(a)), the local cursor
is pointing at the character “p” at position 4. After the

string is inserted, the virtual local cursor tracks the

reference object (Figure 5-(b)), but the real local cursor is
not affected.

4.4 Object-Associated Telepointing Operation

Definition

The object-associated telepointing operation is defined

as follows:

Cursor_move [ReferenceAddr, <RelativeX,

RelativeY> …]: to move the cursor to the position

specified by the parameters.

In an application supporting OAT, the Cursor_move

operation is generated from the local site when the local

cursor moves and propagated to remote sites to relocate

telepointers accordingly.
The ReferenceAddr parameter is a linear index to

address the reference object in the document. Although
this linear addressing scheme is modeled after plain text

editors, graphs and other complex objects can also be

mapped to a linear addressing space and be addressed
with linear indices [21].

The pair <RelativeX, RelativeY> represents the cursor

position relative to the reference object. The relative
position is measured as ratios to the reference object size,

rather than absolute pixel numbers. Theoretically, any

point inside the reference object can be chosen as the
reference point as long as all collaborating sites make the

same choice. In this paper, we take the left top corner of

the reference object as the reference point.
When applying the OAT technique in a concrete

application, the Cursor_move operation may need
additional parameters, such as site identifiers, document

identifiers and window identifiers.

5. Achieving the Object-Associated Effects

In this section, we shall discuss technical problems and
solutions related to achieving the object-associated

effects.

5.1 Achieving the PRA Effect

Like editing operations (e.g. Insert, Delete), the

Cursor_move operation also refers to the reference object
with linear address. Therefore, inconsistency problems

including Causality Violation and Intention Violation [19]

could also occur to the Cursor_move operations.
Generally, the solution to the Causality Violation

problem is to timestamp each operation based on vector

logic clocks [2][13], and to execute an operation only
when all operations causally before it have been executed.

The solution to the Intention Violation problem is to
transform each operation with OT before executing (for

details of the Causality Violation and Intention Violation

problems and solutions, the reader is referred to [19]).
However, existing OT techniques do not support

transforming the Cursor_move operation. Here we

propose an approach to supporting the transformation of
the Cursor_move operation by extending the OT

technique.

Rather than directly transforming the Cursor_move

operation, we transform it by means of a primitive

operation Refer. The Refer operation is defined as
follows:

Refer[pos]: to refer to the object at the position pos.

The pos parameter indicates the address of the
reference object in the document. When converting a

Cursor_move operation into a Refer operation, the pos

parameter equals to the ReferenceAddr parameter. In all
Cursor_move parameters, only ReferenceAddr is included

in the Refer operation because only this parameter may be

affected by concurrent operations and is relevant to OT.
With the mediation of the Refer operation,

transformation of a Cursor_move operation is done in the
following steps:

1. The Cursor_move operation is converted into a Refer

operation.
2. The Refer operation is transformed with OT.

3. The ReferenceAddr parameter of the Cursor_move

operation is adjusted according to the pos parameter
of the transformed Refer operation.

In this way, the Cursor_move is effectively

transformed against concurrent operations.
The major reason for translating the Cursor_move

operation into a Refer operation for OT processing is that
Refer is more generic in the sense that, in addition to

representing object reference for telepointing, it can also

be used to represent other operations that only refer to
objects in the document without generating any

modification.

The OT technique consists of two separate layers [19]:
the high-level transformation control layer and low-level

transformation function layer. The transformation control

layer determines which operations are transformed; the
transformation function layer determines how the

operations are transformed. To add a new operation into

an existing OT technique, we only need to define
transformation functions for this new operation while

keeping the high-level control algorithm unchanged.
There are two kinds of transformation functions:

inclusive transformation (IT) and exclusive

transformation (ET) functions [19]. IT transforms
operation Oa against operation Ob in such a way that the

impact of Ob is effectively included; ET transforms Oa

against Ob in such a way that the impact of Ob is
effectively excluded.

For the Refer operation, ET functions are not needed,

because Refer does not have effects on other operations
and hence is not saved in the HB. For the same reason, IT

functions that transform other operations against the Refer

operation are not needed either. Therefore, we only need

to define IT functions for transforming Refer against

other operations.
IT_RI(Or, Oi)

{

if (Oi.pos <= Or.pos)

Or.pos = Or.pos + Oi.len;

return Or;

}

IT_RD(Or, Od)

{

if (Od.pos + Od.len < Or.pos)

Or.pos = Or.pos - Od.len;

else if ((Od.pos < Or.pos) && (Od.pos + Od.len >= Or.pos))

Or.pos = Od.pos;

return Or;

}

IT_RU(Or, Ou)

{

return Or;

}

Figure 6: IT functions for the Refer
operation.
The OT technique supports three primitive operations,

which are Insert, Delete and Update [20]. IT functions

transforming Refer against these operations are shown in

Figure 6.
In the function description, we use the dot notion to

refer to a parameter of an operation. For example, we use
Oa.len to refer to the len (length) parameter of operation

Oa and use Oa.pos to refer to the pos (position) parameter

of the Oa.
When a Refer operation is transformed against an

Insert operation (IT_RI), the Refer‘s position is shifted to

the right by the Insert’s length if the Insert’s position is to
the left of the Refer’s position, because the reference

object is pushed to the right. If the Insert’s position is to

the right of the Refer’s position, then the Refer‘s position
parameter is not changed.

Transforming a Refer against a Delete (IT_RD) is
more complex. If the range of the Delete operation is

completely to the left of the Refer’s position, then the

Refer’s position is shifted to the left by the Delete’s

length, because the reference object is pulled to the left. If

the Delete’s range covers the Refer’s position, then the

position of the Refer is set to the position of the Delete,
because the original reference object is deleted by the

Delete operation and the object at Od.pos becomes the
new reference object. Finally, if the Delete’s position is to

the right of the Refer’s position, then the Refer’s position

parameter is not changed.
When a Refer is transformed against an Update

(IT_RU), the Refer’s position parameter is not changed,

because an Update operation does not affect the position
of the reference object.

5.2 Achieving the RPP Effect

The RPP effect can be achieved by making use of the

relative ratio position parameters of the Cursor_move

operation.

Steve nSteve n

100

100

50

50

100

100

25

25

Ste ve nSte ve n

0 0

(a) (b)

50

50

x (pixe l)x (pixe l)

y (pixe l)
y (pixe l) D avidD avid

120

80

60

D avidD avid

40

Resiz ing

Figure 7: A scenario of achieving the RPP
effect with the relative ratio position
parameters. (a) The initial state; (b) The
state after resizing.
When the reference object has been found from the

document, coordinates of the new telepointer position can

be calculated by using its current status (position and
size) and the relative ratio position parameters. An

example is shown in Figure 7.

In the initial state (Figure 7-(a)), the reference object
occupies an area of 100 * 100 pixels. User Steven’s

telepointer is at the centre of the reference object and the
relative ratio position is <0.5, 0.5>, corresponding to the

relative pixel position <50, 50>. User David’s telepointer

is outside the reference object and the relative ratio
position is <0.8, 1.2>, corresponding to the relative pixel

position <80, 120>. After the reference object is resized

to half of its original size (Figure 7-(b)), which is 50 * 50
pixels, positions of the two telepointers are recalculated.

Based on the new size of the reference object and the

relative ratio positions, the relative pixel position of user
Steven’s telepointer is changed to <25, 25>, so that it is

still at the center of the reference object; the relative pixel
position of user David’s telepointer is changed to <40,

60>, so that it is still at the same position relative to the

reference object.

5.3 Supporting the Virtual Local Cursor

To provide the local user with feedback of remote

telepointer relocation, the local cursor is accompanied
with a virtual local cursor. Normally, the virtual local

cursor is not visible since it points at exactly the same

position as the real local cursor does. When remote
telepointers are relocated to track the moved reference

object, the virtual local cursor needs to be relocated

accordingly and then points to a different position from
the real local cursor. Only in this circumstance, the virtual

local cursor appears.
To keep the virtual local cursor consistent with remote

telepointers, the PRA and RPP effects should also be

achieved while relocating the virtual local cursor.
When the user moves the local cursor, the virtual

cursor shall disappear. While moving the local cursor, the

user may want to point to another object. In this case the
new reference object should be identified and associated

with the local cursor and telepointers, and remote

telepointers are relocated accordingly. The user may also
want to move the local cursor to point to the original

reference object. With the virtual cursor associated with

the original reference object, it is much easier for the user
to find this moved object from the document. In this case,

there is no need to relocate remote telepointers.

5.4 Impacts of Subsequent Editing Operations

Apart from concurrent editing operations, sequential
editing operations executed after a Cursor_move

operation may also change the position or size of the

reference object and hence invalidate the association
between the telepointer and the reference object.

Editing operations executed at any address could affect

the position or size of the reference object. First,
operations targeting on a reference object could directly

change its position or size attribute. Second, operations

executed before a reference object could change its linear
address in the document and then affect its position (see

Figure 2-(b) and (c)). Third, operations executed after the
reference object could change the layout of the document

view, and the reference object position may also be

affected.
To solve these problems, the following telepointer

relocation scheme for accommodating changes caused by

subsequent editing operations is needed.
1. Addresses of all reference objects are adjusted to

accommodate the effect of the editing operation.

2. New positions of all telepointers are recalculated
based on the new status of reference objects.

3. Telepointers are moved to new positions if necessary.

It should be pointed out that this relocation scheme is
also applied to the virtual local cursor so that it can also

achieve the object-associated effects in the face of

dynamic changes caused by subsequent editing
operations.

6. Preserving Object-Associated Effects in

the Face of View Changes

Telepointers are displayed in a layer different from the

document view window. Therefore, view changes (e.g.

scrolling up and down, zooming in and out) could also
affect the association between telepointers and reference

objects. To preserve the object-associated effects in the

face of view changes, telepointers and the virtual local
cursor need to be relocated as well. An example is shown

in Figure 8.

StevenSteven

StevenSteven

StevenSteven

(a) (b)

Scrolling

Figure 8: A scenario for preserving the
object-associated effects in the face of
view change. (a) The initial state; (b) The
state after scrolling.
In the initial state (Figure 8-(a)), the telepointer is

pointing at the center of the character “A”. After the
document view is scrolled up, the position of the

reference object, character “A” is moved. To preserve the

PRA and RPP effects, the telepointer needs to be moved
up as well so that it still points at the center of the

character “A” (Figure 8-(b)).

Like editing operations, view changes could also be
concurrent with or sequential to the Cursor_move

operation. Therefore, both situations should be considered

in the solution.
The effect of the concurrent view change is

accommodated by the telepointer position calculation.
When a Cursor_move operation is executed at a remote

site, the current status (after the view change) of the

reference object is used to calculate the telepointer
position. In this way, the telepointer position has taken

the effect of view changes into account.

View changes affect the position and size of the
reference object without changing their internal state in

the document. Therefore, when a subsequent view change

occurs, addresses of reference objects do not need to be
adjusted. Only the telepointer position recalculation and

moving are needed. In other words, the telepointer
relocation scheme for subsequent view changes only

includes the second and third steps of the telepointer
relocation scheme for subsequent editing operations.

For the example shown in Figure 8, after the view has

been scrolled up, the new status of the reference object
the character “A” is obtained. The new position of the

telepointer is calculated based on the position and size of

the reference object, and the relative position parameters
of the telepointer. Finally, the telepointer is moved to the

new position.

7. Implementing OAT in CoWord

We have implemented the OAT technique in the

CoWord system (http://reduce.qpsf.edu.au/coword),
which has converted MS Word into a real-time

collaborative word processor with the TA approach, as
shown in Figure 1. The main benefits of implementing the

OAT technique in the TA framework include (1) the

availability of GCE for transforming the Cursor_move

operation with OT, (2) the availability of the SA’s API

for querying and updating document object information,

and (3) the ability to reuse the OAT technique in a range
of existing off-the-shelf commercial single-user

applications.

7.1 API Support of MS Word

With the OAT technique, collaborating sites

communicate the telepointer information by means of the

Cursor_move operation. While implementing the OAT
technique in a TA-based system, the SA’s API should

provide adequate functionality for the generation and

execution of the Cursor_move operation.
MS Word provides an object-oriented API

(http://msdn.microsoft.com) for accessing objects in a

document. The document is represented with a Document

object, and content objects in a document can be accessed

by a Range object, which represents a linear sequence of
objects. A document can be displayed in multiple

windows. Each window is represented with a Window

object. Methods and properties of these objects provide
the necessary information for the generation and

execution of the Cursor_move operation.

To generate a Cursor_move operation at the local site,
the address, screen position and size of the reference

object are needed to determine the operation parameters.

The reference object can be identified by passing the local
cursor position to the RangeFromPoint method of the

Window object corresponding to the document window
containing the local cursor. This method returns a Range

object containing the reference object based on the cursor

position. The screen position of the reference object can
be obtained by passing the Range object into the GetPoint

method of the Window object. Properties of the Range

object can provide the size and address of the reference
object.

To execute a Cursor_move operation at a remote site,

the screen position and size of the reference object are
needed to calculate the telepointer position. The

ReferenceAddr parameter is first used to access the

reference object (contained in a Range object) from the
Document object. Then, the GetPoint method of the

Window object and attributes of the Range object can
provide information needed to calculate the telepointer

position.

7.2 The OAT Table

The main data structure for supporting OAT is an OAT

Table (OATT). The OATT contains entries for all cursors
displayed on the screen (including telepointers and the

local virtual cursor). Each entry contains a Refer

operation, a relative ratio position from the Cursor_move

operation and an absolute screen position of the

telepointer. When a Cursor_move operation is executed,

the relative and absolute positions of the telepointer are
saved in the entry for the target telepointer. When a

Cursor_move operation is propagated, a Refer operation

converted from the Cursor_move, the relative and
absolute positions of the local cursor are saved in the

local cursor entry. When an editing operation is executed
or a view change happens, the operations and positions in

all entries are updated. When a site joins a collaboration

session, a new entry for the new site is created in the
OATTs of all existing sites; and the new site inherits the

OATT of one existing site. When a site leaves a

collaboration session, its corresponding entry is removed
from OATTs of all existing sites.

In the TA framework, the OATT is maintained in the

WA module of the GCE (see Figure 1).

7.3 Handling the Cursor_move Operation

In the CoWord system, the Cursor_move operation is

only used to represent movements of the local cursor, so
it is defined as an AO. On the other hand, the Refer

operation is directly supported by OT and is used to

represent Cursor_move in OT, so it is defined as a PO.
When the local user moves the mouse cursor, the

cursor movements are intercepted by the LOH module

(see Figure 1). Then LOH calls the API-AO Adaptation
module to get information about the reference object from

the Word API. Based on these parameters, a
Cursor_move AO is generated. Next, the virtual local

cursor is hidden if it is visible. Finally the Cursor_move

AO is propagated to remote sites by the ROH module.
Meanwhile, the relative and absolute positions of the

local cursor and a Refer PO converted from the

propagated Cursor_move are saved in the local cursor
entry of the OATT.

When the Cursor_move AO is received by the ROH

module of a remote site, it is converted to a Refer PO by
the AO-PO Adaptation module and transformed by OT in

GCE. Then the reference object is identified from the

document and its status parameters are queried from the
Word API by calling the API-AO Adaptation module.

Next, the screen position of the telepointer is calculated
based on these parameters and the relative position

parameters in the Cursor_move operation. And then, the

telepointer is moved to the new position. Finally, the new
relative and absolute positions of the telepointer and the

transformed Refer PO are saved in the OATT.

7.4 Relocating Telepointers after Editing

Operations

Editing operations are generated at the local site and

propagated to remote sites and applied to remote
document replicas. Therefore, editing operations affect

telepointers at both the local and remote sites.

After a local or remote editing operation is executed,
all entries in the OATT should be recalculated to adapt

the change caused by the editing operation. This is done

by calling the AdjustOATT routine shown in Figure 9.
AdjustOATT (O, OATT)

{

for (i = 0; i < OATT.entries.count; i++)

{

IT (OATT.entries[i].Or, O);

}

}

Figure 9: The routine for adjusting the
OATT.
This routine transforms the Refer operation saved in

each entry against the new editing operation. Positions of
Refer operations are adjusted to reflect the effect of the

new editing operation. The IT invocation in this routine
chooses suitable IT functions shown in Figure 6

according to the new editing operation’s type.

Next, all telepointer positions should be relocated by
calling the routine RelocateAllTelepointers shown in

Figure 10. The absolute screen position of the telepointer

in each entry (including the local virtual cursor entry) is
recalculated for its new screen position after the execution

of the new editing operation. This recalculation involves

the Refer operation, the relative ratio position saved in
OATT entries and status information of the reference

object that can be obtained from the Word API. If the
new screen position is different from the current one, then

the current screen position is replaced and the telepointer

is moved to the new position. If the new local virtual
cursor’s position is different from the local real cursor’s

position, then the virtual local cursor becomes visible and

is moved to the new position.

RelocateAllTelepointers(OATT)

{

for (i = 0; i < OATT.entries.count; i++)

{

new_screen_pos = CalculatePos(OATT.entries[i]);

if (PositionChanged(OATT.entries[i], new_screen_pos)

{

SaveScreenPos(OATT.entries[i], new_screen_pos);

if (IsLocalCursor(OATT.entries[i]) &&

V irtualCursorIsHidden())

ShowVirtualCursor();

MoveTelepointer(OATT.entries[i]);

}

}

}

Figure 10: The routine for relocating all
telepointers.
Unlike editing operations, view changes are not

propagated to remote sites, so they only affect
telepointers locally. After a view change happens at the

local site, only the RelocateAllTelepointers routine is

invoked to calculate the new positions of cursors and to
move the telepointers if necessary. This is correct

because view changes do not affect addresses of reference

objects.

8. Conclusion and Future Work

In this paper, we have contributed a novel object-
associated telepointing technique OAT that is suitable for

real-time collaborative document editing. The most
important feature of the OAT technique is that it is able to

track the reference object and maintain the relative

position to the reference object in the face of dynamic
content and view changes in collaborative document

editing systems. We defined the desired OAT effects,

analyzed the related consistency and relocation issues,
and devised solutions based on the Operational

Transformation (OT) technique. We have extended the

OT technique with a new generic primitive operation
Refer, which can be used to model various object-

referencing activities from the user interface. Moreover,

the OAT technique has been implemented in the CoWord
system to provide OAT support to real-time collaborative

word processing.
We are in the process of applying the TA approach

and the OAT technique to other applications, including

web page designers, graphic and image editors, and
CAD/CASE tools. Apart from studying the

implementation techniques for supporting the known

group-awareness techniques (e.g. telepointers, radar
views, etc.) in TA-based systems, we also plan to

investigate the special group-awareness requirements and

new supporting techniques in these systems and conduct
usability study of them.

9. Reference

[1] Begole, J., Rosson, M., and Shaffer, C. Flexible
collaboration transparency: supporting worker
independence in replicated application-sharing
systems, ACM Transactions on Computer Human
Interaction, 6(2), 1999, pp. 95 – 132.

[2] Birman, K., Schiper, A., and Stephenson, P.
Lightweight causal and atomic group multicast.
ACM Transaction on Computer Systems, 9(3), 1993,
pp. 272 – 314.

[3] Crowley, T., Milazzo, P., Baker, E., Forsdick, H.,
and Tomlinson, R. MMConf: An infrastructure for
building shared multimedia applications. In
Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, 1990, pp. 329–342.

[4] Ellis, C. A., and Gibbs, S. J. Concurrency control in
groupware systems, In Proceedings of ACM
Conference on Management of Data, May 1989, pp.
399 – 407.

[5] Engelbart, D. and English, W. A research center for
augmenting human intellect. In Proceedings of the
Fall Joint Computing Conference, vol. 33, 1968, pp.
395 – 410.

[6] Greenberg, S., Gutwin, C., and Roseman, M.
Semantic telepointers for groupwares. In
Proceedings of Australian Conference on Computer-
Human Interaction, 1996, pp. 54 – 61.

[7] Greenberg, S., and Roseman, M. Groupweb, a www
browser as real time groupware. Conference
companion on Human factors in computing systems:
common ground, 1996, pp. 271 – 272.

[8] Gutwin, C. Workspace awareness in real-time
distributed groupware. PhD thesis, University of
Calgary, Calgary, Canada.

[9] Gutwin, C., and Penner, R. Improving interpretation
of remote gestures with telepointer traces. In
Proceedings of ACM Conference on Computer-
Supported Cooperative Work, November 2002, pp.
49 – 57.

[10]Gutwin, C., Dyck, J., and Burkitt, J. Using cursor
prediction to smooth telepointer jitter. In Proceedings
of ACM SIGGROUP conference on supporting group
work, November 2003, pp. 294 – 301.

[11]Gutwin, C., and Greenberg, S. The effects of
workspace awareness support on the usability of real-

time distributed groupware. ACM Transactions on
Computer-Human Interaction, 6(3), September 1999,
pp. 243 – 281.

[12]Li, D. and Li, R. Transparent sharing and
interoperation of heterogeneous single-user
applications, In Proceedings of ACM Conference on
Computer Supported Cooperative Work, November
2002, pp. 246 – 255.

[13]Ranynal, M. and Singhal, M. Logical time: Capturing
causality in distributed systems. IEEE Comput.
29(2), February 1996, pp. 49 –56.

[14]Rodham, K. J., and Olsen D. R. Smart telepointers:
maintaining telepointer consistency in the presence of
user interface customization. ACM Transactions on
Graphics, 13(3), July 1994, pp. 300 – 307.

[15]Roseman, M., and Greenberg, S. Building real-time
groupware with groupkit, a groupware toolkit. ACM
Transactions on Computer-Human Interaction, 3(1),
March 1996, pp. 66 – 106.

[16]Stefik, M., Foster, G., Bobrow, D. G., Kahn, K.,
Lanning, S., and Suchman, L. Beyond the
chalkboard: computer support for collaboration and
problem solving in meetings. Communication of the
ACM, 30(1), January 1987, pp. 32 – 47.

[17]Sun, C. and Ellis, C. A. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, 1998, pp. 59 – 68.

[18]Sun, C. Undo as concurrent inverse in group editors.
ACM Transactions on Computer-Human Interaction,
9(4), December 2002, pp. 309 – 361.

[19]Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D.
Achieving convergence, causality-preservation, and
intention-preservation in real-time cooperative
editing systems, ACM Transactions on Computer-
Human Interaction, 5(1), March 1998, pp. 63 – 108.

[20]Sun, D., Xia, S., Sun, C., and Chen, D. Operational
transformation for collaborative word processing, In
Proceedings of ACM Conference on Computer
Supported Cooperative Work, November 2004, pp.
437 – 446.

[21]Xia, S., Sun, D., Sun, C., and Chen, D. Leveraging
single-user applications for multi-user collaboration:
the CoWord approach. In Proceedings of ACM
Conference on Computer-Supported Cooperative
Work, November 2004. pp 162 – 171.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

