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Abstract—The proposed research performs an analysis of the
capacity higher-order statistics for a single-input multiple-output
multiantenna wireless communication system equipped with a
maximum-ratio combining scheme. It was assumed that the
propagation multipath channel is described with the κ − µ
fading model with the correlated dominant components. Closed-
form and asymptotic expressions were derived and applied to
the problem of minimum capacity reliability (due to channel
fluctuations, thus possible rate deterioration) and corresponding
signal-to-noise ratio analysis. The performed computer simu-
lation, verifying the correctness of the obtained expressions,
along with the generalized κ− µ fading channel with correlated
shadowing, assumed several specific limiting simplified cases:
Rayleigh, Rician and Nakagami-m. It was shown that the signal-
to-noise ratio (at which minimum capacity reliability is attained)
is achieved at greater values than that of simplified models, and
the absolute value of this minimum can be smaller/higher than
for the degenerate cases depending on the dominant components
one-step correlation coefficient.

Index Terms—Fading, shadowing, SIMO, higher-order statis-
tics, signal-to-noise ratio, κ− µ shadowed.

I. INTRODUCTION

Diversity reception (SIMO, MISO, MIMO) [1], [2] is one
of the key technologies in wireless communications helping
to achieve transmission rate and reliability required by up-
to-date communication standards (5G [3] [4], WiFi 7 [5], [6],
etc.). At the same time, the growth of consumer demands leads
to the strengthening in signal processing requirements: the
increase of the desired link quality level (generally described
by the error rate) increases the impact of the factors that
were not significant at lower levels [7] (i.e. channel model or
system configuration parameters, etc.). The two main strate-
gies, assumed in practice to cope with that problem, are 1) to
revise the existing description of the system, in general, and
channel model, in particular, complexifying them to include
greater details of signal propagation, 2) to derive communi-
cation schemes subjected to a larger number of restrictions
considering more factors affecting link quality.

Within the first approach, the dominant role pertains to so-
called generalised models that account for effects of path loss,
fading (fast and slow) and shadowing [8], [9], [10], [11].
They are usually constructed mathematically in such a way
as to incorporate less general ones as specific limiting cases
(including Rayleigh, Rician, Nakagami, Hoyt, Weibull, etc.).

Among the most widely used, the prominent role is given to
the correlated κ− µ shadowed fading channel model [11].

Commenting on the second approach one should mention
the channel capacity higher-order statistics (CHOS) methodol-
ogy (very popular nowadays), which in addition to existing re-
strictions parameterises communication quality and reliability
utilizing statistical moments of channel capacity fluctuations
(and hence rate fluctuations) [12]–[16].

Although the combination of those approaches can help
to get a better insight on how to increase link quality, their
joint implication in many cases leads to analytically intractable
description, which lessens possible benefits.

Motivated by the problem stated above, the proposed re-
search derives the representation of the capacity higher-order
statistics for the SIMO system, functioning in presence of a
multipath fading channel subjected to the κ − µ model with
correlated shadowing. It is demonstrated that the assumed
goal can be achieved by representing the capacity statistics
in terms of the moment generating function of the signal-to-
noise ratio; thus, the expressions for the moment generating
function for the SIMO system employing maximum-ratio-
combining (MRC) scheme was derived. The derived solution
was then analyzed and asymptotically simplified to yield
computationally efficient expressions. Finally, the numeric
simulation validating the correctness of the derived results was
executed and the practical problem of minimizing capacity
reliability for various channel parameters was analyzed.

The remainder of the paper is organized as follows: Section
2 provides some preliminary information about the SIMO
system, operating with κ − µ channel model with correlated
shadowing, and introduces the analytical definitions of the
capacity higher-order statistics; Section 3 states the main
contributions of the research: 1) the derived analytic rep-
resentation of the capacity higher-order statistics in terms
of the instantaneous signal-to-noise ratio moment generating
function, 2) the expression for the moment generating function
of the instantaneous signal-to-noise ration at the output of
the maximum-ratio combiner, 3) the resultant analytic and
several asymptotic expressions of the CHOS for the SIMO
MRC scheme, 4) discussion of the derived expression, their
comparison and practical suggestions; Section 4 presents the
application of the proposed expressions to the problem of min-
imum capacity reliability analysis in presence of generalized
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Fig. 1. κ−µ channel with correlated shadowing

κ − µ channel with correlated shadowing including several
specific subcases (Rician, Rayleigh and Nakagami-m); and the
conclusions are drawn in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. κ− µ channel model with correlated shadowing

Let us assume a communication system with a single trans-
mitting and NR receiving elements (SIMO case). To achieve
maximum gain (both multiplexing and diversity) proper com-
bining of the received signals should be used. For the case
when channel state information is available at the receiver
maximum-ratio-combing yields the best (optimal) result [2].
For NR-element receive antenna array with the instantaneous
signal-to-noise ratio (SNR) per branch γi the output SNR is
defined as [2]:

γ =

NR∑
i=1

γi. (1)

Let us describe the propagation subchannels (comprised
of the transmitter and each of the receivers) with κ − µ
shadowed fading model [10] and let the shadowing for all
of the subchannels take place with the same intensity m, for
instance, when the receiving array is compact (hence such a
model does not include distributed MIMO (D-MIMO) case),
see Fig. 1.

Assuming the possible correlation of the dominating com-
ponents shadowing the probability density function of the
instantaneous SNR at the receiver is given by [11]:

fγ(γ) =
A

γ

(
ηγ

γ̄

)U
e−

ηγ
γ̄

∞∑
k=0

Dk1F1

(
mNR+k, U ;

ηγλ

γ̄(1 + λ)

)
, (2)

with the following set of substitutes:

A =

NR∏
i=1

(
λ

λi

)m
, η =

NR∑
i=1

µi(1 + κi), U =

NR∑
i=1

µi, (3)

where γ̄ is the average signal-to-noise ratio, i.e. γ̄ = E {γ} =
2σ2η, {µ1, . . . µNR} are the numbers of multipath beams
(clusters of multipath waves) for each of the receiving antenna
elements, {κ1, . . . κNR} is the ratio between the total energy
of the dominating waves inside each of the clusters and total
energy of all other multipath waves for each of the receiving
elements, m is the degree of shadowing of the dominating

waves and the summation coefficients Dk are defined in terms
of recurrence relation:

Dk =
δk

λmNR+kΓ(U)

(
1 +

1

λ

)−(mNR+k)

,

δk =
m

k

k∑
q=1

NR∑
i=1

(
1− λ

λi

)q
δk−i,

(4)

with the initial condition δ0 = 1; λ being the minimum
eigenvalue of the eigenspectrum of matrix product (DC) with
multipliers D = diag

[
µiκi
m

]
(here diag[·] stands for the

diagonal matrix), and matrix C:

C =


1

√
ρ12 ...

√
ρ1NR√

ρ21 1 ... . . .
... ... ... ...√
ρNR1 ... ... 1

 , (5)

where ρi,j captures correlation of shadowing processes be-
tween ith and jth antenna element input signals.

For further analysis a standard exponential model with one-
step correlation coefficient ρ would be assumed, i.e. ρi,j =
ρ|i−j| [7].

B. Capacity higher-order statistics definition

To describe the variability of channel capacity it is a
common practice to introduce so-called capacity higher-order
statistics (CHOS) [12], [13] being the moments of log(1 +γ),
i.e.

Λn = E {logn (1 + γ)} =

∫ ∞
0

logn (1 + γ) fγ (γ) dγ. (6)

Among them the most prominent role (and important from
practical point of view) play amount of dispersion AoD (AoD)
and capacity reliability R (CR):

AoD =
V{log(1 + γ)}
E{log(1 + γ)}

=
Λ2

Λ1
− Λ1, (7)

R = 1−AoD. (8)

AoD, being the variance of channel ergodic capacity nor-
malized by its expected value, characterizes the normalized
spread of channel capacity (and therefore rate) stochastic
variations. It quantifies the distortion in the ergodic capacity
per 1-bit information transfer [14] and capacity reliability in
its turn is a complementary measure defining its stability.

From a practical perspective, it is important to achieve
the maximum possible capacity of the communication link
guaranteeing at the same time its minimum distortion. Hence
evaluation of AoD and CR is a substantial element of link
quality estimation and prediction. To this extent substituting
(2) into (6) to get (7) or (8) leads to very complex expressions
thus an analytical treatment is required.



III. FADING CHANNEL CAPACITY HIGHER-ORDER
STATISTICS EXPRESSIONS

The derivation of closed and asymptotic forms of expres-
sions for Λn, starting with its definition (6), can be tackled
variously. The one proposed in this research and its main
results is stated in the following propositions.

Proposition 1: Multipath fading channel capacity higher-
order statistics Λn for arbitrary channel model can be rep-
resented in terms of its instantaneous signal-to-noise ratio
moment generating function (MGF) Mγ(p) as follows:

Λn=(−1)n
∂n

∂an

(
1

Γ(a)

∫ ∞
0

pa−1e−pMγ(−p)dp
)∣∣∣∣∣

a=0

. (9)

Proof : For the proof of Proposition 1 see APPENDIX A.

The obtained expression is much more practical in most
cases since for a vast majority of multipath channel statistics
used in wireless communication expressions for moment gen-
erating functions are generally simpler for further analytical
derivations or direct numerical calculations. That is the exact
situation for a channel model under consideration. But to
employ the obtained result one has to derive MGF for the
assumed model, which is stated in Proposition 2.

Proposition 2: The instantaneous signal-to-noise ratio mo-
ment generating function Mγ(p) for NR-element SIMO sys-
tem with the maximum-ratio-combining technique employed
at the receiver and κ − µ shadowed fading channel with
correlated shadowing can be represented as follows:

Mγ(p) = C0Γ(U)

∞∑
k=0

δ̃k(ᾱ− p)−mk(α− p)mk−U , (10)

where ᾱ = α
1+λ and C0, λ̄,mk and δ̃k are defined in (14).

Proof : For the proof of Proposition 2 see APPENDIX B.

Combining Proposition 1 and Proposition 2 helps to formu-
late the main result of the research: an analytic (Λκ−µn ) and
asymptotic (Λ̃κ−µn ) expressions for the capacity higher-order
statistics in presence of multipath κ − µ fading channel with
correlated shadowing and MRC SIMO receiving scheme.

Proposition 3: In the aforementioned assumptions Λκ−µn and
Λ̃κ−µn are defined as

Λκ−µn =
(−1)nC0Γ(U)

lnn(2)

∂n

∂an

( ∞∑
k=0

δ̃k
Ja(mk, α, λ, U)

Γ(a)

)∣∣∣∣∣
a=0

(11)

Λ̃κ−µn =
(−1)nC0

lnn(2)αU (1 + λ)−mNR
∂n

∂an

{
αaΓ(U − a)×

×

( ∞∑
k=0

δ̄k 2F1

(
mk, a;U ;

λ

λ+ 1

))}∣∣∣∣∣
a=0

(12a)

Λ̃κ−µn =
(−1)nC0

lnn(2)(1 + λ)−mNR
∂n

∂an

{
Ψ(U,U + 1− a, α)×

×

( ∞∑
k=0

δ̄k

)
− aλΨ(U,U − a, α)

α

( ∞∑
k=0

mk δ̄k

)
+

+
a(a+ 1)λ

2α2
Ψ(U,U − 1− a, α)×

×

( ∞∑
k=0

mk(λ(mk + 1) + 2)δ̄k

)}∣∣∣∣∣
a=0

(12b)

Λ̃κ−µn =
(−1)nC0Γ(U)

lnn(2)

( ∞∑
k=0

δ̄k

)
×

× ∂n

∂an
Ψ(U,−a+ U + 1, α)

∣∣∣∣∣
a=0

. (12c)

Proof : For the proof of Proposition 3 see APPENDIX C.
Up to authors knowledge, (15), i.e. Ja(mk, α, λ, U) has

no closed-form solution. Despite it, for practical aspects (for
instance for numerical integration) the proposed representation
is much simpler than the direct substitution of (2) into (6).

At the same time, practical implementation of the derived
expression (e.g., for real-time monitoring and prediction of
channel capacity fluctuations) requires closed-form expres-
sions; therefore, one has to resort to various forms of approx-
imations (12a), (12b), (12c) providing a reasonable error.

The derived expressions (12a), (12b), (12c) mainly rely on
the asymptotic behaviour of integrand multipliers. (12a) is
obtained via expansion of the exponent in series and leaving
only the zero-order approximation since the dominant impact
of the exponent will be in the vicinity of p = 0. (12b)

is obtained with the expansion of
(
α̃+p
α+s

)−mk
in terms of

p around p = 0 and leaving quadratic approximation. On
the other hand, (12c) mainly relies on the fact that for the
increasing average SNR the difference between α and ᾱ will
be relatively small; hence, the fraction ᾱ+p

α+s cancels out.
Direct comparison of the derived expressions demonstrated

almost similar approximation quality (in terms of residual
error, which does not exceed 1% and in most cases is by
several orders of magnitude lower) when all of the parameters
U, λ,mk are small. This situation constitutes a case of a
small number of antenna elements, poor channel scattering
conditions and weakly correlated heavy shadowing. All of the
solutions behave well with the increase of U . At the same time
decrease in shadowing (greater m) or increase in its correlation
(which results in greater λ) makes the simplest approximation
(12c) almost inapplicable (since the error increases up to
10% and even more), which is natural as it does not take
into account those factors. It can be seen that (12c) (up to
multiplicative factor) is just the zero-order term of (12b).
On the other hand (12a) and (12b) demonstrate excellent



approximation quality. At the same time, one has to keep in
mind the recursion procedure in index k which in practice
has to be terminated at some point and generally implies the
strongest restrictions on computational time and complexity.
Because of this factor, it should be noted that recursions
in (12b) and (12c) do not require evaluation of complex
mathematical structures (like hypergeometric function as in
(12a) and in the initial equation, although there are many
mathematical libraries, which provide numerically satisfactory
procedures computing them).

From a practical point of view, the channel estimation
procedure, which is usually done beforehand, yields channel
parameters estimates (i.e. m, µ, κ, ρ) that can serve as a guide
for the choice of approximation ((12a), (12b) or (12c)).

Although the derived results are mainly used herein for
further AoD and CR calculation, they are generally not limited
to those factors and can be applied to any channel quality
metrics that exploit capacity higher-order statistics (6).

IV. PRACTICAL IMPLEMENTATION TO THE PROBLEM OF
MAXIMUM CAPACITY RELIABILITY ANALYSIS.

SIMULATION AND RESULTS

A. Practical application: maximum capacity reliability anal-
ysis

To illustrate the application of the obtained results, the
problem of maximum AoD (or minimum CR) analysis is
assumed.

It is a common fact that in many practical situations
(specific range of SNR) AoD/CR can be considered as sin-
gle extremum curves with respect to SNR [13], [14]. At
the same time the absolute value of Rmin = min(R) (or
AoDmax = max(AoD)) and the SNR at which it is attained,
i.e. γRmin

= γAoDmax
= arg minγ R(γ) heavily depends

on the channel and communication system parameters (for
instance, see Fig. (2)).

Since, as it was mentioned earlier, the assumed model
incorporates a wide variety of less general channel models,
the following cases were analysed:
• Rician fading with correlated shadowing(µ = 1, m →
∞): one multipath cluster of waves with a dominant
component exhibiting no shadowing, with varying Rician
K-factor and ρ.

• Nakagami-m fading with correlated shadowing(κ →
0,m → ∞): two multipath clusters of waves with no
dominant component, variable Nakagami-m parameter
and ρ.

• Rayleigh fading with correlated shadowing(κ → 0, µ =
1,m→∞): a single cluster of multipath waves with no
dominant component and variable ρ.

• Generalised case (κ−µ with correlated shadowing) with
variable κ, µ,m and ρ.

B. Simulation and Results

Analysing the impact of shadowing correlations (see
Fig. (3)–(4)), one can see thatRmin as well as γRmin exhibits a
strong dependence on ρ for two out of four models, which is

Fig. 2. R for κ−µ-correlated shadowed channel model for two distinct
configurations

natural, since for Rayleigh and Nakagami-m cases κ → 0,
hence the impact of dominant components’ correlation is
absent.

For κ−µ model numeric simulations demonstrated the high
sensitivity of Rmin (and low sensitivity of γRmin

) to the
number of elements in case of small shadowing correlation,
moreover, all of the analysed effects become more pronounced
with the decrease of the one-step correlation coefficient.

It should be noted that the obtained results are not limited
to those models; hence, the performed research helps to get a
better insight into the channel propagation effects.

Cross-comparison of the simulation results demonstrated
that for the Rician case, the increase in ρ decreases CR
to the value of CR for the Rayleigh case, which means
that a higher correlation of shadowing of a single dominant
component almost diminishes its impact. Contrary to that,
for the generalised case (for example, with µ = 2.5 and
κ = 10 dB as in Fig. (3)-(4)) the increase in ρ improves
CR, intersecting CR level for the Rayleigh case at ρ = 0.5.

Although one can see a clear improvement in the channel
capacity stability (for the generalised case) with the increase
in ρ, it is achieved at higher γRmin

(the curve R(γ̄) shifts
to the right, see Fig. (2)), which should not be the case for
practical applications, since it makes the communication rate
fluctuations less predictable at higher SNR.

Quantifying the impact of correlation effects and using the
criteria proposed in [17] (i.e. the correlation is assumed to be
sufficient if ρ ≥ 0.4), one can see that the κ − µ model is
about 0.07 bit/s/Hz more efficient than Nakagami-m (in terms
of Rmin) and loses about 0.01 bit/s/Hz and 0.02 bit/s/Hz to
Rayleigh and Rician (with K = 5 dB) model respectively. It
should be noted that the improvement in minimum CR for
the κ − µ at the high shadowing correlations is obtained in
exchange for the rapid decrease of the reception diversity [1],
which is a highly undesirable situation.



Fig. 3. Model cross-comparison for Rmin and varying correlation

Fig. 4. Model cross-comparison for γRmin
and varying correlation

C. Discussions

It should be noted that the problem of HoS analysis in
the presence of κ − µ correlated shadowed fading has been
addressed earlier in [18] and [19], [20]. But, as it was pointed
out, the main goal of the research was to establish a connection
between the HoS analysis and the MGF approach, which
is the primary result of the paper. Moreover, this helped
to derive closed-form and approximating expressions. This
differs the proposed research from [18], where the classical
PDF methodology was exploited. Furthermore, the approxi-
mations given herein are computationally less complex, i.e.
one needs only confluent hypergeometric functions, which are
readily implemented in almost all computational software and
have many numerically efficient representations, instead of
sums of Meijer G-functions (which are generally much more
complex for implementation); and the derived expressions use
only a single summation, rather than double (compare (12a)-
(12c) with equations (40)-(41) in [18]). On the other hand,
in [19] only qualitative simulation (i.e. no analytic results)
was performed, and in [20], even though that the similar
MGF approach was chosen (but in a formulation based on the

results from [14]), no closed-form solution or approximations
were derived. In fact, non of the researchers addressed the
problem of maximum capacity reliability analysis, which was
performed herein.

V. CONCLUSION

The proposed research considers an analytical treatment of
wireless channel capacity higher-order statistics for diversity
reception in the presence of composite fading and correlated
shadowing. For a SIMO system employed with a maximum-
ratio combining scheme at the receiving end an analytic
expression for the capacity higher-order statistics is derived in
terms of the moment generating function of the instantaneous
output signal-to-noise ratio. The asymptotic approximations
of the proposed solution are evaluated and analyzed. The
performed derivations are exemplified by the problem of the
capacity reliability minimizing for various fading channel
conditions. It is demonstrated that for the generalized κ − µ
fading channel (with κ = 10 dB and µ = 2.5) and correlated
shadowing of the dominating components the minimum value
of the CR (due to rate-distortion as a result of channel
instantaneous fluctuations) is attained at the higher SNR rather
than for Rayleigh, Rician or Nakagami-m channel models for
any one-step correlation coefficient. Moreover, the absolute of
the CR for the κ− µ fading model coincides with that of the
Rayleigh model for ρ = 0.5.

APPENDIX A
PROOF OF PROPOSITION 1

First, to ease the notation, let us for convenience rewrite (2)
with the following set of substitutes:

fγ(γ) = C0e
−αγγU−1

∞∑
k=0

δ̃k 1F1

(
mk;U ;αγλ̄

)
, (13)

C0 =
AαU (1 + λ)−mNRm

lnn(2)Γ(U)
, λ̄ =

λ

1 + λ

mk = mNR + k, α =
η

γ̄
,

(14)

where C0 is the multiplicative factor that does not depend
upon the summation index k and instantaneous SNR, Γ(·) is
the Euler gamma function and new recursion coefficients δ̃k.

δ̃k =
1

k(1 + λ)k

k∑
q=1

gq δ̃k−q, gq =

NR∑
i=1

(
1− λ

λi

)q
.

Sequential application of the n-th power logarithm standard
representation and Schwinger parametrization yield:

lnn(1 + γ) = (−1)n
∂n

∂an
(1 + γ)−a

∣∣∣∣∣
a=0

= (−1)n
∂n

∂an

(
1

Γ(a)

∫ ∞
0

e−p(1+γ)pa−1dp

) ∣∣∣∣∣
a=0

.



Hence the higher-order statistics can be represented as
follows:

Λn=(−1)n
∂n

∂an

 1

Γ(a)

∫ ∞
0

pa−1e−p
∫ ∞

0

e−pγfγ(γ)dγ︸ ︷︷ ︸
Mγ(−p)

dp


∣∣∣∣∣
a=0

,

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Combining the definition of the moment generating function
Mγ(p) with (13) and (14) yields:

Mγ(p) = C0

∞∑
k=0

δ̃k

∫ ∞
0

γU−1
1F1

(
mk;U ;αγλ̄

)
e−(α−p)γdγ

= C0

∞∑
k=0

δ̃kMU

{
1F1

(
mk;U ;αγλ̄

)
e−(α−p)γ

}
,

where MU (·) defines Mellin transform evaluated at U . Ap-
plying equation (6.9.9) from [21] one gets

Mγ(p) = C0

∞∑
k=0

δ̃k
Γ(U)

(α− p)U 2F1

(
mk, U ;U ;

αλ̄

α− p

)
(14a)

= C0Γ(U)

∞∑
k=0

δ̃k

(
1− αλ̄

α− p

)−mk
(α− p)−U , (14b)

here 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function and
the last line was obtained with the help of [22] (equation
15.4.6), i.e. 2F1 (a, b, b, z) = (1 − z)−a. One can notice that
the intermediate result (14a) is equivalent to the one obtained
in [11] (up to the sign of p), but the proposed herein derivation
is sufficiently simpler and does not require such a heavyweight
approach as Meijer-G function transformation. Reducing the
inner terms completes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

As for the first part of the proposition, equation (11) is a
simple extent of Proposition 1 and Proposition 2 with (10) be-
ing substituted into (9). After rearranging multipliers one gets
the expression for Λκ−µn in terms of integral Ja(mk, α, λ, U):

Ja(mk, α, λ, U)=

∫ ∞
0

pa−1(α+ p)−u
(
ᾱ+ p

α+ p

)−m
e−pdp.

(15)
Noticing that the dominant impact of the integrand is

reached in the vicinity of p = 0 one can omit exponential term
(or equivalently using its zero-order Taylor approximation),
hence (see [23]):

Ja(mk, α, λ, U) '
∫ ∞

0

pa−1(α+ p)−u
(
ᾱ+ p

α+ p

)−m
dp (16a)

=
αa−UΓ(a)Γ(U − a)

(1 + λ)−mkΓ(U)
2F1

(
mk, a;U ;

λ

1 + λ

)
. (16b)

After cancelling gamma functions one gets (12a), where δ̄
is defined through the similar recursion procedure as earlier,
but without (1 + λ)−k factor, i.e. δ̄k =

∑∞
q=1 gq δ̄k−q .

Using the same reasoning as earlier but expanding(
ᾱ+p
α+p

)−m
in Taylor series (up to the second order) yields:

Ja(mk, α, λ, U) ' (1 + λ)mk
∫ ∞

0

pa−1

{
1− λmp

α
+

+
λmp2(λ+ λm+ 2)

2α2
+O

(
p3
)}

(α+ p)−ue−pdp. (17)

Sequential termswise integration (omitted here for the sake
of brevity) delivers (12b), where Ψ(·, ·, ·) is the Tricomi
confluent hypergeometric function [22].

Observing that for small λ the difference between ᾱ = α
1+λ

and α is negligible one can use a zero-order approximation of(
ᾱ+p
α+p

)−m
, hence obtaining:

Ja(mk, α, λ, U) '
∫ ∞

0

pa−1(α+ p)−ue−pdp (18a)

= Γ(U)Ψ(U, a− a+ 1, α). (18b)

Hence (12c) follows.
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