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Abstract—Dynamic scripting languages such as Ruby provide
language features that enable developers to express their intent
more rapidly and with fewer expressions. Organizations started
using these languages in order to add enhancements to their
existing applications or create composite applications. Current
research has not yet addressed how security specification and
enforcement can be done for scripting based application
development. To fill this gap, we developed a framework for the
design and facilitation of security. Our approach enables a
business oriented application developer to add high-level security
intentions to his business process model. The framework supports
the automatic generation of security configuration and
enforcement. As a proof-of-concept, we present an architecture
and report the implementation status.
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I. INTRODUCTION

A composite application is an application making use of
data and functions provided as Web services by service-
oriented application platforms and existing packaged and
custom-built applications. Composite applications combine
these Web services into usage-centric processes and views,
supported by its own business logic and specific user
interfaces. In other words, composition enables prefabricated
components to be reused by rearranging them in ever-evolving
applications. Thus, composite applications enable business
scenarios and/or user specific processes spanning multiple
functional areas.

Application software vendors now offer Web service
interfaces to their existing solutions and/or provide service-
oriented application platforms, making cross-system
composite applications much easier to develop. Some of these
offerings also include tools for composite application
development in languages like Java. While some organizations
develop their composite applications by using these tools,
other organizations, in particular small and medium
companies, use dynamic scripting languages like Ruby and
Python in order to add enhancements to their existing
applications or create new composite applications. These
languages allow building programs faster and more effectively
in an agile environment than traditional strong-typed

languages. Especially Ruby [28][29] is starting to take off. Its
language capabilities like support for meta-programming,
functional features and lambda expressions allow very
effective programming also for the non-system programmer.

One of the main obstacles to building enterprise-quality
(composite) applications in dynamic scripting languages is
related to their missing security frameworks. Because dynamic
scripting languages lack such language security features and
application security models, script developers are forced either
to ignore security or provide programmatic and
implementation specific security development.

Our work was motivated by the following question: "How
can a business oriented application developer (a non-system
programmer) easily integrate security features into his
applications in development environments, where a) he uses a
dynamic scripting language as the development language, b)
the developer might not be security trained, c) the application
needs to be developed in a very short development life-cycle,
and d) the composite application has to enforce the business
driven security policies of the company where the application
is being developed?”

We present a security framework which enables a business
oriented application developer to add high-level security
intentions to his business process model. Intentions represent
application security objectives such as business process
authorization requirements, Web service Quality of Protection
(QoP) requirements etc. The framework facilitates the
automatic  generation of security configuration and
enforcement. Our approach associates high-level security
intentions with extendible scripts that are provided as
executable patterns. The security intentions and patterns are
specified using internal security Domain Specific Languages
(DSLs) [8].

The rest of the paper is structured as follows. Section II
describes the problem domain and security requirements. We
introduce the security framework in Section III. In Section IV,
we show a specific architecture which discusses some
framework blocks in detail. Section V summarizes the
implementation status. Section VI is dedicated to related
works. Finally, Section VII concludes the paper and discusses
future work.



II.  PROBLEM DOMAIN AND SECURITY REQUIREMENTS

A. Composite Applications & Service Composition

We observe three major reuse perspectives for a composite
application: the reuse of data, business logic (including
business processes) and user interfaces. In this paper we focus
on the reuse of existing business logic. The notion of service is
the fundamental abstraction for reuse of coarse grained
business logic. We consider that there are three categories of
services that a composite application development framework
must contend, as illustrated in Figure 1: backend services
exposed from backend enterprise applications (e.g., ERP);
external B2B services provided by other organizations; and
local services that are built into the composite as local
components.
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Figure 1. Composition Environment.

Local services need to be considered, since in many cases
the developer might have to implement some business logic
that is not captured by the existing services nor it can be
captured by just orchestrating those services differently. Some
local services may be built by composite application developer
while others may be imported from other component providers
and are installed and run within the composite.

The composite developer may ultimately wish for a
composite or a local component he has built to be exposed as a
Web service so that it may in turn be used by another
composite.

B.  Scripting Based Composite Application Development

In one of our related research projects we developed a
scripting framework for composite application development.
This framework provides an integrated modeling environment
and scripting language that make it easier for a more business
oriented developer to build new applications from existing or
new building blocks (e.g., services). This framework follows a
model-based scripting approach which supports the complete
specification of composite applications in the form of one
integrated model. Parts of that model describe the overall data
model, orchestration of service calls, event management, user
interface etc. as internal DSLs. One of the main goals of this
scripting framework was to support the end-to-end
development of composites by providing a family of DSLs.
This means that all necessary logic and configuration to

support the composite can be defined and deployed by one
developer in the one toolset in as seamless a fashion as is
possible. Thus, the developer is provided with a development
and execution environment for which he doesn’t need to use
different tools and abstractions that are often used during the
different software development phases.

Most general-purpose programming languages like Java
and C# provide platform independence, but they still require
the developer to render implementations of concepts in the
problem domain using fine-grained constructs. This creates a
gap between intent and implementation and causes additional
complexity. In our scripting framework we provide a family of
DSLs that offer abstractions closer to problem domains. Since
the abstractions are more specific, the developer requires fewer
constructs to describe the business logic.

The security framework we present in this paper extends
the existing process scripting framework and demonstrates how
security configuration can be easily handled by a business
oriented developer.

C. Security Requirements

Security is one of the quality attributes that is of the greatest
concern, especially when developing cross-organizational
composite applications. We distinguish between two kinds
security requirements: methodology related requirements and
technical realization related requirements.

Methodology related requirements are following:

e From the usability perspective, the greatest challenge
is to provide a simple security specification
mechanism which should be in line with the simplicity
of scripting based application development.

e Considering the complexity of computing
environments on which composite applications are
running, it is harder for developers to set up security
properly. We need mechanisms which support a
model-driven approach with the idea of generating
security configurations out of high-level security
intentions [30][2][3][4][6][7].

e From the secure software engineering perspective, we
need to ensure that there is a close coupling between
the business process model and its security
requirements. This would create a consistent state
across all changes in the business process and also
bind the developer closer to the secure application
development process [1][3][2].

Technical realization related requirements include the
access control specification and enforcement, Quality of
Protection (QoP) declaration and enforcement, and distributed
policy management issues which might be required at different
levels including the business process level, business process
task level, and service level. These requirements are listed
below:

e Specification and enforcement of authorizations and
authorization constraints for individual business
process tasks and business process, respectively.



e  Specification and enforcement of QoP requirements for
Web services. QoP requirements [21][22] define
security/privacy requirements and technical security
capabilities, similar to assertions and bindings in WS-
SecurityPolicy [22] and policy intents in SCA Policy
Framework [36].

e An automated policy configuration mechanism is
required when interacting with backend services.

e Dynamic policy negotiation and policy enforcement
are required when interacting with external services.

e Dynamic policy management is required to deal with
policy changes during the operational phase in a cross-
organizational composition scenario where multiple
external service providers are involved, i.e., a change
in the policy of a service being used by the composite
is adapted without restarting the application.

e Standards compliant security services and policies are
required in order to support interoperability in a
distributed environment.

e Security APIs which provide an abstraction of low
level Web services security standards.

e A unified usage of security mechanisms which provide
enterprise level protection for all security aware
applications.

e A unified design of business processes and security
policies [1].

e Trust management infrastructure support for cross-
organizational service interactions [24][13].

III. SECURITY DEVELOPMENT FRAMEWORK

We propose a framework for designing and facilitating
security in scripting-based composite applications. In the
following sections we discuss the framework building blocks.

A.  Security Design

The framework aids the development of composite
applications by defining certain development tasks to
efficiently specify the security of a composite. Further, the
framework also defines design-time protocols regarding which
information and security artifacts the different participants
must exchange with the other parties that are involved in the
development process. Defining the dependencies between
development tasks helps organize the design process.

Figure 2. shows the security design part of the framework.
The overall process to model security in the framework is
divided into 3 phases: a) the definition phase in which security
objectives are identified, b) the realization phase in which
means are provided in order to accomplish objectives, and c)
the declaration phase in which security objectives for
composite application or services are selected and attached as
annotations.
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Figure 2. Security Design Framework.

In the definition phase, first, the product security team
analyses the threats and identifies the associated risks in
business scenarios and related business processes. A systematic
analysis can be done by identifying service interaction patterns
[34] in a service-oriented business application and performing
threat analysis for individual service interaction patterns. In
order to mitigate risks, the product security team proposes
security solutions which can be cast in security patterns.
Through definition of security patterns these solutions are made
re-usable between different applications. This approach would
also enable a unified usage of security mechanisms across all
applications which need to be secured.

As a last step of the definition phase, the product security
team defines a set of high-level security intentions which can
be realized with a combination of security patterns. Security
intention definition provides an intention ontology which aims
to enable a unified definition of security objectives across all
teams in the application development life-cycle.

In the realization phase, the security developer provides
implementations for the patterns. Security pattern definition
and implementation might utilize existing proposals [15].
However, domain-independent patterns often must be bound to
a specific context. When re-using domain-independent
patterns, the security development team follows company-
specific rules to adapt their implementations.

The implemented patterns are made available through a
pattern repository. This is supported by a security pattern
provisioning process.

In the declaration phase, composite application developers
declare security intentions to be followed by the application.
Application-level intention declarations are used to capture the
security requirements of the application. These declarations
define the intentions applied by the composite in order to make
interactions with the constituent parts (e.g., local components,
process tasks, external Web services) of the composite secure.
For example, when interacting with an external Web service,



intentions may specify the security requirement to secure all
B2B interactions.

As stated above, the composite developer may wish for a
composite or a local component he has built to be exposed as a
service. He may want to specify QoP requirements by simply
adding security intentions to his composite and local
component before exposing them as services. This step is
supported by the service-level intention declaration activity.

B.  Security Facilitation

Enabling security for applications in the context of cross-
organizational composites is supported by the framework
through providing a set of runtime security protocols and pre-
built security services.

Figure 3. presents the main protocols used to ensure the
safe execution of composite applications. Protocols in the start-
up phase ensure the basis for the protocols used in the
enforcement phase.
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Figure 3. Security Facilitation Framework.

Security configuration happens before executing the
application. The assigned application-level intentions assigned
must be loaded and set up internally for runtime enforcement.
When interacting with backend services, the corresponding
security configuration must be set up. In order to execute the
services on the backend successfully, sufficient authorization
permissions must be in place. This requires a policy update
protocol which includes generation of authorization policies
and insertion of missing policies into the backend policy base.
When interacting with external services, the required trust
establishment can be achieved by exchanging authentication
and authorization attributes, as discussed in WS-Federation
[24]. Further, if necessary, trust negotiation can be done as
proposed by [23].

For local security enforcement, the framework provides an
access control mechanism to regulate access to local services
and objects.

External policy negotiation is necessary when composites
use external services in other security domains. A composite
application (e.g., as service consumer) and an external service
(e.g., as service provider) may define their individual security
requirements (constraints) and security capabilities, with
respect to token types, cryptographic algorithms and
mechanisms used. Before engaging an interaction, both parties
need to come to an agreement which specifies a common
policy. This requires a policy negotiation process which
supports merging of policies from two sources [22].

External policy enforcement takes care of enforcing the
common policy for each interaction between both parties. This
requires the modification of the exchanged messages, e.g.,
adding a security token to the message

C. Evaluation

We see our framework as an initial step towards developing
secure scripting applications. The framework may need to be
extended to add other important trust, security and contract
management features which have been intensively studied in
the TrustCoM project [13]. We didn’t address the compliance
related issues. The work in [16] can be adopted to address
regulatory requirements as sets of compliance rules and their
transformations to concrete policies. We didn’t provide an in-
depth study how to perform risk analysis and how to identify
patterns and declare meaningful intents based on the analysis
results. The elaboration of this topic is out of scope of this
paper. For this purpose, the security quality requirements
engineering methodology (SQUARE) [14] may be adopted.
See [15] for a detailed discussion on security patterns.

IV. ARCHITECTURE

In Section III we presented a general framework for secure
scripting based composite application development. In this
section, we show a specific architecture which exemplifies
selected building blocks of the framework.

The architecture in our view faces especially two design
challenges: (1) providing a family of domain-specific
languages that supports the efficient specification of
application security policies and (2) runtime components for
the enforcement and management of these policies. In the
following sections we present solutions that address these
challenges.

A. Policy Specification

The policies are specified by attaching intentions to the
business process script. For the sake of understanding, we give
an example of a concrete business process specification.



The business scripting language is designed to efficiently
define the functional parts of composite applications. It is used
to define a process, which consists of several tasks that may in
turn include activities. Tasks may use local services, store local
data in variables, and invoke external Web services or backend
systems.

01 process Shipment
02

03 #Security Annotations
04

05 enforce B2BConfidentiality and B2BIntegrity
06 expose B2BConfidentiality

07 assign roles [manager] to select carrier

08 constraint select carrier before book carrier

10 #Process Specification

12 variables

13 carriers as List
14 rates as Map
15 selected carrier as Service

18 sequence

19 get carriers => get rate =>

20 select_carrier => book carrier.

21

22 task get carriers do

23 carriers = registry.get services(“carrier”)
24 end

26 task get rate do

27 carriers.collect { |carrier]|

28 rates << {carrier => carrier.get rate()}
29 }

30 end

32 human task select carrier do

33 task form.selection = rates
34 -
35 selected_carrier = task form.result
36 end
37
38 task book carrier do
39 selected carrier.book shipment ()
40 end
41 end
Figure 4. Scripting-based Process Definition Language

Figure 4. depicts a simplified shipment process for selecting
and booking a qualified carrier from a set of potential carriers.
The selection is done based on the rates sent by carriers for a
given shipment request. The process consists of a sequence of
four tasks defined in lines 18-20. The “get carriers” task
selects a set of carriers from the carrier registry after checking
their qualifications based on the shipment request details.
During the “get rate” task each carrier gets a
request for quote (RFQ) and after evaluating the request, each
carrier sends an offer back. The human task “select carrier”
implements the functionality to perform a manual selection of a
carrier by a human user. Finally, the “book carrier” task
performs the booking of a selected carrier.

1) Security Intention Delaration
Security objectives are expressed together with the process
specification in the form of security intentions. Figure 5. shows
the conceptual model used to specify security in the process
model. The definition phase (see Figure 2. ) has provided an

ontology of named intentions and the realization phase has
provided a repository of patterns; each intention is associated
with the pattern that implements the enforcement of the
intention.

Intentions are used by declaring annotations in the process
model, i.e., a process may declare a composed set of intentions
to be enforced by using an annotation attached to the process
script. For the sake of simple exposition, we only consider
interaction annotations over atomic intentions which are
composed to an intention expression together by using a logical
conjunction. We consider three types of annotations:

a) ServicelnteractionAnnotation

A ServicelnteractionAnnotation is used to declare the
external enforcement policies when using Web services. E.g.,
when messages are sent out they should be encrypted. This
annotation has two sub-types: (1) EnforceAnnotation and (2)
ExposeAnnotation.

The EnforceAnnotation enforce <service usage
intention expression> statement declares a policy for
interactions with Web services that are used by the composite.
For example in Figure 4. line 5, we declare enforce
B2BConfidentiality and B2BIntegrity (i.e., SOAP
messages should be encrypted and signed). Therefore, when
executing one of the tasks “get rate” or “book carrier” that call
Web services, the SOAP messages sent will be encrypted and
signed.

An ExposeAnnotation is attached by using the expose
<service usage intention expression> statement.
This expression declares policies when exposing the composite
or a local component as a Web service. For example in line 6,
the composite is exposed as a Web service which requires
encrypted communication with any service consumer which
may invoke the exposed service.

b) AssignAnnotation

An AssignAnnotation is attached by using the assign
<role assignment intention expression> statement.
This expression specifies which roles are allowed to execute
the given tasks. For example in line 7 with the statement
assign roles [manager] to select carrier, the
developer declares his intent that the task “select carrier” is
allowed to be executed by users that possess the role
“manager”.

¢) ConstraintAnnotation

A ConstraintAnnotation is attached by using the
constraint <execution order intention
expression> statement. For example in line 8, we declare
constraint select carrier before book carrier.
This means that the task book carrier must only be executed
after task select carrier is completed, i.e., the manager has
selected a carrier. Additional constraint types such as
separation of duty, binding of duty, and role seniority can be
added, as discussed in [10].
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2) Security Pattern Specification

The framework follows a pattern-oriented approach to
implement security requirements. We associate security
intentions with patterns. This means the enforcement of an
intention is implemented by the associated pattern. Associating
intentions with patterns is similar to associating security
objectives with patterns [26]. When executing an application,
the container (see Section IV) finds the corresponding pattern
for a particular security intention and then follows the pattern
implementation to secure the application.

In our approach, security patterns [15] are used to provide
the technical details for the enforcement of an intention, i.e.,
how a certain security concern must be enforced. These
patterns are provided as generic security components written by
the container provider or by some other party as part of a
pattern library, which is delivered with the infrastructure. If
application-specific intentions are not covered, the pre-
fabricated pattern implementations can be easily extended
using abstractions provided by our DSL based pattern
realization.

As pattern implementation should be modular and effective,
we have designed a DSL for security patterns. Many patterns
have a cross-cutting nature (see also [19]), therefore we
decided to provide a DSL with support for aspect-oriented
programming [18]. The idea is similar to providing an aspect-
oriented DSL for transactions [20]. Furthermore, as pattern
implementations should be effective, enforcement code in
patterns is written in a scripting language.

pattern B2BConfidentiality {
beforeServiceSelection { .. }
beforeServiceCall { .. }
afterServiceCall { .. }

}

Figure 6. Example pattern.

In Figure 6. an excerpt of a security pattern is provided. In
our framework, a pattern is a module that has several entry
points through which the pattern can be invoked to enforce
security. There are different types of entry points used to
trigger a particular portion of enforcement implemented by the
pattern. For example, “beforeServiceSelection” is the entry

point at which the code in the curly brackets is executed, which
happens before the service registry is requested. In the next
section, we will further discuss how pattern implementations
are invoked and what different types of entry points are used.

B.  Policy Enforcement

The policy enforcement is carried out by a security monitor
which is integrated into composite application container. It
constitutes a design and execution environment for application
development. Figure 7. shows the basic components of the
container. As mentioned in Section II.B, the container has an
integrated design time to develop composite applications in a
business scripting language. When a business script is saved,
the script parser processes the script to make it executable by
the execution engine. While executing processes, the process
uses container services, which includes a service registry and a
messaging service. When executing human tasks, control is
passed to the fasklist UI through which manual tasks can be
completed.
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Figure 7. Composite Application Container Architecture.

For the integration of the security framework, the script
parser was extended to support the declaration of security
intentions on the process model. Further, a security monitor
component was introduced. Several other components in the
container have been enhanced in order to let the security
monitor observe the execution of processes and interfere where
necessary.

1) Security Monitor

The security monitor has the power to inspect and change
the state and behavior of other container components (e.g.,
parser, messaging service). Behavior is observed by events
produced by the components and the relevant state is accessible
through the context of an event. The security monitor has
access to the process model and its security intention
declarations in order to know what must be enforced. In the
same way, the monitor accesses the pattern repository in order
to know how intentions must be enforced.

As one of its most important tasks, the security monitor
observes process execution through hooks that have been
introduced in the execution engine. Thereby the security
monitor follows the concept of fotal mediation, i.e., every
security-relevant event in process execution is intercepted by
the monitor. Before the event actually happens, the monitor
invokes selected patterns, which have the opportunity to check



and update the actual state or may alter the effect of the
intercepted event to enforce security. For this the process
execution engine must know which activities produce which
events, and also the security monitor must know the composed
set of intentions used for this process.

Each task of a process that is executed may produce several
security-relevant events of a certain type. While executing a
task, the process execution engine generates runtime events.
The type of such an event corresponds to what currently
happens in the task. Before the generated event becomes
effective, it is deferred and delivered to the security monitor,
which then may execute one of the runtime protocols presented
in Section III and also may invokes all selected patterns at the
entry point which correspond to the event type. We consider
following event types:

a) Process model change event

This event is generated by the integrated design time when
a process description or its security intention declaration is
altered and saved. In systems that do not have an integrated
design time, an analog event would be generated at deployment
time. At this point, the container executes the security
configuration protocol. In case of this event, there is no relating
pattern entry point type to be invoked.

b) Service selection event

This event is generated when a task uses a service registry
to select services of a certain category. This event is needed in
order to be able to filter the service selection regarding security
requirements. First, the  container  triggers  the
“beforeServiceSelection” entry points to generate a composed
policy for the composite, which then is used for the service
selection. Next, the container retrieves a list of all services of
the selected category and uses the policy negotiation protocol
from section III for each service in the list. If no agreed policy
can be found for a service the service is removed from the list.
Finally, the filtered list of services is return to the process.

¢) Before service call event
Whenever a service call happens, an event is generated. As
well, a context is set up which contains the message to be sent.
Then, the container triggers the “beforeServiceCall” entry
points in the patterns, which may alter the message content
before it is finally sent out by the container.

d) After service call event

Whenever a service returns a result, an event is generated
and a context is set up which contains the received message.
First, the container triggers the “afterServiceCall” on the
pattern in order to transform the message, before its data is
further used in the process.

e) Human task execution

Before a human task is executed, this event is generated.
The security monitor checks whether the user has enough
permission to execute the task.

Because enforcement can only happen when an event is
fired, enforcement is limited by what kinds of events are
captured by the security monitor. However, the security
monitor can easily be extended with new types of events.

V. IMPLEMENTATION

In this section, we present a prototype container that
implements the security architecture. The implementation
comes with a security infrastructure that provides security
services that follow established Web service standard
specifications. We implemented the container in Ruby. Due to
space limitations, the paper will not discuss the realization of
process execution engine in detail but only addresses the
realization of security in the container.

In the current implementation, security intentions can be
declared by providing a list of intention names with the process
definition, which we will call “intention list” in the following.
The “and” combinator is the only operator to compose
intentions at the current time. More sophisticated combinators
will be provided in the future.

For the current prototype, we assume that intentions
composed do not have any negative interaction, i.e., they do not
interfere with each other so that the enforcement of one
intention contradicts with the enforcement of the other
enforcement. If such negative interactions are possible, the
implementation of the security intention is responsible to deal
with it in such way that there is no negative effect on the
enforcement.

A. Generic Security Services

In a composition environment, as discussed in Section II,
each service may act as a consumer service and a provider
service. In order to be able to address different security
requirements each service will need a set of security services,
each of which provides a well-defined security functionality.
We implemented following security services for this purpose,
as illustrated in Figure 8. :

e Backend policy generator is used to generate
authorization policies which are used by backend
policy enforcement.

e Backend policy updater is used to check whether a
certain policy exists in a backend policy base and
inserts the policy if necessary.

e Policy generator is used to generate WS-
SecurityPolicy policies from service interaction
annotations.

e Policy matcher matches compatible assertions
between two WS-Security policies, resulting in an
agreed policy.

e Policy registry is used to store and retrieve policies
for external service interactions.

e Token Engine is used to embed tokens into a
SOAP message and provides the token signature
verification functionality.

e Security Token Service is used to generate a
SAML token.

e CryptoEngine  provides  functionality  for
encrypting, decrypting as well as signing and
verifying SOAP messages.



e Policy Decision Point is used to enforce access
control policies encoded in XACML.

In the subsequent sections we will present how these
services will be used by the runtime policy enforcement.
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Figure 8. Genereic security services.

B.  Automatic backend and local security configuration

In case of a “process model change” event (see Section IV),
the backend security policies and local policies need to be
updated based on the authorization requirements of the current
process model. The backend policy update process works as
follows. The authorization intentions are extracted from the
process description and passed to the backend policy generator,
which generates corresponding XACML [5] policies. Backend
systems provide a separate “authorization policy updater” Web
service interface for managing its authorization configuration.
The policy generator passes each generated XACML policy to
the policy updater service, which is provided by a backend
system as a separate “authorization policy updater” Web
service. The policy updater embeds the received policy into an
XACML request, which is then sent to the Policy Decision
Point (PDP) in the backend. The PDP then returns either an
XACML “permit” response or “deny” response, depending on
whether the received policy exists or not. In the negative case,
the policy will be inserted into the policy base by the policy
updater. We implemented the policy updater in Java and used
Sun’s XACML implementation for the PDP functionality [31].

The local policy update process works in a similar way
except that the policies will be updated in the local policy base.
These policies are mainly used to enforce authorization at the
UI level.

For the sake of simplicity, we don’t consider the revocation
of assigned permissions.

C. Runtime Enforcement

The security monitor, in particular the code for security
event handling, is embedded into the different components of
the container, as explained below.

e The design time recognizes and handles the
“process model change” events and triggers the
“backend security configuration”.

e The service registry (see Section IV) handles all
“service selection” events and triggers the “policy
negotiation”.

e The messaging service (see Section IV) handles
“before service call” events when sending SOAP
messages or respectively handles “after service
call” events when receiving results.

e The service call events are handled through
triggering “external policy enforcement”.

e  When local service and data is accessed as well as
when the UI processes a “human task execution”
event, “local service enforcement” is triggered.

Figure 9. illustrates the runtime enforcement for a shipment
process (see Section IV) with a given service interaction
annotation “enforce B2BConfidentaility and
B2BIntegrity” and an assign annotation “assign roles
[manager] to select carrier”. The first annotation
expresses that any B2B Web service interaction should be
secured by encrypting and digitally signing the exchanged
SOAP messages. The second annotation expresses that only
users acting in the role of “manager” are allowed to select a
carrier. In order to enforce these annotations, while executing
each task of the process, the execution engine triggers events
that are reported to the security monitor which will then take
care of the required security enforcement activities.

Tasklist Ul
Authorization
Enforcement

B2BConfidentiality + B2BIntegrity | ['assign roles [manager] |
9 C) get_carriers >——» getrate _»——> select_carrier’ >——> book_carrier )>
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Security Monitor

1
Extemal Policy

1
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Messaging

Registry
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Services
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Figure 9. Runtime enforcement.

From the security enforcement perspective, the execution of
the task “get carriers” includes the selection of carriers, for
which there is a mutual agreement between the shipment
process and carrier services. This means that the QoP
requirements B2Bconfidentiality and B2Bintegrity of the
shipment process must match the QoP requirements of each
selected carrier. As a first step, the policy negotiation process is
performed according to the WS-Policy [21] specification. For
the negotiation, we generate a WS-Policy policy that represents
the high-level QoP requirements given by the intentions. As
well, we update the carrier policies in the policy registry if
necessary in order to cope with changing policies of invoked
services at runtime. The generated policy is then intersected
with all WS-Policy policies of the selected carriers. Policy
intersection is the core function of the negotiation process in
WS-Policy. The intersection identifies compatible policy
alternatives (if any) included in both shipment process and
carrier policies. Intersection is a commutative, associative
function that takes two policies and returns a policy which still
needs to be cleared of all invalid alternatives, as required by



WS-SecurityPolicy [22]. As a next step, the most appropriate
policy, which is named as the agreed policy, is selected from
all valid alternatives. The policy negotiation is accomplished
by the policy matcher. It first requests available services from
the service registry and then selects only the services for which
a non-empty agreed policy has been produced. Speaking in
terms of WS-SecurityPolicy [22] specification, a non-empty
policy would include a confidentiality assertion and an integrity
assertion. We also assume that an agreed policy includes a
SAML token assertion, specifying the authorization
requirement of a carrier service. The policy matcher is
implemented in Java and utilizes Apache WS-Commons Policy
[32].

The execution of the task “get rate” requires Web service
invocations, each of which needs to be regulated based on the
corresponding agreed policy. Before sending out a request to an
external Web service, the monitor retrieves required patterns
for each intention listed in the service interaction annotation.
The security monitor executes the patterns in the order as
specified in the annotation by invoking the entry point
“beforeServiceCall”. The pattern code transforms the actual
SOAP message into a secure message by encrypting and
signing the message in order to fulfill the security objectives
represented by the given intentions. The pattern code adds also
a SAML token into the request, as needed by the agreed policy.
Finally, the security monitor sends a request to the Carrier web
service in the form of a WS-Security encoded SOAP message.

Upon receiving the service request, the carrier service
performs required cryptographic operations on the SOAP
message and verifies the SAML token. The PDP of the carrier
service then evaluates the service request based on the token
information. In the positive case, a rate will be calculated and
embedded into a SOAP message. This will be encrypted and
signed, and returned to the shipment requester.

After receiving the response of the invoked Web service,
the monitor executes the pattern enforcement code of the entry
point “afterServiceCall”. This results in verifying the signature
and decrypting the content.

From the security enforcement perspective, the execution of
the task “select carrier” requires an approval step which should
be performed under consideration of the specified role
assignment intention. Execution of the “select carrier” task
involves two activities: selection of the carrier in the UI and
persisting the selection result in the backend. This requires a
two-phase access control protocol. Enforcement in the Ul
guarantees that only carrier selection tasks can be seen and
completed by the users acting in the role of “manager”. Storing
a selection result may require special permissions in the
backend systems. Assuming that these permissions have
already been updated as discussed above in this section,
backend policy enforcement adds a SAML assertion token to
the SOAP message which is then sent to the backend system.
In our example, the SAML token encodes the user role
“manager”. Upon receiving the service request including the
SOAP message and the token, the token manager of the
backend system verifies the token and extracts the role
information.

The last process step “book carrier” calls the previously
selected carrier service by performing a policy enforcement in
the same way as it is done for the task “get rate”.

VI. RELATED WORK

To the best of our knowledge, no other security frameworks
for scripting based composite application development exist.
However, some related work on secure software engineering,
model-driven security, secure composition, and security DSLs
in general is available.

In the area of secure software engineering [1] discusses
security issues that arise in the interactions between software
engineering and security. The authors in [1] emphasize the
importance of unifying the design of systems and security
policies.

The secure mediation approach presented in [30] is the
main source of our inspiration for specifying intentions and
generating policies from the intentions. [30] proposes the
specification of access authorizations as annotated application
schema declarations. Authorizations policies are generated
from the annotated declarations.

Recent research in the area of UML based model-driven
security followed a similar approach as presented in [30]. The
work in [2] shows a model driven security approach which
enables designers specify system models along with their
access control requirements and use tools to automatically
generate  system architectures including authorization
permissions and assertions for OCL constraints. The authors in
[3] discuss a policy-driven approach to achieve effective
management of security policies for applications. [4] presents
an approach which specializes the concept of model driven
architecture to model driven security by providing a so-called
SECTET framework. Low level security requirements of a
business application are modeled at a higher level of
abstraction and merged with the business requirements
modeled as platform independent models. Another UML
based model-driven security approach is discussed in [6]. This
work shows how security configurations for web services can
be generated from the high-level security intents (security
annotations like “integrity”’) attached to UML class diagrams.
The work in [7] proposes a candidate profile for UML that
presents security-related primitives (intents) as stereotypes that
can be applied to UML elements when working with business
stakeholders to capture security requirements. Like [6] we use
security intents which are quite similar to the security
primitives presented in [7] .

In the area of secure composition [9] presents an approach
for modeling security constraints and a brokered architecture
to build composite Web services according to the specified
security constraints. In [10] the authors show an extension to
the business process orchestration language WS-BPEL [33] in
order to capture the specification of authorization information.
[11] presents a formal model for consolidating the access
control of composite applications.

Some existing research has also addressed the usage of
DSLs for security policy specification and enforcement. [25]



presents SQLj, a domain specific extension to Java for
developing secure service-based systems.

VII. CONCLUSION AND FUTURE WORK

Our approach enables a business oriented application
developer to add high-level security intentions to his business
process model. The framework supports the automatic
generation of security configuration and enforcement. Our
concept work and implementation need to be extended to
provide a more mature DSL for the specification of security
intentions. There is a need to provide a more sophisticated set
of intentions. This will require to extend our current pattern
library. Last but not least, we also need to prove our approach
in realistic scripting based software development environments.
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