
Maintaining Constraints Expressed as Formulas in
Collaborative Systems

Kai Lin, David Chen, Geoff Dromey
School of Information and Communication Technology

Griffith University
Brisbane, QLD 4111, Australia

{K.Lin, D.Chen, G.Dromey}@griffith.edu.au

Chengzheng Sun
School of Computer Engineering

Nanyang Technological University
Singapore, 639798
CZSun@ntu.edu.sg

Abstract—Constraints allow users to declare relationships among
objects and let the constraint systems maintain and satisfy these
relationships. Formulas have been adopted to express constraints
in a wide variety of single-user applications, because of their
simplicity, efficiency and manageability. The needs and benefits
of supporting formula-defined constraints in collaborative
environments have long been recognized. However, maintaining
both constraints and consistency in the presence of concurrency
in collaborative systems is a challenge. In these systems, users
may concurrently define formulas, which could result in that
different formulas are defined to express the same object-
attribute at different sites. In this article, we discuss the issues
and techniques in maintaining formula-defined constraints in
collaborative systems. In particular, we also proposed a method
that is able to maintain both constraints and system consistency
in concurrent environments based on the existing consistency
maintenance approaches. This method extends the application of
these approaches from collaborative systems without constraint
to systems that support formulas. The proposed method has been
applied to implement a collaborative Visio system, called CoVisio,
which leverages single-user Microsoft Visio for multi-user
collaboration. Specific issues related to CoVisio are also discussed
in detail.

Keywords-constraint satisfaction; consistency maintenance;
formulas; collaborative systems; CoVisio

I. INTRODUCTION
Constraints specify semantic level conditions that must be

satisfied, and will automatically be maintained by a constraint
system. Constraint-based applications simplify users’ jobs by
allowing users to concentrate on saying what should be true,
leaving it to the constraint systems to worry about when and
how to make these things true [11].

Formulas have been adopted to express constraints in a
wide variety of single user interactive systems, including
spreadsheet [19], user interface [2], [3], graphical editing [17],
etc., because of their simplicity, efficiency and manageability.
A formula is an expression that may contain constants,
operators, and object-attribute references. Formulas are often
used to define the relationship between objects in a system. For
example, in a graphic editing system, a line can be constrained
to glue to another graphic object by a formula, so that when an
end-user moves the object sideways, the line will be moved

with it automatically. In a spreadsheet application, formulas
can be applied to let two cells always be equal, or let one cell
be the sum of several other cells, etc.

Constraints have been shown to be useful in simplifying
and automating user tasks in single-user environments.
Constraints in multi-user environments not only inherit these
benefits, but there are additional benefits. Constraints can be
used to maintain semantic consistency. Such consistency is
much harder for multiple users to manually maintain, than for a
single-user, as it requires extra communication and
coordination between users.

On the other hand, maintaining constraints expressed as
formulas in collaborative systems is a challenge. First of all, the
use of formulas makes the editable objects related to one
another, so that an operation, which updates an object-attribute,
may result in a chain of reactions. For instance, once a user
moves an object, all the lines glued to that object will be moved
as well. Therefore, one operation often has multiple effects in a
constraint system. In contrast, in a system without constraint,
where objects are independent of each other, an update
operation often only has effect on the object-attribute it directly
targets. Moreover, in concurrent environments, users may
concurrently update formulas, which could result in that
different formulas are defined to express the same object-
attribute at different collaborating sites of a collaborative
application. It is obvious that maintaining system consistency
in collaborative systems supporting formulas is more complex
than in collaborative systems without constraint, as not only the
same document states should be shown on user interfaces at all
collaborating sites, but also the underlying object-relationships
must be identical at all sites.

In this paper, we discuss the issues of maintaining
constraints expressed as formulas in concurrent environments.
We analyze the relationship between consistency and constraint
maintenances in collaborative systems, and proposed an
approach to satisfy constraints expressed as formulas in
collaborative systems. Our approach ensures both constraint
satisfaction and system consistency.

The proposed approach has been applied to leverage single-
user Microsoft Visio system for multi-user collaboration. One
feature that distinguishes Visio from other graphic editing

systems is that formulas are defined in Visio to express the
attributes of each graphic object, and the relationship between
different Visio graphic objects. The ability to describe shapes
with formulas opens many possibilities for making shapes
behave in complex and sophisticated ways. The collaborative
Visio system, called CoVisio, enables a group of users to view
and edit the same Visio documents at the same time from
different sites.

The rest of this article is organized as follows. The next
section introduces formula-defined constraints. Convergence
maintenance in collaborative systems supporting formulas is
discussed in section three. We discuss the problems of
consistency maintenance in formula-based collaborative
systems, and analyze the relationship among value, formula,
and document convergences. Moreover, we propose an
approach that is able to maintain both constraints and
consistency in formula-based collaborative systems. In the
fourth section, we describe the application of the proposed
approach in CoVisio system. Comparison with related work is
introduced in the fifth section and the major contributions and
future work of our research are summarized in the last section.

II. CONSTRAINTS EXPRESSED AS FORMULAS
A constraint specifies a relation or condition that must be

maintained in a system [3], [20]. For example, resistors must
obey Ohm’s law. Constraints can be expressed in different
ways. The simplest constraint can be expressed as a constant.
However, a sophisticated program may be used to describe a
complicated constraint. Formulas are adopted to express
constraints in a wide variety of object-oriented applications,
including spreadsheet [19], user interface [2], [3], graphical
editing [17], etc.

In a formula-based application, an object-attribute is
expressed by a formula. A formula is an expression that may
contain constants, operators, and object-attribute references.
Formulas are often used to define the relationship between
object-attributes in a system. For example, in an object-oriented
graphic system, a rectangle is a graphic object, which is
associated with a lot of graphic attributes, such as X and Y
coordinates of each vertex, width, height, color, etc. The X and
Y coordinates of the top-right vertex of the rectangle could be
defined by two formulas, width×1 and height×1, respectively.
Therefore, each time a user resizes the rectangle (i.e. updates
the width or height attribute of the object), the formulas
defining the coordinates of the vertex will be reevaluated, so
that the position of the vertex will be changed accordingly by
the constraint system.

In a formula-based system, an object-attribute is associated
with both a formula and a value. For instance, the Y coordinate
of the vertex is expressed by the formula, height×1, and its
value could be y. The values of object-attributes determine the
behavior and appearance of the objects on user interfaces. As
the value of the Y coordinate of the vertex is y, the vertex will
be located at position y in Y-axis. On the other hand, a value is
always determined by a formula. The constraint system
evaluates a formula to a result and then converts the result to
the appropriate units for the attribute that contains the formula.
Some formulas consist of a single constant, but all formulas go

through this evaluation and conversion process [17]. In the
above example, as Y is constrained by formula height×1, the
value of Y is evaluated from this formula.

It is worth to notice that users could not change the value of
an attribute directly in a formula-based system, as a value is
always evaluated from a formula. In a formula-based
interactive system, updating object-attributes can be achieved
by updating formulas associated with these attributes. For
example, if a user wants to change the color of an object to red,
he/she could associate a new formula with the color attribute of
the object (the new formula will replace the formula previously
associated with the color attribute, as each attribute is
expressed by one formula). The new formula may only consist
of a single constant to express the color red. Then the
constraint system will evaluate the value of the attribute
according to the formula it is currently associated with, so that
the value of the color attribute will be changed to red.

Updating a formula associated with an attribute may result
in a chain of value-changes in a constraint system. For example,
once the formula expressing attribute C is updated to A+B, the
constraint system will evaluate the value of C according to the
values of both A and B. Moreover, if there are other attributes
defined by formulas where C is a referenced parameter, such as
C+D, then the values of these attributes will be reevaluated
according to the new value of C, and so on. This process is
known as constraint propagation [4], [15], [27]. In this paper,
we also use the term value-propagation to express the above
process to emphasize that it is the value-change rather than
formula-change that is propagated.

III. MAINTAINING CONVERGENCE IN FORMULA-BASED
COLLABORATIVE SYSTEMS

Constraints specify semantic level conditions that will
automatically be maintained by the constraint systems. The
needs and benefits of supporting constraints in collaborative
systems have long been recognized [2], [14], [15], [16].
However, maintaining both constraints and consistency in the
face of concurrency in collaborative systems is a challenge.

A. Consistency Maintenance Problems
Collaborative systems are groupware applications to

support people working together in groups, such as electronic
conferencing/meeting, collaborative CAD and CASE [22], [23].
To meet the requirement of high responsiveness in the Internet
environment, replicated architecture is widely adopted in
collaborative systems. Shared documents are replicated at the
local storage of each collaborating site, so that operations can
be performed at local sites immediately and then propagated to
remote sites [22], [23]. However, as concurrent operations may
be executed in different orders at different collaborating sites,
maintaining consistency among replicas is more complex than
sharing a single copy of centralized data, especially in
collaborative systems supporting formulas, as illustrated by the
following scenario:

Scenario 1: There are three object-attributes, A, B, and C,
which are initially expressed by three constant formulas, 20, 50,
and 60, respectively. Three users concurrently edit formulas
from different sites. User-1 hopes that the value of C is always

bigger than the value of A by 10, so that user-1 expresses C
with a new formula f1: A+10. On the other hand, user-2 hopes
that C could be always smaller than B by 10, so that user-2
expresses C with another formula f2: B-10. User-3 wants to
change the value of B from 50 to 80. Therefore, user-3 updates
the formula expressing B to f3: 80.

Suppose at the site of user-1, user-1’s operation is executed
first, and then user-2 and user-3’s operations are executed. The
execution of user-1’s operation will result in C be expressed by
A+10. Once this formula is enforced, the constraint system will
reevaluate the value of C, so that the value of C is changed
from 60 to 30. When user-2’s operation is executed at the site
of user-1, the formula associated with C is changed to f2: B-10,
so that the value of C will be changed from 30 to 40. After
user-3’s operation is executed, B is defined by a constant
formula, 80, so that the value of B is changed to 80. As C is
constrained as B-10, the value-change of B will be propagated
to the value of C, so that the value of C is changed to 70.
Therefore, after the execution of the three operations, A, B, and
C are expressed by formulas, 20, 80, and B-10, respectively.
Their values are 20, 80, and 70 respectively.

At the site of user-2, the three concurrent operations may be
executed in the order of user-2’s operation, user-3’s operation,
and user-1’s operation. For the same reason, after the execution
of the three operations, A, B, and C are expressed by formulas,
20, 80, and A+10, respectively. Their values are 20, 80, and 30
respectively. In scenario 1, both the values and formulas of C
are different at the two sites.

B. Value, Formula, and Document Convergence
In scenario 1, different document states are maintained at

different sites after the execution of the three operations at all
sites, so that divergence occurs. Document convergence should
be maintained in any replicated collaborative system, so that
when the same set of operations have been executed at all sites,
all copies of the shared document are identical [22], [23]. As an
object-attribute is associated with both a formula and a value,
both value convergence and formula convergence must be
maintained to achieve document convergence in a formula-
based collaborative system.

In an object-oriented collaborative application, a copy of a
shared document consists of a group of objects that users can
manipulate. Accordingly, we can define value convergence as
follows:

Definition 1 (Value convergence). When the same set of
operations have been executed at all sites, all the copies of the
same document maintain the same set of objects with identical
attribute-values at all sites.

Value convergence must be maintained in a collaborative
system, as the values of object-attributes determine the
behavior and appearance of objects on user interfaces. For
instance, if the value of the Y coordinate of the top-right vertex
of a rectangle is y1 at one site, but it is y2 at another site, where
y1≠y2, then the vertex must be shown at different positions at
different sites. Hence, divergence occurs. In a collaborative
system without constraint, where object-attributes are
independent of each other, value convergence guarantees

document convergence. However, as value convergence does
not ensure the same attribute be expressed by the same formula
at all sites, it cannot guarantee document convergence in a
formula-based collaborative system. For instance, suppose that
two documents consist of the same set of graphic objects, Ga
and Gb, and all attributes of Ga and Gb have the same values in
the two documents (i.e. value convergence is maintained). In
one document, the color attributes of the two objects are
defined by the same constant formula, “green”. However, in
the other document, the color attribute of Ga is defined as
“green”, but the color attribute of Gb is defined as Ga.color,
which means Gb should have the same color as Ga. Under this
condition, we cannot say that the two documents have the same
state. If their states are identical, after the same set of
operations have been applied to them, we must obtain the same
new document states. In the above example, if an operation,
which updates the color of Ga to white, is applied to the second
document, Gb will change color to white as well, because Gb is
defined to have the same color as Ga. However, when this
operation is applied to the first document, the color of Ga will
be changed to white, but the color of Gb will still be green.
Therefore, we obtain different new document states.

Another type of convergence in a formula-based
collaborative system is known as formula convergence that is
defined as follows:

Definition 2 (Formula convergence). When the same set of
operations have been executed at all sites, all the copies of the
same document must maintain the same set of objects, and the
formulas expressing the same object-attribute are identical at
all sites.

Formula convergence must be maintained in a formula-
based concurrent system, as it ensures that the same
relationship is defined between the same set of object-attributes
at all sites. However, formula convergence does not guarantee
value convergence. For example, suppose formula convergence
is maintained in a collaborative system, so that the formulas
defining the same object-attribute are the same at all sites.
There are two color attributes, A and B. A is defined by formula,
B, and B is constrained by formula, A, at all the collaborating
sites of the application. Formula convergence ensures that the
same relationship between A and B has been maintained at all
sites. However, it is still possible that at one site, the values of
both A and B are red, but their values are green at another site.
Therefore, document convergence is not maintained.

Neither value convergence nor formula convergence can
guarantee document convergence. To achieve document
convergence in a formula-based collaborative system, both
value and formula convergences should be maintained.
Accordingly, document convergence in collaborative systems
that support formulas can be defined as follows.

Definition 3 (Document convergence). When the same set
of operations have been executed at all sites, 1) all the copies of
the same document maintain the same set of objects, 2) the
values of the same object-attribute are identical at all sites, and
3) the formulas defining the same object-attribute are identical
at all sites.

According to definition 3, document convergence is
achieved if and only if both value convergence and formula
convergence are maintained. It is obvious that maintaining
document convergence in formula-based collaborative systems
is more complicated than in concurrent systems without
constraint, as both value convergence and formula convergence
must be maintained.

C. Formula Convergence vs. Value Convergence
Before discuss strategies for document convergence

maintenance in formula-based collaborative systems, it is worth
to analyze the relationship between formula and value
convergences.

A constraint graph can be used to express the relationship
between different object-attributes in a document [4], [10], [27],
which can be served as a vehicle for the investigation of the
relationship among formula, value and document convergences.
In a constraint graph, a circle represents an object-attribute. A
triangle represents a constant, and a square expresses a formula.
For any attribute, A, if it is expressed by formula f in a
document, there is a directed edge from f to A in the constraint
graph that expresses relationship between different object-
attributes in the document. Moreover, for any object-attribute
reference or constant which f is consisted of, there is a directed
edge from the referenced attribute or constant to f in the graph.
As an object-attribute can be expressed by exactly one formula,
each attribute is pointed to by one directed edge. For example,
suppose that attribute S is expressed by formula f:
(width+height)/2, and width and height are defined by two
constant formulas, f1: 50, and f2: 60, respectively. The
constraint graph representing the relationship of the three
object-attributes, S, width and height, is shown in figure 1.

f

S

2 HW

f2

60

f1

50

Figure 1. A constraint graph, W and H represent Width and Height,
respectively

The directed edges in a constraint graph indicate the value-
dependency between different object-attributes. If an attribute
is defined by a formula consisting of only constant(s), such as
width and height in figure 1, the constraint system can calculate
the value of the attribute directly. On the other hand, if an
attribute is constrained by a formula consisting of some other
attribute-references, such as S in figure 1, the constraint system
has to calculate the value of the attribute indirectly according to
the values of the referenced attributes. Therefore, the value of S
should be calculated according to the values of both width and
height. Moreover, if some of these referenced attributes are
constrained by formulas which consist of other attribute-
references, the constraint system should calculate their values
according to the attributes referenced by their formulas, and so

on. This recursive calculation process can be illustrated by the
following procedure:

valueCalculation(attribute A)
{//suppose that A is expressed by formula F
 for any attribute-reference B which F contains
 valueCalculation(B)
 calculate the value of A
}

In the above procedure, suppose that A is expressed by
formula f. The value of A is calculated only if f is consisted of
only constant(s), or the values of all the attributes referenced by
f have been calculated. It is obvious that the above recursive
procedure invocation is always guaranteed to terminate if and
only if the formulas defined in the document will not form a
cyclic value-propagation path, such as A be expressed by a
formula that contains attribute-reference of B, and B be defined
by a formula that contains attribute-reference of A. The directed
edges in a constraint graph indicate the value-propagation path.
If formulas defined in a document do not form a cyclic value-
propagation path, then there is no cycle in the constraint graph
that expresses the relationship between different object-
attributes in the document.

In a replicated collaborative system, a shared document is
replicated at all collaborating sites, so that each site is
associated with a constraint graph that describes the
relationship between different object-attributes in the document
copy maintained at the site. Each time a user updates a copy of
the shared document, the constraint graph corresponding to the
document copy will be changed accordingly to reflect the
effects of the user operation. For example, once the formula
constraining S is changed from f to f’, this change should be
reflected in the graph, so that all the directed edges from and to
f, and f itself should be deleted from the graph. Moreover, f’
and new directed edges from and to f’ should be added into the
graph.

If all collaborating sites of an application have identical
acyclic constraint graphs, then value convergence must be
maintained. Here, two constraint graphs are regarded as
identical if and only if 1) the same set of attributes is contained
in each graph, and 2) the formulas defining the same attribute
are identical at both constraint graphs. According to the
definition of value convergence, after the same set of
operations have been executed at all sites, if all the copies of
the same document maintain the same set of objects and the
values of the same object-attribute are identical at all sites, then
value convergence is maintained. A constraint graph expresses
a complete document state, so that any attribute of any object in
the document at that state must be shown in the graph. Hence,
if all sites maintain identical constraint graphs, the document
copies replicated at all sites must maintain the same set of
objects. Moreover, for any object-attribute A in a document
copy replicated at a site, the value of A is calculated according
to the recursive procedure introduced above. The recursive
procedure invocation is guaranteed to terminate, as all sites
maintain identical acyclic constraint graphs. Furthermore, the
directed edges in a constraint graph indicate the value-
dependency between different object-attributes, so that the
value of A is determined by the values of its upstream attributes

(for any two attributes, A and B, in a constraint graph, if there is
a directed path from A to B, we say A is an upstream attribute
of B or B is a downstream attribute of A). As any upstream
attribute of A is defined identically at all sites, the same
procedure-invocation results must be obtained at all sites.
Therefore, the values of an object-attribute, A, must be the
same at all sites. Accordingly, value convergence is maintained.

On the other hand, formula convergence ensures identical
constraint graphs be maintained at all collaborating sites of a
collaborative application. According to the definition of
formula convergence, if formula convergence is maintained, all
sites of a collaborative application maintain the same set of
objects, and the formulas defining the same object-attribute are
identical at all sites. Obviously, if formula convergence is
maintained, the constraint graphs expressing the document
states maintained at all sites must be the same.

In conclusion, formula convergence ensures identical
constraint graphs at all sites. As long as the identical graphs are
free from cycle, value convergence is guaranteed. If both value
convergence and formula convergence are maintained, then
document convergence must be achieved. Hence, our document
convergence maintenance approach consists of two
components: One is responsible for formula convergence
maintenance. The other deals with the problem of cyclic value-
propagation.

D. Formula Convergence Maintenance
Consistency maintenance in replicated collaborative

systems has been investigated for decades, and many
approaches have been proposed [1], [12], [22], [23], [25].
However, these approaches are originally designed for
collaborative systems without constraint. Their applicability in
formula-based collaborative systems has yet to be addressed.

Existing consistency maintenance approaches maintain
document convergence according to the effects of user
operations. User operations in an interactive application can be
categorized into three abstract operations: Create, also known
as Insert, which is to create an editable object, Delete, which is
to erase an editable object, and Update, which changes an
attribute of an object. There is almost no difference between
Create/Delete operations executed in collaborative systems
without constraint and in formula-based applications. Even if
object-attributes are dependent on one another in formula-
based applications, Create/Delete operations are still
independent of each other. The creation or deletion of one
object will not result in another object be created or deleted.
However, Updates in the two types of collaborative
applications are quite different. In a collaborative system
without constraint, updating an object-attribute is to directly
change the value of the attribute. Therefore, U(object.key, new-
value, old-value) can be used to denote an Update operation,
which updates the value of attribute key of object from old-
value to new-value [25]. On the other hand, updating object-
attributes is achieved by updating formulas associated with
these attributes in a formula-based application. Moreover, once
a formula is updated, a chain of value-changes may be
propagated.

As an Update is expressed according to its attribute-value-
change effect, existing consistency maintenance approaches
ensure document convergence by achieving value convergence.
In collaborative systems without constraint, where object-
attributes are independent of each other, value convergence
guarantees document convergence. These approaches ensures
that after the same set of operations have been executed at all
sites, 1) all the copies of the same document maintain the same
set of objects, which is the execution effect of Create/Delete
operations, and 2) the values of the same object-attribute are
identical at all sites. The value of an object-attribute in the final
document state is decided by Update operations that target the
attribute. If no Update targets the attribute, it retains its initial
value. Otherwise, if there are some Updates targeting the
attribute, the final value of the attribute is determined by the
last executed Update that targets the attribute in serialization
undo/redo approach. On the other hand, an attribute-value is
decided by the Update with the highest priority among all the
Updates targeting the attribute in Operational Transformation
(OT) approach.

Existing consistency maintenance approaches are not
applicable for document convergence maintenance in formula-
based applications. First of all, these approaches maintain
document convergence by achieving value convergence.
However, as discussed previously, value convergence cannot
guarantee document convergence in formula-based
collaborative applications. Moreover, most of existing
approaches maintain value convergence based on the condition
that object-attributes are independent of each other. It is
possible that they even cannot maintain value convergence in
formula-based collaborative applications, where object-
attributes are related to one another.

On the other hand, existing approaches can be adopted for
formula convergence maintenance in formula-based
applications. The use of formulas makes object-attributes relate
to each other, so that the modification of one attribute-value
may be propagated to other attribute-values. However, even if
attribute-values are dependent on one another, attribute-
formulas are independent of each other. The change of one
formula will not affect any other formulas. From the point of
view of formula convergence maintenance, the value-change-
effect of an Update operation is irrelevant. An Update should
be expressed according to its formula-change-effect. Therefore,
U(object.key, new-formula, old-formula) defines an Update
which changes the formula that expresses the attribute key of
object from old-formula to new-formula. Obviously, if an
Update is expressed by its formula-change-effect rather than
value-change-effect, applying existing consistency
maintenance strategies, we can ensure that after the same set of
operations have been executed at all sites, 1) all the copies of
the same document maintain the same set of objects, which is
the execution effect of Create/Delete operations, and 2) the
formula expressing the same object-attribute are identical at all
sites (The formula expressing an object-attribute on the final
document state is decided by Update operations that target the
attribute). Therefore, formula convergence is maintained. In the
following paragraph, we use Operational Transformation (OT)
approach as an example to explain how to apply existing

consistency maintenance approaches for formula convergence
maintenance.

OT is an innovative and well-known consistency
maintenance technique. The basic idea of OT is to transform
(or adjust) the parameters of operations according to the effects
of previously executed concurrent operations so that the
transformed operations can achieve the correct effects and
maintain document consistency [22], [23], [25]. Compared
with other consistency maintenance strategies, OT is more
favorable for formula convergence maintenance as it has two
advantages: 1) OT is a generic strategy, which can be applied
to a wide variety of collaborative applications, and 2) OT
ensures document consistency independent of the execution
orders of concurrent operations, which makes OT an efficient
method as it will not undo/redo operations to ensure the same
execution order of concurrent operations at different
collaborating sites. Undoing/redoing an operation may result in
a chain of value-change propagations in formula-based
collaborative applications, which consumes extra system-time.

If an Update is expressed according to its formula-change-
effect, two Update operations Oa and Ob are regarded as
conflict with each other, expressed as Oa⊗Ob, if and only if
they are concurrent and they update the formula associated to
the same attribute of the same object. In contrast, Oa and Ob are
compatible, if and only if they do not conflict with each other
[23]. According to OT, if editable objects are identified
independently, transforming any operation against its
compatible operations will not change any parameter of the
operation. On the other hand, revised function
conflictResolution() is used to transform an operation, Oa,
against its conflicting operation Ob, as sketched below.

conflictResolution(Oa, Ob)
{ //O.priority expresses the priority of operation O
if(Oa.priority<Ob.priority)
 Oa.new-formula=Ob.new-formula
Oa.old-formula=Ob.new-formula
return Oa
}

The application of OT for formula convergence
maintenance can be illustrated by using scenario 1 as an
example:

In scenario 1, object-attributes, A, B, and C, are initially
expressed by three constant formulas, 20, 50, and 60
respectively. Three users concurrently edit formulas from
different sites. User-1 associates formula f1: A+10 with C, and
user-2 constrains C as f2: B-10. User-3 changes the formula
expressing B to f3: 80. Three OT Update operations can be used
to express the three user operations respectively: O1=U(C,
new-formula=A+10, old-formula=60), O2=U(C, new-
formula=B-10, old-formula=60), and O3=U(B, new-
formula=80, old-formula=50). Here, suppose that O1 has the
highest priority, and O3 has the lowest priority among the three
operations.

At the site of user-1, the three operations are executed in
order: O1, O2, and O3. After the execution of O1, the formula
expressing C is changed to A+10, and the value of C is
changed to 30 accordingly. Once O2 arrives at the site of user-1,

it will be transformed against O1, as both operations target the
same attribute-formula. As O1 has a higher priority than O2,
after the function conflictResolution(O2, O1) is invoked, O2 is
transformed to U(C, new-formula=A+10, old-formula=A+10).
Therefore, after the execution of the transformed O2, C is still
expressed by formula A+10, and its value is still 30. Once O3 is
executed, the formula expressing B is changed to 80 and B’s
value is 80. After the execution of the three operations at user-
1’s site, A.value=20, A.formula=20; B.value=80,
B.formula=80; C.value=30, C.formula=A+10.

At the site of user-2, the three operations are executed in
order: O2, O3, and O1. After the execution of O2, the formula
expressing C is changed to B-10, and the value of C is changed
to 40. Once O3 is executed, the formula expressing B is
changed to 80 and B’s value is 80. As C is constrained as B-10,
the value-change of B will be propagated to C, so that the value
of C is changed to 70. When O1 arrives at the site of user-2, it
will be transformed against O2, as they are conflict. O1 has a
higher priority than O2, so that O1 is transformed to U(C, new-
formula=A+10, old-formula=B-10). Therefore, after the
execution of the transformed O1, C is expressed by formula
A+10, and its value is changed to 30. After the execution of the
three operations at user-2’s site, A.value=20, A.formula=20;
B.value=80, B.formula=80; C.value=30, C.formula=A+10.

In the above example, even if the three operations are
executed in different orders at different sites, formula
convergence is maintained. Moreover, as no cycle is formed in
any value-propagation path, both value and document
convergences are maintained.

E. Preventing Cyclic Propagation Path
Cyclic propagation path must be prevented. Otherwise,

value-propagation cannot stop without outside interference. For
instance, suppose that attribute A is defined by B-C, while B is
expressed as A+C, so that a cyclic propagation path exists
between A and B. Once the value of C is changed, this change
must be propagated to the values of both A and B, as C is a
referenced attribute in both formulas expressing A and B.
Because A is a referenced attribute in the formula defining B,
the value-change of A will result in the value-change of B. For
the same reason, the value-change of B will result in the value-
change of A, so that a looped propagation occurs.

In a single user system that supports formulas, such as
Microsoft Excel and Visio, if a user enforces a new formula
that results in a cyclic value-propagation path, the user will get
a warning and the operation will have no effect (i.e. not
executed by the system). This strategy can be adopted by
collaborative systems. If a group of concurrent operations form
a cyclic value-propagation path, one operation in the group will
be masked. Masking an operation is to temporarily eliminate
the operation’s effects from the current document state to break
a cyclic propagation path.

Masking operations in concurrent environments may result
in divergence. For instance, two users concurrently associate
formulas to A and B respectively, so that A is expressed by a
formula that contains attribute-reference of B, and B is defined
by a formula that contains attribute-reference of A. Suppose at
one site, user-1’s operation is executed first. The execution of

user-2’s operation at the site will result in a cyclic propagation
path. Therefore, user-2’s operation is masked at the site. At
another site, user-2’s operation is executed first. For the same
reason, user-1’s operation is masked there. As different
operations are masked at different sites, divergence occurs.

The key point to design a masking approach in
collaborative systems is to ensure that the masking effect will
not interfere with consistency maintenance result, so that all
sites of a collaborative application maintain the identical
acyclic constraint graphs. A method to achieve this aim is
described below.

A Cycle Prevention (CP) component is maintained at each
site of a collaborative application. A CP maintains a constraint
graph that represents the relationship between different object-
attributes in the document copy replicated at the site where the
CP is running. Each time a user updates the document copy
replicated at a site, the CP running at the site will change the
constraint graph corresponding to the document copy to reflect
the effects of the user operation. It is noteworthy that any
operation performed by CP has effect on neither user-interface
nor the shared documents. CPs’ actions only have effects on
constraint graphs. Therefore, executing/undoing/redoing an
operation by CP is only to change the constraint graph
according to the effect of the operation. For example, suppose
Oi changes formula constraining S from f to f’, undoing Oi by
CP will result in that all the directed edges from and to f,’ and
f’ itself are deleted from the graph. Moreover, f and directed
edges from and to f are added into the graph.

The functionality of CP components is to ensure that all
sites maintain the identical acyclic constraint graphs. This can
be achieved based on serialization undo/redo strategy. Once an
operation, O, is ready for execution at a site, it will be sent to
the CP component running at the site. Accordingly, the CP
component will undo all the operations, which have been
executed at the site and have higher timestamp-values than O,
in timestamp-value descending order. After all the operations
that have higher timestamp-values than O have been undone,
CP will execute O (i.e. update the constraint graph according to
O). If the execution of O will result in cyclic propagation
path(s), O is masked. Then all the operations that are undone
for executing O will be redone in timestamp-value ascending
order. Otherwise, if the execution of O will not result in any
cyclic propagation path, all the masked and undone operations
that have higher timestamp-values than O will be checked in
timestamp-value ascending order. If unmasking/redoing a
masked/undone operation will not result in any cycle in the
current constraint graph, the masked/undone operation is
unmasked/redone. On the other hand, if redoing an undone
operation will result in cycle(s), the undone operation will
change its state from undone to masked. Serialization
undo/redo strategy ensures that operations are executed in the
same order at all sites, so that the same set of operations will be
masked at all sites. Therefore, each site must maintain identical
acyclic constraint graph.

Once CP determines which operations should be masked or
unmasked, these masking/unmasking effects must be applied to
the shared documents. After the ready-for-execution operation,
O, is processed by CP, CP will send three groups of operations

to Formula Convergence Maintenance (FCM) component. The
first group consists of only operation O, which is the newly
arrived operation that should be executed at the site. The
second group consists of all the operations that should be
masked, and the third contains all the operations that should be
unmasked, after the execution of O. Suppose that FCM
implements OT strategy. Then, OT will transform O against its
concurrent operations and execute the transformed O. For each
operation in the second group, OT will undo the operation to
mask the operation on user interface. For any operation in the
third group, the operation must have been undone by OT
previously. Accordingly, OT will redo it to recover its effect. It
is worth to notice that value-propagation must be delayed until
OT finishes executing O and undoing/redoing all the operations
that should be masked/unmasked, because before OT finishes
these actions, it is still possible that cycles exist in the
constraint graph.

Delaying value-propagation can improve system
responsiveness, as performing value-propagation immediately
each time a formula is associated with an attribute is
unnecessary. For instance, suppose that S is expressed by
formula, (width+height)/2. Two concurrent operations,
updating the formulas defining width and height respectively,
arrive at a site at the same time. Under this situation, it is
desirable to delay value-propagation until both of the two
operations have been executed, so that the value-changes of
both width and height can be propagated to S by one value-
propagation action. It is better than performing value-
propagation twice, one for propagating the value-change of
width to S, the other for height.

IV. COLLABORATIVE VISIO (COVISIO)
The document convergence maintenance approach

introduced in the above section has been applied to leverage
single-user Microsoft Visio system for multi-user collaboration.
The collaborative Visio system, called CoVisio, enables a
group of users to view and edit the same Microsoft Visio
documents at the same time from different collaborating sites.
CoVisio adopts replicated architecture and is implemented in
the programming language C# based on Visio API without
knowing or modifying Visio source code. The interface of
CoVisio is shown in figure 2.

Figure 2. The CoVisio interface

A. Visio Formula

Microsoft Visio is one of the most prevalent commercial
single-user graphic editing systems, which can be used to
create a wide variety of business and technical drawings. One
feature that distinguishes Visio from other graphic editing
systems is that formulas are defined in Visio to express the
attributes of each graphic object, and the relationship between
different Visio graphic objects. The ability to describe shapes
with formulas opens many possibilities for making shapes
behave in complex and sophisticated ways.

An attribute of a graphic object, called a cell in Visio, is
expressed by a formula. A Visio formula may contain constants,
operators, functions, and object-attribute references. Microsoft
Visio evaluates a formula to a result and then converts the
result to the appropriate units for the attribute that contains the
formula [17]. In a Visio ShapeSheet window, a user can display
cell-contents as either values or formulas by clicking the
appropriate command on the View menu.

The same as other formula-based applications users could
not change the value of an attribute directly in Visio, as a value
is always evaluated from a formula. Each time a user updates
an attribute of a graphic object, he/she directly changes the
formula expressing the attribute. There are three ways to
change formulas in Visio: 1) Through Visio drawing pages by
mouse/keyboard operations. For example, when a user moves a
shape with the Pointer tool, Visio automatically changes and
then reevaluates the formulas that define the shape’s center of
rotation, or pin, on the drawing page, because those formulas
determine the shape’s location on the page. 2) Through Visio
ShapeSheet window where users can edit formulas directly. A
ShapeSheet window gives users more precise control over the
appearance and behavior of an object. 3) Through Visio API,
where developers can modify formulas by program.

B. CoVisio Components
CoVisio is built by extending single-user Microsoft Visio

into a multi-user collaborative application. The method,
adopted to leverage commercial single-user Microsoft Visio for
multi-user real-time collaborations, is known as Transparent
Adaptation (TA) approach, which was first proposed by
CoWord and CoPowerPoint projects [24], [26]. TA is based on
the use of the single-user applications’ APIs to intercept and
replay users’ operations, so it requires no access or change to
the applications’ source codes (thus being transparent).

A TA based collaborative application is composed of three
components. The first component is a Single-user Application
(SA), i.e., MS Word/PowerPoint or Visio, which provides the
conventional single-user functionalities and interface features.
This component is completely collaboration unaware.

Another component is Generic Collaboration Engine (GCE),
which provides application-independent collaboration
capabilities. This component is fully collaboration-aware, but
completely unaware of the single-user application. Two
critical functions of GCE in CoVisio are consistency and
constraint maintenance. Operational Transformation (OT) is
implemented in GCE for consistency maintenance. Constraint
maintenance is responsible for preventing generation of cyclic
value-propagation paths.

GCE is generic, but SA is not. SAs may define different
data and operation models. Therefore, the third component,
Collaboration Adapter (CA), is implemented to adapt
application-specific SA to generic GCE. CA provides
application dependent collaboration capabilities and is aware of
both the single-user and multi-user collaboration applications.

The interactions between the three components in
processing an editing operation can be illustrated based on the
following simple scenario in a CoVisio application, as shown
in figure 3.

CA

GCE
Constraint

Maintenance
Consistency
Maintenance

CA

GCE
Constraint

Maintenance
Consistency
Maintenance

Internet

Local User

2

1

3 4

5

Figure 3. The interactions between CoVisio components

Suppose a user uses the keyboard and/or mouse to edit a
graphic object in a shared Visio document, the following events
shall occur at the local site:

(1) Once the operation is performed on the local
document, the operation semantics is sent to CA via
SA’s API. Then it is translated into an OT
recognizable operation by CA.

(2) The OT recognizable operation is propagated to
remote sites by CA.

When the operation arrives at a remote site, the following
shall happen:

(3) The received operation will be passed to GCE.

(4) The operation is processed by GCE for consistency
maintenance and constraint satisfaction. After that,
the processed operation is passed to CA.

(5) A suitable SA’s API function is invoked by CA to
replay the remote operation at the site.

C. Operation Interception and Replaying
In CoVisio, user mouse/keyboard operations are directly

inputted into single-user Visio application (i.e. SA). To
interpret the effects of user operations, Collaboration Adapter
(CA) component of CoVisio registers some event-handlers in
the single-user Visio application via Visio API. Therefore,
when the events CoVisio interested arise, the single-user Visio
application would automatically inform CA. For example, CA
registers ShapeAdded event-handler on each Visio page object,
so that each time a shape is added into a drawing page, CA will
receive the detailed information of where and what a shape is
created. In Visio, users update attributes of graphic objects by
modifying formulas. Each time the formula associated with an
attribute is updated a formula-change event and a chain of
value-change events will be triggered. CA registers event-

handlers for formula-change events instead of value-change
events, as value-changes are only side effects of the user
operations, which are performed automatically by underlying
Visio system.

CA abstracts user mouse/keyboards operations into three
OT defined operations, Insert, Delete and Update. Once a user
creates/deletes a Visio graphic object, the user operation will be
abstracted to an OT Insert/Delete operation. If a user edits a
formula associated with an attribute, CA will obtain a formula-
change event. Then the detailed operation information, reported
by the event, will be translated into an OT Update operation.
Only the formula-change effect rather than value-change effect
of the operation will be recorded in the Update. CA also
associates timestamp and priority information with the OT
defined operation and marshals the operation-information into
a message sent to remote sites.

Once the message is received by CA component running at
a remote site, it is passed to the constraint maintenance module
of GCE component. The constraint maintenance module will
check whether the execution of the operation will result in
cyclic value-propagation and determine which operations
should be masked and unmasked to ensure identical acyclic
constraint graphs at all sites. Then, constraint maintenance
module informs OT module in the same GCE which operations
should be executed, masked, or unmasked. OT functions are
performed to transform these operations against their
concurrent operations that have been executed at the site, which
is to achieve formula convergence, intention preservation and
causality preservation [22], [23]. After that, these transformed
operations are passed to CA, where suitable Visio API
functions will be invoked to apply these operations to the Visio
document replicated at the site.

V. RELATED WORK
There is a large body of researches contributing to

constraint maintenance in user interactive applications [3], [4],
[10], [19], [27]. However, these researches focused on single-
user applications. Consistency maintenance in collaborative
systems supporting constraints is beyond their scope.

IceCube[13], Actions Constraints Framework [21], Doppler
[2] and CAB [14] are related to constraint control in
collaborative applications. IceCube explicitly captures
constraints between actions. In Actions Constraints Framework,
actions (operations accessing shared data, submitted by clients
of a replicated system) are connected by binary constraints,
which must be maintained by the systems. Compared with the
above schemes, formulas are used to define the relationship
between object-attributes, rather than constraints between
actions.

Doppler supports distributed, concurrent, one-way
constraints in user interface applications, which provides a high
degree of concurrency and works in a asynchronous manner
without the need for shared memory, shared or synchronized
clocks, or centralized locking [2]. As shared documents are not
replicated at different collaborating sites in a Doppler-based
application, consistency maintenance is beyond Doppler’s
concern.

CAB presents an active rule based approach to modeling
user-defined semantic relationships in collaborative
applications and explores a demonstrational approach for end-
user customization of collaboration tools to support the
definition of those relationships. Constraints in CAB include
those for coordination between distributed users such as
awareness, access, and concurrency control, which are beyond
the scopes of graphic objects [14]. However, just as its authors
stated, many complications of maintaining constraints in
collaborative environments, such as how to handle constraint
violations and coordinate interferences among constraints, are
not investigated in CAB.

The methods to maintain multi-way dataflow constraints in
collaborative systems have been introduced in [15], [16]. A
multi-way dataflow constraint can be expressed by an equation,
such as C=A+B. Both multi-way dataflow constraints and
formulas define relationship between object-attributes, the
difference between them is that a formula expresses a specific
attribute, but a multi-way dataflow constraint does not. For
example, a multi-way dataflow constraint may define the
relationship between three attributes: C=A+B. As the
constraint is not to express a specific attribute, once a
constrained attribute is updated, there are multiple options for
performing constraint propagation. For instance, once a user
changes A, the change may be propagated to either B or C to
satisfy dataflow constraint C=A+B. On the other hand, as a
formula is always associated with an attribute, the constraint
propagation path is predefined. For instance, if C is expressed
by formula A+B, the value-change of either A or B must be
propagated to C. Accordingly, the main issue for multi-way
dataflow constraint maintenance in collaborative systems is
determining the propagation path according to the effects of
concurrent operations. As described above, once C is updated,
to satisfy constraint C=A+B, two constraint propagation paths
are available: propagating the change to A or to B. If different
propagation paths are adopted at different sites, divergence
occurs. On the other hand, the constraint satisfaction problem
in formula-based collaborative systems is that when users
concurrently associate formulas with attributes, different
formulas may be defined to express the same attribute at
different sites. How to solve this problem is discussed in detail
in this paper.

Generally speaking, multi-way dataflow constraints are
more flexible and powerful, so that they are more complicated
to maintain in collaborative systems. However, multi-way
dataflow constraints have one drawback that impeded their
acceptance. The multiple possibilities of propagation-paths
often make constraint propagation results unpredictable. By
contrast, because of their simplicity, efficiency and
manageability, formulas have been adopted to express
constraints in many types of interactive systems.

 VI. CONCLUSION AND FUTURE WORK
Formulas are adopted to express constraints in a wide

variety of object-oriented applications, which can define
relationship between object-attributes. The needs and benefits
of supporting constraints in collaborative systems have long
been recognized. However, maintaining constraints expressed
as formulas in collaborative environments is a challenge. The

difficulties are caused by concurrent operations that result in
value, formula and document divergences. Being able to solve
this problem is crucial in the development of collaborative
applications supporting formulas, such as collaborative
spreadsheets, graphic editing systems, CAD, CASE, etc.

In this paper, we proposed a method to solve this problem.
Our solution is generic. It consists of two components, one for
formula convergence maintenance and the other for handling
cyclic value-propagation. In our solution, formula convergence
maintenance is achieved by existing consistency maintenance
strategies, which are originally designed for collaborative
systems without constraint. The application of these strategies
in collaborative systems with constraints has never been
addressed before. Our solution extends the application of these
strategies, especially OT, from collaborative systems without
constraint to systems supporting formulas. We applied our
solution to CoVisio system to maintain both Visio formulas
and consistency in concurrent environments. The constraint
maintenance method implemented in CoVisio is generic and
can be adopted by other collaborative systems that support
formulas, such as collaborative spreadsheets, CASE, and CAD.

We are currently investigating how to efficiently propagate
value-changes using multi-thread processes. Multi-thread can
improve system performance and responsiveness, but the
concurrently executing multi-thread may interfere with each
other. How to efficiently coordinate the executions of multi-
thread in performing constraint propagations will be reported in
our future publications.

Over the last fifteen years, real-time collaborative systems
have moved from being prototypes in laboratories to becoming
usable commercial systems and also freeware. With the
investigation of maintaining formula-defined constraints in
collaborative systems, we hope to make real-time collaboration
even much easier to build and use.

REFERENCES
[1] J. Begole, R.B. Smith, C.A. Struble, and C.A. Shaffer, “Resource

sharing for replicated synchronous groupware”, IEEE/ACM
Transactions on Networking. Vol. 9, No. 6, pp.833-843, Dec. 2001.

[2] K. Bharat, and S.E. Hudson, “Supporting distributed, concurrent, one-
way constraints in user interface applications”, In Proceedings of the
ACM Symposium on User Interface Software and Technology, ACM,
New York, pp.121-132, 1995.

[3] A. Borning, and R. Duisberg, “Constraint-based tools for building user
interfaces”, ACM Transactions on Graphics, vol.5, no.4, pp.345-374,
Oct. 1986.

[4] A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint
hierarchies”, Lisp and Symbolic Computation, Vol. 5 No. 3, pp.223-270,
Sept. 1992.

[5] J.D. Campbell, “Multi-user collaborative visual program development”,
IEEE Symposia on Human Centric Computing Languages and
Environments, Arlington, VA, pp.122-130, 2002.

[6] J.D. Campbell, “Interaction in collaborative computer supported diagram
development”, Computers in Human Behavior Vol. 20, No.2, pp.289-
310, 2004.

[7] P. Dourish, “Developing a reflective model of collaborative systems”,
ACM Transactions on Computer-Human Interaction, Vol. 2, No.1, 1995.

[8] P. Dourish, “Consistency guarantees: Exploiting application semantics
for consistency management in a collaborative tookit”, In Proceedings of

the ACM Conference on Computer Supported Cooperative Work, ACM,
New York, pp.268-277, 1996.

[9] W.K. Edwards, “Flexible conflict detection and management in
collaborative applications”, In Proceedings of the ACM Symposium on
User Interface Software and Technology, ACM, New York, pp.139-148,
1997.

[10] B. Freeman-Benson, J. Maloney, and A. Borning, “An incremental
constraint solver”, Communications of the ACM, Vol. 33, No.1, pp.54-63,
Jan. 1990.

[11] D.R. Hill, “The RENDEZVOUS constraint maintenance system”, In
Proceedings of the ACM Symposium on User Interface Software and
Technology, pp.225-234, 1993.

[12] C.-L. Ignat, and M.C. Norrie, “Grouping in collaborative graphical
editors”, In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, Chicago, USA, pp.447-456, Nov. 2004.

[13] A.M. Kermarrec, A. Rowstron, M. Shapiro, “The IceCube approach to
the reconciliation of divergent replicas”, In Proceedings of the twentieth
annual ACM symposium on Principles of distributed computing, pp.
210-218, 2001

[14] D. Li, and J. Patrao, “Demonstrational customization of a shared
whiteboard to support user-defined semantic relationships amongst
objects”, ACM GROUP’01, Boulder, Colorado, USA, pp.97-106, Sept.
2001.

[15] K. Lin, D. Chen, C. Sun, and R.G. Dromey, “Maintaining constraints in
collaborative graphic systems: the CoGSE approach”, In Proceedings of
the 9th European Conference on CSCW, Paris, France, Sept. 2005.

[16] K. Lin, D. Chen, C. Sun, and R.G. Dromey, “Maintaining multi-way
dataflow constraints in collaborative systems”, In Proceedings of IEEE
2005 International Conference in Collaborative Computing: Networking,
Applications and Worksharing, San Jose, CA, USA, Dec. 2005.

[17] Microsoft, Developing Microsoft Visio solutions,
http://msdn2.microsoft.com/en-us/library/aa245244(office. 10).aspx.

[18] E. Monfroy, and C. Castro, “Basic components for constraint solver
cooperations”, Proceedings of SAC, 2003.

[19] B.A. Myers, “Graphical techniques in a spreadsheet for specifying user
interfaces”, In Proceedings of ACM CHI'91 Conference on Human
Factors in Computing Systems, User Interface Management Systems, pp.
243-249, 1991.

[20] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning, “Multi-
way versus one-way constraints in user interfaces: experience with the
DeltaBlue algorithm”, Software-Practice and Experience, Vol. 23, No.5,
pp.529-566, 1993.

[21] M.Shapiro, K.Bhargavan, “The actions-constraints approach to
replication: definitions and proofs”, Technical peport MSR-TR-2004-14.
Microsoft Research, Mar. 2004.

[22] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
convergence, causality-preservation, and intention-preservation in real-
time cooperative editing systems”, ACM Transactions on Computer-
human Interaction, Vol. 5, No.1, pp. 63-108, Mar. 1998.

[23] C. Sun, and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems”, ACM Transactions on
Computer-Human Interaction, Vol. 9, No.1, pp.1-41, Mar. 2002.

[24] C. Sun, Q. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transparent
adaptation of single-user applications for multi-user real-time
collaboration”, ACM Transactions on Computer-Human Interaction
(TOCHI), Vol. 13, No.4, pp.531-582, Dec. 2006.

[25] D. Sun, Q. Xia, C. Sun, and D. Chen, “Operational transformation for
collaborative word processing”, In Proceedings of the ACM Conference
on CSCW, Chicago, USA, Nov. 2004.

[26] Q. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-user
applications for multi-user collaboration: the CoWord approach”, In
Proceedings of the ACM Conference on CSCW, Chicago, USA, 162-171,
Nov. 2004.

[27] B. Zanden, “An incremental algorithm for satisfying hierarchies of
multi-way dataflow constraints”, ACM Transaction on Programming
Languages and Systems, Vol.18, No.1, pp.30-72, Jan. 1996.

