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Abstract—The high energy consumption of massive multi-input
multi-out (MIMO) system has become a prominent problem
in the millimeter wave(mm-Wave) communication scenario. The
hybrid precoding technology greatly reduces the number of radio
frequency(RF) chains by handing over part of the coding work to
the phase shifting network, which can effectively improve energy
efficiency. However, conventional hybrid precoding algorithms
based on mathematical means often suffer from performance loss
and high computational complexity. In this paper, a novel BP-
neural-network-enabled hybrid precoding algorithm is proposed,
in which the full-digital zero-forcing(ZF) precoding is set as the
training target. Considering that signals at the base station are
complex, we choose the complex neural network that has a richer
representational capacity. Besides, we present the activation func-
tion of the complex neural network and the gradient derivation
of the back propagation process. Simulation results demonstrate
that the performance of the proposed hybrid precoding algorithm
can optimally approximate the ZF precoding.

Index Terms—hybrid precoding, complex neural network, mm-
Wave, massive MIMO

I. INTRODUCTION

The explosive growth of data have brought enormous chal-

lenges to the current communication field. Advanced sig-

nal transceiver technologies are required to provide higher

capacity [1]–[3]. Massive multi-input multi-out(MIMO) is a

technology with a large number of antennas at the base sta-

tion, which can provide extremely high beamforming gain to

compensate for the high path loss of the millimeter wave(mm-

Wave) channel [4]. Combined with the mm-Wave featuring

large bandwidth, massive MIMO have become a promising

technology for the future mm-Wave communication systems.

The massive MIMO systems can increase communication

performance significantly, but the large number of radio fre-

quency(RF) chains at the base station will consume huge

energy. Reduced-RF based hybrid precoding is one of the

effective solutions to this problem [5]–[7]. Hybrid precoding

consists of baseband precoding and RF precoding. The RF

precoding is implemented by a phase shifting network where

only the phase of the transmitting signals can be adjusted. The

baseband precoding is performed at the baseband stage, where

both the amplitude and the phase of the signals are adjustable

[8]. There have been rich studies on hybrid precoding. In

[9], a hierarchical multi-resolution codebook was developed,

and then a codebook-based hybrid precoding scheme was

designed based on the channel estimation results. Authors

in [10] presented a low-complexity precoding scheme named

phased-ZF(PZF) precoding, where the baseband ZF precoding

was determined by the equivalent channel seen from the

baseband. Hybrid precoding based on SVD decomposition in

single-user and multiuser scenarios was proposed in [11] and

[12] respectively. In [13], the analog precoder design problem

for the frequency selective channel is transformed into a

narrowband analog precoder design problem, and the baseband

precoder is decomposed into two matrices: one is used to

approach the optimal precoders jointly with the RF precoder,

the other is used to eliminate multiuser interference via the

ZF method. Considering the sparse scattering characteristics of

millimeter-wave channels, spatial sparse precoding based on

orthogonal matching pursuit (OMP) algorithm has also been

studied extensively [14].

Although the aforementioned hybrid precoding algorithms

based on traditional mathematical models can achieve good

performance, its high computational complexity will bring

high energy consumption and delay [15]. With the rapid

development of artificial intelligence (AI) technology, the

neural network principle provides the possibility of surpassing

traditional methods for the design and optimization of 5G

systems benefiting from its powerful information extraction

capabilities. There have been some works combining artificial

intelligence with mobile communication systems, like RF

resource allocation, non-orthogonal multiple access (NOMA),

optimal reception and channel estimation [16]–[20]. However,

few researches have been done to solve the hybrid precoding

problem via AI technology. In [21], a deep-learning-enabled

hybrid precoding model for the single-user massive MIMO

system was proposed for the first time. The deep neural net-

work framework included the transceiver end and the channel

of the communication system, but only the hybrid precoding

at the transmitting end was trained in the paper.

In view of the powerful ability of neural network to process

large amounts of data and to solve non-convex optimization

problems, this paper proposes a hybrid precoding algorithm
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based on BP neural network in the mm-Wave multiuser

massive MIMO system. Normally, transmitting signals at the

base station belong to the complex domain, so a complex

neural network is adopted, while [21] uses the real neural

network. The split activation function is chosen for nonlinear

mapping and the power limitation of precoding. The detailed

gradient derivation of the back propagation process of the

neural network is also given. Simulation results show that

the proposed hybrid precoding algorithm based on complex

neural network is better than the traditional algorithms based

on mathematical models, and can optimally approximate full

digital precoding. To the best of our knowledge, this paper is

the first to incorporate a complex neural network to hybrid

precoding.

The remainder of the article is organized as follows. The

system model is introduced in Section II. In Section III, the

hybrid precoding scheme based on complex BP neural net-

work is proposed, and the corresponding network model and

algorithm are given. Then, the performance of the proposed

algorithm is analyzed in Section IV. Finally, we summarize

the paper in Section V.

Notations: Bold uppercase M is a matrix, bold lowercase

m is a vector, and Ω is a set. [•]T and [•]H denote transpose

and conjugate transpose respectively. ‖•‖F represents the

Frobenius norm of the matrix. z
(l)
n is the activation input of

the nth neuron of the (l + 1)th layer. a
(l)
m is the activation

output of the mth neuron of the lth layer. w
(l)
nm is the synaptic

weight of the nth neuron of the (l + 1)th layer relative to the

mth output of the lth layer.

II. SYSTEM MODEL

In this paper, we consider a typical mm-Wave multiuser

massive MIMO communication system as shown in Fig. 1.

NS data streams is transmitted via NT antennas at the base

station, where the NRF RF chains satisfy NS ≤ NRF < NT .

The number of user equipments(UEs) at the receiving end is

K = NS .

k

K

S
N

T
N

Fig. 1. System model of the proposed hybrid precoding scheme.

The received signal yk of the kth user is

yk = hH
k x + nk, (1)

where nk ∼ CN
(

0, σ2
n

)

represents the additive white Gaus-

sian noise (AWGN) and σ2
n is the noise power. x ∈ CNT×1

is the transmitting signals of the antennas, which is gen-

erated by the source amplitude-phase domain data streams

s = [s1, s2, ..., sNS
]
H

via hybrid precoding, and E
[

ssH
]

= 1
. The precoding process can be expressed as

x = ADs = Fs, (2)

where D ∈ CNRF×NS is the baseband precoding matrix and

A ∈ CNT×NRF is the RF precoding matrix. In this paper, we

use BP neural network F ∈ CNT×NS for hybrid precoding.

Noticeably, F is not a real matrix, but the coding process of

the neural network, which can be seen as the target full-digital

precoding matrix. Due to the limitation of the transmitting

power Pmax at the base station, the hybrid precoding matrix

should satisfy

‖F‖2F = ‖AD‖2F 6 Pmax. (3)

The downlink mm-Wave channel matrix is HH =
[h1, ..., hk, ..., hK ]H ∈ CK×NT , where hk ∈ CNT×1 is the

channel vector from the base station to the kth user. Consid-

ering the sparse property of the mm-Wave channel and the

high correlation of large antenna arrays, we adopt a geometric

channel model with limited scattering and multipath [8], [14].

Then each hk can be expressed as

hk =

√

NTβk
Nray

Nray
∑

i=1

ρk,iu (ψk,i, ϑk,i), (4)

where Nray is the number of the multipath. βk = ζ/lγk denotes

the large scale fading coefficient between the base station and

the kth user, where ζ obeys a log-normal distribution with a 0-

mean and 9.2dB-variance. lk is the distance between the base

station and the kth user and γ is the path loss factor. ρk,i ∼
CN

(

0, σ2
k,i

)

is the complex gain on the ith multipath. ψk,i

and ϑk,i represent the azimuth and elevation angle of departure

respectively. The uniform planar array(UPA) is employed in

this paper and the array response u (ψk,i, ϑk,i) is

u (ψk,i, ϑk,i) =
1√
NT

[1, . .., exp j
2π

λ
d (l sin (ψk,i) sin (ϑk,i)

+rcos (ϑk,i)) , ..., exp j
2π

λ
d ((L− 1) sin (ψk,i) sin (ϑk,i)

+ (R− 1) cos (ϑk,i))]
T ,

(5)

where λ represents the wavelength of the mm-Wave and d =
λ/2 is the inter-element spacing. 0 6 l 6 (L− 1) and 0 6

r 6 (R− 1) are the row and column indices of the antenna

array respectively and the antenna array size is NT = LR.



III. PROPOSED SCHEME

It is obvious that the hybrid precoding of the massive MIMO

system shares a similar topology with the neural network.

The signal processing of the hybrid precoding can be seen as

the matrix multiplication operation, which is also analogous

to the weight processing in a neural network. In addition,

most of the previous hybrid precoding algorithms are aimed

at approximating the full digital precoding, which is similar

to the way of training a neural network via reducing the cost

function. Therefore, we consider using the BP neural network

to design the hybrid precoding. This section will give the

detailed model of the neural network architecture.

A. Neural Network Architecture

Numerous studies have shown that complex neural networks

have better performance in signal processing because the phase

of complex signals encodes shape, edge and direction. At the

same time, complex weights in neural networks is biologically

significant. The firing rate and the relative timing of human

brain activity are correspond to the amplitude and phase of

complex neurons respectively [22]. Therefore, a complex BP

neural network is adopted to perform hybrid precoding on

signals.

RF
N

S
N

T
N

RF
N

T
N

Fig. 2. Architecture of neural network for hybrid precoding.

The architecture of the neural network is depicted in Fig. 2.

In order to correspond to the physical structure of the hybrid

precoding, a single hidden layer is used. The input layer con-

tains NS neurons, corresponding to the input data streams. The

hidden layer contains NRF neurons, corresponding to the RF

chains. The output layer contains NT neurons, corresponding

to the transmitting antennas. Consequently, the weight matrix

W(1) and W(2) along with the activation function play the role

of the baseband precoding and the RF precoding, respectively.

With the optimal full-digital ZF precoding as the training

target, we construct a training set. The input of the training

sample is the NS×1 dimension source signal streams, and the

output is the signal streams yZF ∈ C
NT×1 to be transmitted

after ZF precoding. The cost function of the neural network

can be expressed as

e2 =
1

2

∥

∥

∥
a(3) − yZF

∥

∥

∥

2

F
. (6)

In our neural network, all the signals are complex during

iteration process, which causes the activation function to be

a complex one. Besides, the activation function should have

the ability of power limitation in addition to nonlinear map-

ping. This requires the activation function to satisfy both the

derivable and bounded conditions. According to the Cauchy-

Riemann equations and the Liouvilles theorem, we adopt the

split activation function:

f (z) = r (isgm (x) + j · isgm (y)) , (7)

where r =
√

Pmax/2 is the power limitation factor.

isgm (x) ∈ (−1, 1) is the improved sigmod function:

isgm (x) =
2

1 + e−x
− 1. (8)

The derivative of isgm (x) is isgm′ (x) =
[1 + isgm (x)] [1− isgm (x)] /2.

B. Training Process

The training process of BP neural network can be divided

into two parts: forward propagation and back propagation. The

forward propagation is summarized as

z(1)n =

NS
∑

m=1

w(1)
nmxm (9)

a(2)n = f
(

z(1)n

)

(10)

z(2)n =

NRF
∑

m=1

w(2)
nma

(2)
m (11)

a(3)n = f
(

z(2)n

)

. (12)

The improved momentum algorithm of stochastic gradient

descent(SGD) is adopted to update the weights during the back

propagation process:

w(l)
nm (k + 1) = w(l)

nm (k)−∆w(l)
nm (k) (13)

∆w(l)
nm (k) = α∆w(l)

nm (k − 1) + µ∇
w

(l)
nm

(

e2
)

, (14)

where α is the momentum factor and µ is the learning rate.

The BP algorithm adjusts the weight by calculating the

gradient ∇
w

(l)
nm

(

e2
)

of the cost function with respect to the

weight. Since the cost function e2 is a real function and is not

analytic, we need to solve the partial derivatives of the cost

function with respect to both the real and imaginary parts of

the weight w
(l)
nm separately. Weight w

(l)
nm is written as



w(l)
nm = w

(l)
Rnm + j · w(l)

Inm. (15)

And the gradient is

∇
w

(l)
nm

(

e2
)

=
∂e2

∂w
(l)
Rnm

+ j · ∂e2

∂w
(l)
Inm

. (16)

Using the chain rule, the gradient of weights at the second

layer is

∂e2

∂w
(2)
Rnm

=
∂e2

∂a
(3)
Rn

∂a
(3)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Rnm

+
∂e2

∂a
(3)
In

∂a
(3)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Rnm

= r
[(

a
(3)
Rn − yRn

)

isgm′
(

z
(2)
Rn

)

a
(2)
Rm

+
(

a
(3)
In − yIn

)

isgm′
(

z
(2)
In

)

a
(2)
Im

]

(17)

∂e2

∂w
(2)
Inm

=
∂e2

∂a
(3)
Rn

∂a
(3)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Inm

+
∂e2

∂a
(3)
In

∂a
(3)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Inm

= r
[

−
(

a
(3)
Rn − yRn

)

isgm′
(

z
(2)
Rn

)

a
(2)
Im

+
(

a
(3)
In − yIn

)

isgm′
(

z
(2)
In

)

a
(2)
Rm

]

,

(18)

where yi is the ith element of the output of training sample

yZF . Similarly, the gradient of weights at the first layer is

∂e2

∂w
(1)
Rnm

=

NT
∑

i=1

[

∂e2

∂a
(3)
Ri

∂a
(3)
Ri

∂z
(3)
Ri

(

∂z
(3)
Ri

∂a
(2)
Rn

∂a
(2)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Rnm

+
∂z

(3)
Ri

∂a
(2)
In

∂a
(2)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Rnm

)

+
∂e2

∂a
(3)
Ii

∂a
(3)
Ii

∂z
(3)
Ii

(

∂z
(3)
Ii

∂a
(2)
Rn

∂a
(2)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Rnm

+
∂z

(3)
Ii

∂a
(2)
In

∂a
(2)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Rnm

)]

= r2
NT
∑

i=1

[(

a
(3)
Ri − yRi

)

isgm′
(

z
(3)
Ri

)(

w
(3)
Rinisgm

′
(

z
(2)
Rn

)

xRm

−w(3)
Iinisgm

′
(

z
(2)
In

)

xIm

)

+
(

a
(3)
Ii − yIi

)

isgm′
(

z
(3)
Ii

)(

w
(3)
Iinisgm

′
(

z
(2)
Rn

)

xRm

+w
(3)
Rinisgm

′
(

z
(2)
In

)

xIm

)]

(19)

∂e2

∂w
(1)
Inm

=

NT
∑

i=1

[

∂e2

∂a
(3)
Ri

∂a
(3)
Ri

∂z
(3)
Ri

(

∂z
(3)
Ri

∂a
(2)
Rn

∂a
(2)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Inm

+
∂z

(3)
Ri

∂a
(2)
In

∂a
(2)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Inm

)

+
∂e2

∂a
(3)
Ii

∂a
(3)
Ii

∂z
(3)
Ii

(

∂z
(3)
Ii

∂a
(2)
Rn

∂a
(2)
Rn

∂z
(2)
Rn

∂z
(2)
Rn

∂w
(2)
Inm

+
∂z

(3)
Ii

∂a
(2)
In

∂a
(2)
In

∂z
(2)
In

∂z
(2)
In

∂w
(2)
Inm

)]

= r2
NT
∑

i=1

[

−
(

a
(3)
Ri − yRi

)

isgm′
(

z
(3)
Ri

)(

w
(3)
Rinisgm

′
(

z
(2)
Rn

)

xIm

+w
(3)
Iinisgm

′
(

z
(2)
In

)

xRm

)

+
(

a
(3)
Ii − yIi

)

isgm′
(

z
(3)
Ii

)(

−w(3)
Iinisgm

′
(

z
(2)
Rn

)

xIm

+w
(3)
Rinisgm

′
(

z
(2)
In

)

xRm

)]

(20)

C. Algorithm Summary

The training process of the proposed hybrid precoding

network is similar to that of the traditional BP neural network.

First, the complex weight is initialized. Then forward propaga-

tion is performed to obtain the corresponding network output

and the cost function. Afterwards, the partial derivatives are

calculated according to (17),(18),(19) and (20) to adjust the

weight. The training process is terminated when the error

Algorithm 1 Hybrid precoding algorithm based on BP neural

network.

Input: Channel matrix H

Output: Optimized hybrid precoding neural network F

1: Initialization: Weights of the neural network are initialized

as W(1),W(2) ∼ CN (0, 1) and epoch is 1. The threshold

of the error is set as 10−8;

2: Calculate the optimal full-digital ZF precoding matrix

BZF from the channel matrix;

3: Generate the training set Ωt (xi, yi) and the test set

Ωv (xi, yi). The input of both set is xi ∼ CN (0, 1) and

the output is yi = BZF xi;

4: while epoch6200 do

5: Train the neural network: Perform the forward prop-

agation according to (9),(10),(11) and (12) and calculate

the cost function e2;

6: Calculate the gradient ∇
w

(l)
nm

(

e2
)

according to

(16),(17),(18),(19) and (20);

7: Perform the back propagation via SGD and update the

weights according to (12),(13) and (14);

8: Calculate the error of the test set. If the error is smaller

than the threshold, skip to step 10;

9: end while

10: return Optimized hybrid precoding neural network F.



falls to an acceptable range. The algorithm is summarized in

Algorithm 1.

For a certain channel, the training set of the network

is generated autonomously. Therefore, the network supports

online learning. And the weights are adjusted in real time

based on changes of the channel.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the

hybrid precoding scheme based on BP neural network. We

compare the performance of our proposed algorithm with full-

digital ZF precoding, PZF precoding [10], and spatially sparse

precoding based on OMP algorithm [14] on spectrum effi-

ciency and bit error rate(BER). Without special instructions,

NT = 128, NRF = 16, Nray = 80, the number of samples in

the training set is 100, and the maximum of training iterations

is 200.

A. Spectrum Efficiency

The spectrum efficiency of a mm-Wave multiuser massive

MIMO system is [23]

R =

K
∑

k=1

log2 (1 + SINRk), (21)

where SINRk is the signal to interference and noise ra-

tio(SINR) of the kth user at the receiving end, which can be

expressed as

SINRk =
hH
k AdkdH

k AHhk

σ2
n +

K
∑

i=1,i6=k

hH
k Adid

H
i AHhk

, (22)

where dj is the jth column of D.

When it comes to our proposed hybrid precoding algorithm

based on BP neural network, we calculate the spectrum

efficiency by using the unit matrix IK as the input of the

neural network. Then the output of the neural network is

Y = [y1, ..., yk, ..., yK ] ∈ CNT×K . Furthermore, the SINR

of the kth user can be expressed as

SINRk =
hH
k ykyH

k hk

σ2
n +

K
∑

i=1,i6=k

hH
k yiy

H
i hk

. (23)

B. Performance Analysis

Fig. 3 shows the spectrum efficiency achieved by the

proposed hybrid precoding algorithm as well as ZF precoding,

PZF precoding, and OMP-based precoding versus the number

of users. Firstly, its apparent that our proposed algorithm

outperforms the OMP and PZF algorithm, and can better

approximate the spectrum efficiency of full digital precoding,

which benefits from the powerful information extraction and

representation capabilities of the neural network. Secondly, as

the number of users increases, the performance gap between

the hybrid precoding algorithms and the full digital precoding

becomes larger, but our proposed algorithm has a smaller
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Fig. 3. Spectrum efficiency versus the number of users.

1 2 3 4 5 6

Number of Users

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

B
E

R

ZF
BP
PZF
OMP

Fig. 4. BER versus the number of users.

performance loss. This is because more users cause more

serious inter-user interference, and precoding algorithms based

on mathematical methods can hardly eliminate this negative

impact completely. For a neural network, more users mean an

increase in neuron nodes and weights, so more features are

needed to be extracted to construct a better network. In fact,

the performance degradation of our proposed algorithm can

be improved by adding the training samples.

The relationship between the BER and the number of users

is evaluated in Fig. 4. The input data streams of the base station

are QPSK signals, and the maximum likelihood estimation is

adopted at the receiving end. The BER is averaged over data

streams transmission. As shown in Fig. 5, the BER of the

proposed algorithm has similar performance to ZF precoding,

especially when the number of users is large, which is superior

to the other two hybrid precoding schemes.

To learn the impact of the signal-to-noise ratio(SNR) on the
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Fig. 5. BER versus SNR with K = 3.

BER thoroughly, we illustrate the BER with respect of SNR

in Fig.5, where three users is added. In the case of high SNR,

the BER of our proposed algorithm can be consistent with the

ZF precoding. As the SNR decreases, the BER will increase

slightly, but shows significant advantages compared with the

OMP and PZF algorithms whose performance loss is severe.

This indicates that the hybrid precoding algorithm based on

complex BP neural network can adapt to worse communication

scenarios.

V. CONCLUSION

This paper introduces a novel neural-network-based hybrid

precoding algorithm for mm-Wave multiuser massive MIMO

scenarios. The complex BP neural network is studied. We

present the activation function of the complex neural network

and the gradient derivation of the back propagation process. In

particular, the proposed hybrid precoding algorithm supports

online learning. Simulation results show that the proposed

algorithm have a better performance on spectral efficiency

and BER than the current hybrid precoding algorithm based

on mathematical methods, and can approach the full digital

precoding.
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