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Secure Coded Caching with Colluding Users

Abstract—In a secure coded caching system, a central server
balances the traffic flow between peak and off-peak periods by
distributing some public data to the users’ caches in advance.
Meanwhile, these data are securely protected against the possible
colluding users, who might share their cache. We model the
system as a flow network and study its capacity region via a
network information-theoretic approach. Due to the difficulty
of characterizing the capacity region straightforwardly, our ap-
proach is two folded from the perspective of network information
theory. On one hand, we identify the inner bound of capacity
region by proposing a coded caching scheme to achieve a low load
secure data transmission. On the other hand, we also establish
outer outer bounds on the capacity region, which show that
our proposed scheme is order optimal in general under specific
circumstance.

Index Terms—coded caching, secure system, secret sharing,
network capacity.

I. INTRODUCTION

CACHING is an effective strategy to balance the traffic
flow in communication networks. The data can be allo-

cated in the storage units, or called as the cache, of each node
during the off-peak periods. It can reduce the required trans-
mission rate during peak periods, when the communication
resources is scarce.

Recent studies have proposed the coded caching in
information-theoretic framework [1]–[4]. In a coded caching
systems, there is a central server distributing the data to some
users through a broadcast channel. The goal is to minimize
the amount of the required delivery content with the limited
capacity of cache memories in every user. Meanwhile, some
original data can sometimes be valuable, such as a paid video.
The server doesn’t want anyone who didn’t pay for it to obtain
these data. Therefore, the privacy and security of the data in
coded caching have seized increasing interests in [5]–[7].

We focus on a secure coded caching system with a general
model. In this system, there is one central server connected to
K users through an error-free link. The server has a database
of N files, each with size F bits. Every user can store no
more than MF bits of file data in his local cache. Before
the transmission, each user will request one file without a
priori and send the index of his request to server. Then, server
broadcasts no more than RF bits of file data to satisfy users’
request. In addition, there are two constraints to protect the
security of the data. When any l users collude and share all
the data in their cache, they can’t obtain any information of
all the original file data. Meanwhile, they can’t obtain any
information of the original files that they didn’t request after
the transmission.

In this paper, we call the two parameters M and R as the
memory load and the communication load respectively. They
are corresponding to the information on the node and the flow
on the edge in the network. We aim to explore the region

of all the possible rate pair (M,R), to find the capacity of
the network composed by a secure coded caching system.
However, it is difficult to identify the all pairs, while the
security constraints make this problem even harder.

The studies in [1], [2] proposed the novel coded caching
schemes and showed that they can be rather beneficial than
uncoded schemes in such topology. Similar works also ex-
tended to the decentralized caching in [3], [4], [8]. Conversely,
some studies made efforts to obtain theoretical lower bound of
the necessary rate. The result in [1] put up the lower bound,
relying on the cut-set bound. In [9], [10], the computer-aided
methods are used to confirm the tighter lower bound. These
research investigated the fundamental limits of caching and
helped to characterize the memory load-communication load
tradeoff of an optimal code. When some addition security
constraints are considered, [5] introduce the secret keys to
encrypt the distributing data, so that the eavesdropper in the
broadcast channel would fail to obtain the original files. The
secret sharing schemes have been used to prevent every user to
obtain the data that he didn’t request in [6] and [7]. However,
they didn’t consider that a group of colluding users can easily
decode the extra information with their cache. In this paper,
we would further focus on the security with the presence of
colluding users. If there might be up to l of K users colluding,
the system should be able to limit any l of the K users in the
entire process. If every user is rule-abiding and independent,
the parameter l would be 1 and the system degenerates to that
in [6], which indicates our model is more general.

We have two main contributions in this paper.
• On one hand, we reveal the sufficient condition for an

(M,R) pair being achievable, which is called the inner
bounds. We propose a coded caching scheme which can
achieves this inner bound based on ideas from secret
sharing [11].

• On the other hand, we establish the necessary condition
of an (M,R) being achievable, which is called the outer
bounds. It also shows our inner bound is order optimal
in general.

The inner and outer bounds together illustrate the capcity
region.

This paper is organized as the following. In Section II,
we propose a network information theory framework of the
secure coded caching system. In Section III, we raise the inner
bounds and outer bounds as our main results. In Section IV, we
explicitly shows our coded caching scheme, which can achieve
our inner bounds for any general system scale. In Section V,
we establish outer bounds, showing the optimality of our inner
bounds. In Section VI, we give out conclusion on this paper.

II. PROBLEM FORMULATION

In this section, we formally propose the network
information-theoretic model of the secure coded caching sys-
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Fig. 1: A coded caching system with 4 users, where user 1 and user 2
collude.

tem. The model is defined in Section II-A and the correspond-
ing code to realize the system function is defined in Section
II-B.

A. System Description

We consider a coded caching network with one central
server that communicates with K different users through an
error-freely broadcast channel. There are N distinct files in
the database of the server. Besides, up to l of these K users
might collude and share their known information with each
other. As an example, Fig. 1 shows such a coded caching
system with 4 users, where any 2 users of them may collude
in the communication.

Without losing generality, we regard the information of the
N files as some i.i.d random variables, denoted as (Wn)

N
n=1.

Each Wn is uniformly distributed over

[2F ]
∆
= {1, 2, . . . , 2F },

where F ∈ N. Each Wn is large as F bits. For the secrecy of
the file data, we also introduce an encryption key Y to avoid
the data leakage between users and an encryption key E to
protect the data sharing. The encryption key Y is a random
variable to encrypt the Wn and uniformly distributed over Y .
The encryption key E is a random variable shared by users
and uniformly distributed over E .

On the other hand, we regard the cache memory of the kth
user Zk as a random variable as well, where Zk is uniformly
distributed over [2bMFc]. Each Zk is a collection of some
different original files and random secret keys. We call M as
the memory load of each user, given the fact that M indicates
the total amount of data information possessed by each user.

Prior to data sharing, every user could request one of the
N files, and broadcast the index number of the requested file
to the server. We use dk to denote the index number of the
kth user’s requested file. We can further define the demand
vector D = (d1, d2, . . . , dK). Under a given demand vector D,
the server can functionally generate a corresponding broadcast
message XD, which is uniformly distributed over [2bRFc].
After receiving the broadcast message, the kth user can decode
Wdk

. Meanwhile, any l of these K users are possible to
collude. But they can obtain no information of the other files
which they didn’t request. We call R as the communication
load of this system, since it indicates the number of bits
transmitted by server under the worst case of task demand
combination.

As mentioned previously, our goal is to characterize the
region of all the possible rate pair (M,R). The definition of a

rate pair being possible, or equivalently called as achievable,
based on our information-theoretic model is introduced in the
next subsection.

B. Formal Statement

In this part, we provide the formal definition of a secure
caching code. An (N,K,F, |Y|, |E|,M,R) secure caching
code is consisted of:
• for each k ∈ [K], a memory caching functions

φk : [2F ]N × Y × E → [2bMFc],

so that Zk, the file data and encryption key cached by
the kth user, is determined as

Zk = φk(W1,W2, . . . ,WN , Y, E); (1)

• for each D ∈ [N ]K , a message encoding function

ψD : [2F ]N × Y × E → [2bRFc],

so that the broadcast message under given demand vector
D is determined as

XD = ψD(W1,W2, . . . ,WN , Y, E); (2)

• for k ∈ [K] and D ∈ [N ]K , a decoding function

µk,D : [2bRFc]× [2bMFc]→ [2F ],

so that for each user, he can decode his request file as

Wdk
= µk,D(Zk, XD). (3)

Furthermore, we define the set L = {L ⊂ [K] : |L| = l}.
We require the addition security constraints such that

I(W[N ]; {Zk : k ∈ L}) = 0, (4)
I(W[N ]\{dk:k∈L};XD, {Zk : k ∈ L}) = 0, (5)

for any L ∈ L and D ∈ [N ]K . That is to say, for any l users,
colluding has no help on guessing the value of original file
data. Moreover, no matter of their requests, colluding has no
help on guessing the value of other unreqested file data after
receving the the sharing message. The formal statement of rate
pair being achievable is as follows:
Definition 1. The pair (M,R) is achievable for an (N,K)
secure coded caching system if an (N,K,F, |Y|, |E|,M,R)
secure caching code can be found. We define the optimal
achievable communication load under a certain memory load
M as R∗(M) that

R∗(M) = inf{R : (M,R) is achievable}.
Under any fixed system scale parameters, the achievable

(M,R) pairs consist a half open-half closed region. In order
to find the fundamental limits, we propose inner bounds and
outer bounds of the boundary on the closed part of the rate
region. The rigorous expression of inner and outer bounds are
in the next section.

III. MAIN RESULTS

In this section, We present our main results. Theorem 1
presents the inner bounds of the memory load-communication
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Fig. 2: The communication load R as a function of memory load M in a
secure coded caching system with 30 users and 30 tasks. The figure shows

the performance of the coded scheme in Theorem 1 with l = 1, 2, 5, 10
colluding users.

load tradeoff region of the secure coded caching system with
general system scale parameters (N,K).

Theorem 1. In a secure coded caching system with the N
files and K users with l of whom might collude, a rate pair
(M,R) is achievable when

M =
N
(
K−1
t−1

)
+
(
K−1

t

)(
K−l
t

) , (6)

R =

(
K
t+1

)(
K−l
t

) (7)

for all t ∈ {0, 1, . . . ,max(
⌈
K+1

l − 2
⌉
, 0)}, where K,N ∈ N

and l ∈ [K−1]. Moreover, the lower convex envelope of these
points is also achievable.

The detailed coding scheme that achieves Theorem 1 is
described and analyzed in the Section IV. With the example
of a secure coded caching system with (N,K) = (30, 30), we
can show the achievable rate pairs by using coding theory in
Fig. 2. The several dash lines donate the bounds with different
l. The common top extreme point (1, 30) can be achieved when
each user caches one unique encryption key only. Using coding
theory, we can achieve the region on and above these lines. We
can define the function RC(M) to denote the corresponding
achievable communication load rate with given M according
to Theorem 1.

Then we establish the outer bounds on the fundamental
limits in Theorem 2.

Theorem 2. In a secure coded caching system with the N
files and K users, l of whom might collude, for an achievable
(M,R) scheme that M ≥ 1, we have R ≥ R∗s(M)

=


max

s∈{l,l+1,...,min(bN/2c,K)}

sbN/sc − l − (s− l)M
bN/sc − 1

,

l < min(bN/2c,K)

min(bN/2c,K), l ≥ min(bN/2c,K)
(8)

where K,N ∈ N and l ∈ [K − 1].
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Fig. 3: The comparision between the inner bound in Theorem 1 and the
outer bound in Theorem 2 in an (N,K) = (30, 30) system with l = 5.

Theorem 2 gives out the necessary condition on the commu-
nication load. The function R∗s(M) denotes one lower bound
of R∗(M) which is concluded from many outer bounds. The
detailed proof of Theorem 2 are presented in the Section V.
With Theorem 2, we can induce the optimality of our inner
bound as following Corollary.

Corollary 1. In a secure coded caching system with the N
files and K users, l of whom might collude,

1 ≤ RC(M)

R∗(M)
≤ 12, (9)

for every achievable rate pair (M,RC(M)) in Theorem 1
when t ≥ bK+1

10l c and K
N ≤ 3.

Corollary 1 shows that the inner bound in Theorem 1 is or-
der optimal for most regimes of interest. The detailed proof of
Corollary 1 is in Section V. The Fig. 3 shows the comparison
of the inner bound and outer bound of an (N,K) = (30, 30)
system with l = 5. The optimal fundamental limits lie in the
gap between the red dashed line and the blue line, hence the
ratio between RC(M) and R∗(M) can be upper bounded by
RC(M)/R∗s(M). We compare the ratio of RC(M)/R∗s(M)
with the same M . We can see the ratio is always smaller than
3. It indicates the order optimality of our inner bound in the
(N,K)=(30, 30) system with l = 5.

IV. CACHES ASSIGNMENT AND COMMUNICATION
SCHEME

In subsection IV-A, we put up the coding scheme and prove
Theorem 1. In subsection IV-B, a example would help to
illustrate the proposed scheme.

A. The General Caching Scheme

We aim at generalizing the caching strategy to prove the
inner bound in Theorem 1, in terms of K, N , and parameters,
l and t. Consider a caching system with the N files and K
users. We know there might be up to l untrustworthy users,
and l ∈ [K − 1].

1) File Precoding:
Firstly, we split each file into P =

(
K−l
t

)
subfiles of

equal size, where t ∈ {0, 1, . . . ,max(
⌈
K+1

l − 2
⌉
, 0)}. These
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subfiles are distinct and independent, with size of F/P bits
each. We define {Wn,p : n ∈ [N ], p ∈ [P ]} to be NP
independent random variables each uniformly distributed over
[2F/P ]. They can denote the information of these subfiles. i.e.,
Wn = (Wn,1,Wn,2, . . . ,Wn,P ) for every n ∈ [N ].

Then, we would generate NQ = N [
(
K
t

)
−
(
K−l
t

)
] indepen-

dent random encryption keys {Yn,q : n ∈ [N ], q ∈ [Q]}. Each
Yn,q is uniformly distributed over [2F/P ] and independent of
the files, with size of F/P bits each. These keys would be
used to encrypt the file blocks.

Finally, we define NG = N(P + Q) independent random
variables {W̃n,T : n ∈ [N ], T ⊆ [K] and |T | = t} to denote
the file blocks, each uniformly distributed over [2F/P ]. Mean-
while, we set W̃n,Ti =

∑P
p=1Wn,pci,p +

∑Q
q=1 Yn,qci,q+P ,

where i denotes the index of Ti in the set {T ⊆ [K], |T | = t}
and each ci,j is the element in a G×G Cauchy matrix, which
is constructed in Galois field. These blocks form a (G,P,Q)
secret sharing scheme based on the Cauchy Reed-Solomon
codes [12]. We can induce some properties as following
Corollary. This fact is proved in appendix.

Corollary 2. For each n ∈ [N ],
a) All G blocks of Wn could recover the orginal file Wn.

H(Wn|{W̃n,T1 , W̃n,T2 , ..., W̃n,TG}) = 0. (10)

b) Any Q or less blocks of Wn would not leak any informa-
tion about the orginal files.

I(W[N ]; {W̃n,Ti1 , W̃n,Ti2 , ..., W̃n,TiQ}) = 0, (11)

where {i1, i2, . . . , iQ} is one subset of [G].

2) Placement Strategy:
After precoding files, the server would generate some inde-

pendent random sercet keys {ET + : T + ⊆ [K] and |T +| =
t+ 1}. These keys are uniformly distributed over [2F/P ] and
independent of the files, with size of F/P bits. These keys
would be used to encrypt the broadcast symbols later.

For the prefetching, each user k caches all the blocks W̃n,T
satisfying k ∈ T . He need aslo caches all the unique keys ET +

satisfying k ∈ T +. Thus, we can conclude the Zk from above

Zk = {W̃n,T : n ∈ [N ], k ∈ T } ∪ {ET + : k ∈ T +}. (12)

3) Transmission Strategy:
Before data sharing, every user broadcasts the index number

of the requested file. For the received demand vector D =
(d1, d2, . . . , dK), server will transmit these symbols:XD,T + =
ET + ⊕

⊕
u∈T +

W̃du,T +\u, for each sets T + ⊆ [K] and |T +| =

t+ 1. These symbols form the message

XD = {XD,T + : T + ⊆ [K] and |T +| = t+ 1}. (13)

4) Proof of Achievability:
In the general scheme, we design Zk and XD as (12) and

(13). To confirm the achievability of the proposed scheme,
we would continue to prove every user can recover his
requested file after receiving the transmission content and
secrecy constraints (4) and (5) are satisfied.

Without loss of generality, let us see how the kth user get
Wdk

after receiving all broadcast message. From the cache, he

could obtain some file blocks {W̃dk,T : k ∈ T }. For every T
that has k /∈ T , he collects the transmission symbol {XD,T + :
T + = {k ∪ T }}. Meanwhile, we have XD,T + =XD,k∪T =⊕
u∈{k∪T }

W̃du,k∪T \u ⊕ Ek∪T = [
⊕
u∈T

W̃du,k∪T \u ⊕ Ek∪T ] ⊕

W̃dk,T .
For user k, it is clear that only W̃dk,T is useful, while the

rest blocks and unique keys are interference signals. We can
see that these interference signals were stored in the user k’s
cache. Thus, he could recover the block W̃dk,T = XD,T + ⊕
[
⊕
u∈T

W̃du,k∪T \u ⊕ Ek∪T ], for every T with k /∈ T . Hence,

He could obtain the rest blocks W̃dk,T with k /∈ T After
obtaining all blocks of Wdk

, user k can recover the orginal
file Wdk

according to the Corollary 2.
Then we consider the worst case that there are l colluding

users, who are willing to share the information with each
others. They may try to get some extra file information by
cooperating, from which might make them profit. Our target
is to prevent them to get any file or information that they didn’t
request. We assume the l colluding users are user j1, j2, . . . , jl,
where set L = {j1, j2, . . . , jl} is one subset of [K]. Before
the delivery, the l colluding users may share their cache. We
denote the union set of their cache as ZL, which contains two
parts ZL,W and ZL,E :

ZL,W = {W̃n,T : n ∈ [N ], T ∩ L 6= ∅}
ZL,E = {ET + : T + ∩ L 6= ∅}

For each n ∈ [N ], the number of blocks W̃n,T they can
get is [

(
K
t

)
−
(
K−l
t

)
] = Q. Thus, they could never get

any information about any files before they request the file
according to the Corollary 2. Equation (4) is satisfied.

After the delivery, the l colluding users may share their
cache again. We divide the message XD into two sets: X1 =
{XD,T + : T + ∩ L 6= ∅} and X2 = {XD,T + : T + ∩ L = ∅}.
It is obvious X2 is no help for them to guess any information
about files, because every symbol XD,T + ∈ X2 has been
encrypted by the unique key ET + that is not in set ZL,E .
On the other hand, for every symbol XD,T + ∈ X1, we could
find a number j satisfied j ∈ L and j ∈ T +. We have
XD,T + = ET + ⊕

⊕
u∈T +

W̃du,T +\u = W̃dj ,T +\j ⊕ ET + ⊕⊕
u∈T +\j

W̃du,T +\u. As we analyze before, for user j, only

W̃dj ,T +\j is useful. The rest blocks and unique keys are
interference signals. We know these interference signals were
stored in his cache. The l colluding users could only obtain
W̃dj ,T +\j , which user j deserves. It means they fail to get one
more blocks of unrequested files from X1. Thus, for each Wn

they didn’t request, the l colluding users can only acknowledge
Q blocks. They could never get any information about these
files according to the Corollary 2. Equation (5) is satisfied.

5) The Rate Pair of the Proposed Scheme:
Now we comfirm our scheme is achievable. We can continue

to determine the rate pair (M,R). From (12), every user
caches N

(
K−1
t−1

)
blocks and

(
K−1

t

)
unique keys. Thus the

memory load of the user: M =
N(K−1

t−1 )+(
K−1

t )
(K−l

t )
. From (13),
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server transmits
(

K
t+1

)
symbols XD,T + . Hence, the communi-

cation load R =
( K
t+1)

(K−l
t )

. We can obtain the rate pair (M,R)

as defined in Theorem 1. Theorem 1 is proved.

B. Example

(N = 4,K = 4, l = 2) Consider a coded caching
system with 4 files, W1,W2,W3,W4, and 4 users. We
know any of two could collude. Firstly, we divide every
file into two partitions. i.e. Wi = (Wi,1,Wi,2) for ev-
ery i ∈ {1, 2, 3, 4}. Then, we generate some encryption
keys and unique keys: Y1,1,Y1,2,Y2,1,Y2,2,Y3,1,Y3,2,Y4,1,Y4,2,
E12,E13,E14,E23,E24,E34. We use a Cauchy matrix to form
the blocks as below:

W̃i,1

W̃i,2

W̃i,3

W̃i,4

 =

 7 6 8 2
6 8 2 12
8 2 12 5
2 12 5 10


 Wi,1

Wi,2

Yi,1

Yi,2

 ,

where i ∈ {1, 2, 3, 4}. The cache at the every user are:

Z1 = {W̃1,1, W̃2,1, W̃3,1, W̃4,1, E12, E13, E14},
Z2 = {W̃1,2, W̃2,2, W̃3,2, W̃4,2, E12, E23, E24},
Z3 = {W̃1,3, W̃2,3, W̃3,3, W̃4,3, E13, E23, E34},
Z4 = {W̃1,4, W̃2,4, W̃3,4, W̃4,4, E14, E24, E34}.

Here we assume the demand vector D = (1, 2, 3, 4), server
will transmit 6 symbols:

XD = {W̃2,1 ⊕ W̃1,2 ⊕ E12, W̃3,1 ⊕ W̃1,3 ⊕ E13,

W̃4,1 ⊕ W̃1,4 ⊕ E14, W̃3,2 ⊕ W̃2,3 ⊕ E23,

W̃4,2 ⊕ W̃2,4 ⊕ E24, W̃4,3 ⊕ W̃3,4 ⊕ E34.}

Every user could decode all the file blocks of their requested
file and recover the file. For user 1, he wants to recover W1.
He can directly obtain the block W̃1,1 from cache Z1. The rest
blocks of his request file W1 could be decoded from XD:

W̃1,2 = [W̃2,1 ⊕ W̃1,2 ⊕ E12]⊕ W̃2,1 ⊕ E12,

W̃1,3 = [W̃3,1 ⊕ W̃1,3 ⊕ E13]⊕ W̃3,1 ⊕ E13,

W̃1,4 = [W̃4,1 ⊕ W̃1,4 ⊕ E14]⊕ W̃4,1 ⊕ E14.

Now he have get W̃1,1, W̃1,2, W̃1,3, W̃1,4. He could figure out
the subfiles W1,1,W1,2 and recover W1. Similarly, other users
could obtain their request file.

If any of two collude, they could not figure out any infor-
mation from the unquested files. Supposing user 1 and user 2
share their information. Before delivery, they can’t eliminate
the interference of encryption key Yn,p with only 2 blocks of
each file from cache. They can’t get any information about any
files. After delivery, they can’t decode W̃4,3⊕W̃3,4⊕E34 due
to the interference of E34. Thus, they fail to obtain one more
block of unrequest files and can’t get any extra information.

V. PROOF OF OUTER BOUNDS

We give the derivation of the outer bound in Theorem 2,
similar to [5]. We also compare the achievable rate RC(M) of
the proposed scheme with the optimal achievable communica-
tion load rate R∗(M). The result shows that the ratio between

them is is within a constant factor of the optimal for most
regimes of interest. The proof can be found in appendix.

VI. CONCLUSION

In this paper, we study the fundamental limits of the memory
load-communication load tradeoff region for secure coded
caching system with colluding users. On one hand, we propose
a coded caching scheme using coding theory, which can have
a lower communication load under a same memory load,
comparing with no coding theory used scheme. On the other
hand, we also established outer bounds for the system. The
outer bounds show that our proposed scheme is order optimal
in general. Although larger rate needed to achieve the goals
compared with the optimal rate, we could control the costs
within the tolerable range for most regimes.
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APPENDIX A
PROOF OF THEOREM 2

In this part, we prove the outer bound in Theorem 2, similar
to [5]. Consider an achievable (M,R) scheme with the N
files and K users. We would calculate the lower bound of the
optimal achievable communication load rate R∗(M). Firstly,
we consider the case of l < min(bN/2c,K). Let s be a integer
that s ∈ {l, l + 1, . . . ,min(bN/2c,K)}. We assume there
are bN/sc possible demand vectors: D1, D2, . . . , DbN/sc. At
the first request instance, the first s users request the files
W1,W2, . . . ,Ws. At the second request instance, the first s
users request the files Ws+1,Ws+2, . . . ,W2s. Proceed in the
same law. At the pth request instance, the first s users request
the results W(p−1)s+1,W(p−2)s+2, . . . ,Wps. i.e., the first s
elements in Dp is (p − 1)s+1, (p − 1)s+2, . . . , ps, where
p ∈ {1, 2, . . . , bN/sc}. We keep to set some expression as
below:

X̃ = {XD1
, XD2

, ..., XDbN/sc},
X̃\p = {XD1

, ..., XDp−1
, XDp+1

, ...., XDbN/sc},
Z̃ = {Z1, Z2, ..., Zs},
W̃ = {W1, ...,W(p−1)s,W(p−1)s+l+1...,WbN/scs}.

Here X̃ denotes the set of all the broadcast message at the
all bN/sc request instances. X̃\p denotes the set of all the
broadcast message at the all but the pth request instances.
Because s ≤ bN/2c, bN/sc ≥ 2. X̃\p is always non empty.
Z̃ denotes the union set of the first s users’ cache. W̃ denotes
the union set of the requested files at the all request instances
except W(p−1)s+1,W(p−1)s+2, . . . ,W(p−1)s+l, which are the
requested files of the first l users at the pth request instance.

Meanwhile, we can generalize some constraints based on
the definition of the system. We know all the requested files
in W̃ could be recovered if given X̃ and Z̃, we have

H(W̃ |X̃, Z̃) = 0, . (14)

Moreover, the secrecy constraint should be satisfied. We
should prevent the first l users to obtain the information of the
unrequested files at the pth request instance. Thus, according
to (5), we have

I(W̃ ;Xp, Z1, Z2, . . . , Zl) = 0, (15)

where p ∈ {1, 2, ..., bN/sc}. Therefore we now give derivation
below:

(bN/scs− l)F =H(W̃ )

=I(W̃ ; X̃, Z̃) +H(W̃ |X̃, Z̃)
(a)
= I(W̃ ; X̃, Z̃)

=I(W̃ ;Xp, Z1, . . . , Zl)

+ I(W̃ ; X̃\p, Zl+1, . . . , Zs|Xp, Z1, . . . , Zl)

(b)
=I(W̃ ; X̃\p, Zl+1, . . . , Zs|Xp, Z1, . . . , Zl)

≤H(X̃\p, Zl+1, . . . , Zs)

≤
bN/sc∑

j=1,j 6=p

H(XDj ) +

s∑
i=l+1

H(Zi)

=(bN/sc − 1)RF + (s− l)MF. (16)

Here (a), (b) are due to the constraints in (14),(15). Therefore,
from (16), we can get a series of outer bounds,

(bN/sc − 1)R+ (s− l)M ≥ bN/scs− l, (17)

where s ∈ {l+1, l+2, . . . ,min(bN/2c,K)}. The lower bound
of the optimal achievable communication load rate R∗(M)
could be concluded from these outer bounds

R∗(M) ≥ R∗s(M)

= max
s∈{l,l+1,...,min(bN/2c,K)}

sbN/sc − l − (s− l)M
bN/sc − 1

.

(18)

Then, we consider the case of l ≥ min(bN/2c,K).
Let s be a integer that s ∈ {1, 2, . . . ,min(bN/2c,K)}.
We still assume there are bN/sc possible demand vectors:
D1, D2, . . . , DbN/sc in the same law before. Keep the same
expression of X̃ , X̃\p and Z̃ as the first case. We define
W̃ = {W1, ...,W(p−1)s,Wps+1...,WbN/scs} this time.

In this case, the constraint (14) is still true. Due to s ≤ l,
according to (5), the constraint (15) should be rewritten as

I(W̃ ;Xp, Z̃) = 0, (19)

where p ∈ {1, 2, ..., bN/sc}. Therefore we now give derivation
below:

(bN/scs− s)F =H(W̃ )

=I(W̃ ; X̃, Z̃) +H(W̃ |X̃, Z̃)
(a)
= I(W̃ ; X̃, Z̃)

=I(W̃ ;Xp, Z̃) + I(W̃ ; X̃\p|Xp, Z̃)

(b)
=I(W̃ ; X̃\p|Xp, Z̃)

≤H(X̃\p)

≤
bN/sc∑

j=1,j 6=p

H(XDj
)

=(bN/sc − 1)RF. (20)

Here (a), (b) are due to the constraints in (14),(19). Therefore,
from (20), we can get a series of outer bounds,

R ≥ s, (21)

where s ∈ {1, 2, . . . ,min(bN/2c,K)}. The lower bound of
the optimal achievable communication load rate R∗(M) could
be concluded as

R∗(M)≥R∗s(M) = max
s∈{1,2,...,min(bN/2c,K)}

s

= min(bN/2c,K). (22)

Combining (18) and (22), the Theorem 2 is proved.

APPENDIX B
PROOF OF COROLLARY 1

In this subsection, we prove the Corollary 1. We compare
lower bound of R∗(M) in Theorem 2 to the rate RC(M)
achieved by the proposed scheme in Theorem 1 in three cases:
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l ≥ min(bN/2c,K), K+1
12 ≤ l < min(bN/2c,K) and l ≤

K+1
12 .
Assume that l ≥ min(bN/2c,K). We have

RC(M) ≤ RC(1) = K,

R∗(M) ≥ R∗s(M) = min(bN/2c,K),

by Theorem 1 and Theorem 2. Combining these yields

RC(M)

R∗(M)
≤ RC(1)

R∗s(M)
=

K

min(bN/2c,K)
≤ 12, (23)

for l ≥ min(bN/2c,K) and K
N ≤ 3.

Assume next that K+1
12 ≤ l < min(bN/2c,K). Setting s =

l, we have

R∗(M) ≥ R∗s(M) ≥ lbN/lc − l − (l − l)M
bN/lc − 1

= l,

by Theorem 2. Combining these yields

RC(M)

R∗(M)
≤ RC(1)

l
≤ K

K+1
12

≤ 12, (24)

for K+1
12 ≤ l < min(bN/2c,K) and K

N ≤ 3.
Keep to assume that l ≤ K+1

12 . We view the achievable rate
R in Theorem 1 as a function of t,

RC(t) =

(
K
t+1

)(
K−l
t

) =
K!(K − l − t)!

(t+ 1)(K − l)!(K − t− 1)!

=
K − t
t+ 1

·
t−1∏
j=0

K − j
K − l − j

,

for t ∈ {0, 1, . . . ,max(
⌈
K+1

l − 2
⌉
, 0)}. The rate RC(t)

decreases as t increases (proof omitted for space constraints).
Thus, we have

RC(t) ≤ RC(bK + 1

10l
c)

= (
K − t
t+ 1

·
t−1∏
j=0

K − j
K − l − j

)t=bK+1
10l c

≤ (
K − t
t+ 1

· [ K(K − t+ 1)

(K − l)(K − l − t+ 1)
]
t
2 )t=bK+1

10l c

= (
K − t
t+ 1

· [ K

K − l
]
t
2 · [ K − t+ 1

K − l − t+ 1
]
t
2 )t=bK+1

10l c

≤
K − (K+1

10l − 1)

(K+1
10l − 1) + 1

· (
K
l

K
l − 1

)
1

20l · (
K
l

K
l − 1

)
K
l ·

1
20

· [
(1− 1

10l ) ·
K+1

l

(1− 1
10l ) ·

K+1
l − 1

]
K+1

l ·
1
20

≤ (10l − 1) · ( 11

11− 1
)

1
20 · ( 11

11− 1
)11· 1

20

· [
(1− 1

10 ) · 12
(1− 1

10 ) · 12− 1
]12· 1

20

= 1.12778(10l − 1),

for bK+1
10l c ≤ t ∈ {0, 1, . . . ,max(

⌈
K+1

l − 2
⌉
, 0)} when l ≤

K+1
12 . Combining these yields

RC(M)

R∗(M)
≤ 1.12778(10l − 1)

l
≤ 12, (25)

for l ≤ K+1
12 and t ≥ bK+1

10l c.
Combining (23),(24) and (25) yields

RC(M)

R∗(M)
≤ 12,

for every achievable rate pair (M,RC(M)) in Theorem 1
when t ≥ bK+1

10l c and K
N ≤ 3. The Corollary 1 is proved. It

shows that more than 9/10 points in Theorem 1 can maintain
multiplicative gap within the factor 12. It means the inner
bound in Theorem 1 is order optimal in general.

APPENDIX C
PROOF OF COROLLARY 2

Corollary 2 can be proved easily. For every n ∈ [N ],


W̃n,T1

W̃n,T2

...
W̃n,TG

=


c1,1 c1,2 · · · c1,G
c2,1 c2,2 · · · c2,G

...
...

. . .
...

cG,1 cG,2 · · · cG,G





Wn,1

...
Wn,P

Yn,1

...
Yn,Q


=C



Wn,1

...
Wn,P

Yn,1

...
Yn,Q


,

where C is a Cauchy matrix in Galois field. Its element ci,j =
1

xi+yj
, where both xi and yj are the distinct elements of Galois

field GF(2m) that satisfies 2m ≥ 2G for every i, j ≤ G.
On the one hand, the Cauchy matrix is always full rank and

the inverse matrix C−1 is available. Thus, if obtaining all the
W̃n,T , we can multiply them by C−1 to decode all the Wn,p

and Yn,q . Equation (10) is true.
On the other hand, we can pick up any Q of G blocks

and form the collection {W̃n,Ti1 , W̃n,Ti2 , ..., W̃n,TiQ }, where
{i1, i2, . . . , iQ} is one subset of [G]. So


W̃n,Ti1

W̃n,Ti2

...
W̃n,TiQ

=


ci1,1 ci1,2 · · · ci1,G
ci2,1 ci2,2 · · · ci2,G

...
...

. . .
...

ciQ,1 ciQ,2 · · · ciQ,G





Wn,1

...
Wn,P

Yn,1

...
Yn,Q



= [V1V2]



Wn,1

...
Wn,P

Yn,1

...
Yn,Q


=V1

 Wn,1

...
Wn,P

+ V2

 Yn,1

...
Yn,Q

 .

If the collection could leak the information, there should be
one non-zero vector H satisfies

HV1 6= O,HV2 = O,

where O is the zero vector. It means the interference from
encryption key Y could be eliminated. However, we know
any submatrix of Cauchy matrix is still full rank. The rows of
V2 are linearly independent, which implies the non-existence
of such H . Thus, the collection is impossible to leak any
information. Equation (11) is true. The Corollary 2 is proved.
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