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Abstract— The research analyzes the problem of capacity 
analysis of the multi-user massive multi-input multi-output 
systems with a banded correlation model. The presented study 
impacts the analytical statistical description with closed form 
expression of the ergodic sum-rate capacity of the system 
functioning in presence of multipath fading channel with 
complex Nakagami-m statistics of the complex transmission 
coefficients. Numerical verification of the derived expressions 
was performed and demonstrated excellent correspondence 
with simulation. The research demonstrated that the system 
correlation matrix (in case when exponential model is 
considered) can be bordered up to pentadiagonal structure 
without introducing any discrepancies in to the sum-rate 
capacity. 
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I.  INTRODUCTION 

Multiple Input Multiple Output (MIMO) technology is 
an essential component of most modern wireless 
communication systems [1]. Moreover, the existing trend on 
the increase of spectral bandwidth, number of users and 
supplied data rates extends it to a Multi-User Massive-
MIMO modification [2]. It is well known that for such 
systems, the link quality (measured, for instance, in terms of 
sum-rate capacity) depends heavily on the possible 
correlation effects [3] (due to antenna system design) and 
fading (due to wireless signal multipath propagation) [4]. 
Both factors impact the so-called MIMO system 
transmission matrix that accounts for the complex 
transmission coefficients between any pair of transmitting 
and receiving antennas. 

The performance quality estimation and prediction for 
such a system rely upon the assumed models of the system 
correlation matrix [5] and channel model [6]. Moreover, 
their estimation and update should be performed “on the go” 
thus, from the practical viewpoint, they should be as simple 
as possible, retaining the possibility of analytical treatment. 
However, they should be complex enough to capture most of 
the propagation and correlation effects. As a classical 

approach, the correlations within the MIMO channel can be 
assumed as detached: attributed to the transmitter and 
receiver separately (Kronecker model) [3], and each 
correlation matrix (receive and transmit) follow the 
exponential-type structure [5], [7]. Recently, it was 
demonstrated that when large antenna arrays are deployed 
(which is up-to-date for Massive-MIMO) the distant 
elements can be viewed almost as uncorrelated [8], thus 
yielding the so-called banded structures [9] allowing us to 
apply tri- or pentadiagonal iterative algorithms, thus 
speeding up the calculations. 

Concerning the channel model, it should be pointed out 
that the shrinkage of the coverage area in promising 
communication systems (for example, 5G, WiFi-7) [10, 11] 
leads to the discrepancy between the real-life channel 
measurements and the assumption that the quadrature 
components of the complex channel transmission 
coefficients are described by the Gaussian distribution. 
Hence, some more general models (although losing the 
potentials for closed-form analytical description) should be 
applied [4]. One of the possible choices that is considered in 
this research is the generalization of the well-known 
Nakagami-m model: complex Nakagami-m distribution [12-
13], that operates with instantaneous values rather than with 
envelope, giving more flexibility in the way the phase 
statistics is accounted. 

Besides, since a multiuser scenario is assumed, we must 
be careful with the choice of specific user signal detection 
algorithms since it impacts the sum-rate capacity and 
computational complexity (computational time) [14]. A 
standard solution for MIMO systems delivering a 
compromise between those two factors assumes that the 
receiver is equipped with the Zero-Forcing (ZF) processing 
unit, which will be adopted in the research. 

The problem of ergodic sum-rate capacity analysis for 
the case of complex Nakagami-m fading channel has been 
addressed in literature several times [15]-[19]. It should be 
noted that the closed-form solutions for most of the MIMO 
communication problems rely either on the random matrix 
theory methods (applied to the MIMO system/correlation 



matrix), on upper/lower bounding or some sort of 
approximations. The first approach, applied, for instance, in 
[15], helped to derive the closed-form expression in the 
cases of 2×2  and 2×3 channel matrices in terms of their 
joint eigenvalue density functions. Evidently, such an 
approach fails to deliver closed-form expression for a high-
dimensional system due to overcomplication.  The second 
approach (see, for example, [16], [17]) yielded the upper 
bound for the sum-rate capacity for a system with an 
arbitrary number of receivers (employing zero-forcing 
processing) and only 2 transmitters. The third approach (see, 
for instance, [18], [19])  mostly relies upon the assumption 
that at some stage of derivations the complex closed-form 
expressions can be efficiently approximated by some easier 
ones. A widely accepted proposition (used in [18] for a 
SIMO system with the maximum ratio combining receiver, 
in [19] for a MIMO system with the same reception) 
considers that the signal-to-noise ratio (at the receiver input 
or before processing, or after postprocessing, etc.) followed 
gamma/beta/generalized gamma distribution (depending on 
the case).  

The proposed research analyzes the impact of 
transmitting/receive correlation matrix bordering on overall 
performance (in terms of the ergodic sum-rate capacity) of 
the Multi-User Massive-MIMO equipped with zero-forcing 
processing at the receiving side functioning in the presence 
of the multipath fading channel with complex Nakagami-m 
statistics. Moreover, to fill in the gap between the existing 
results, the closed-form expressions for the sum-rate 
capacity were derived for arbitrary system size based on the 
gamma approximation of the ZF postprocessing signal to 
interference plus noise ratio. 

II. PRELIMINARIES: SYSTEM AND CHANNEL MODELS 

A. General assumptions 

Consider that a multi-user MIMO system is 
communicating in presence of transmit/receive correlation, 
multipath fading and additive noise. To this extent, we will 
adopt the following assumptions: 

 the correlation is present only on one side (semi-
correlated channel model): with the minimum 
number of antenna elements (NT at the transmitting 
side and NR at the receiver) – the so-called min-
semicorrelated model or with the maximum number 
of antenna elements – the so-called max-
semicorrelated model; 

 a separable Kronecker model is used to decouple the 
effects of correlation at the transmitter and receiver, 
moreover, the correlation matrix structure admitting 
exponential-type banded model; 

 the MIMO multipath complex channel transmission 
coefficients ,i jh  between any pair of antenna 

elements on opposite sides follow the complex 
Nakagami-m distribution; 

 the additive noise has Gaussian statistics for the in-
phase and quadrature components with equal 

variances 2 , i.e.  2 0,iz   . 

In this case signal vector x


 with the total energy xE  

transforms into the received signal vector y


 in the following 
manner: 

1
2

1
2

1
2

1
2

,

, ,

, ,

,

,,

R w T R

w T T R

w T T

w T

T

R

x

R

R

N N

N N

N N

N

E

N

N

 









 


  

Σ H

H Σ

H Σ

x z

x z
y

x

Σ

z

xH z

 

 


 

 
           (1) 

where the first two cases are applied in the situation of the 
min-semicorrelation channel and the last two in case of 
max-semicorrelated, 

1 1
2 2, R TΣ Σ  are the matrix square roots of 

the respective correlation matrices, the vector z


 composed 

of noise samples and   , ,  i ji j
hwH   is  the fluctuating 

channel transmission coefficients between any pair of 
transmitting and receiving antenna elements. 

We adopt a classical zero-forcing postprocessing 
algorithm [4] deployed at the receiver with the output signal 
to interference plus noise ratio for a k-th  user is defined as 

  1†

,
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where inSNR  is the average input SNR per stream (receiving 

antenna element), which is defined relative to 2  (see 

assumption 4) and either 
1

2
w TH = H Σ  or 

1
2

R wH = Σ H  
depending on the side with the existent correlation. 

In this case, the primary system performance metric used 
to quantify the communication link quality is the ergodic 
sum-rate capacity (ESRC), defined as the expectation of the 
sum of the capacities for N active users [5]:  

  2
1

log 1
N

k
k

C SINR


                    (3) 

with    the expectation operator. 

B. Assumption discussions 

Commenting on the first assumption (single side 
correlation), it can be said that in practice it constitutes, for 
instance, the case of the multi-antenna base station and 
multiple single-antenna mobile users. In such a case, the 
correlation side (transmit/receive) depends only on the 
transmitting mode: uplink or downlink. Since the purely 
statistical problem formulation is applied (physical 
differences are omitted) and channel/physical level is under 
consideration, both situations are valid. 



The second assumption naturally arises in the case of 
large antenna arrays, when the distant antenna elements 
experience negligibly small mutual correlation (i.e. the 
correlation coefficient ,i jr  is small, see, for example, [8]), 

thus the correlation matrix can be bordered by zeroing its 
elements with large indices yielding a banded model [9]: 
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where 2 1bandl   is the width of the band and   is the so-
called one-step correlation coefficient [7] that captures the 
correlation between any pair of adjacent antennas. 

The third assumption follows from the need for 
reasonable generalization of the fading channel model:  

 it should be composite, thus incorporating simplified 
well-studied models as specific limiting cases; 

 it should be sufficiently complex to account for most 
of the propagating effects influencing the channel 
statistics and be in accordance with the existing real-
life measurements; 

 it should be simple enough to admit possible 
analytical treatment.  

Thus, for the channel complex transmission coefficients 
between any pair of transmit-receive antennas, we adopt the 
complex Nakagami-m model, which was validated to suit 
real-life scenarios. In this case, the probability density 
function of the in-phase and quadrature components (i.e. 

 ,ReI i jh h   or  ,ImQ i jh h  ) given by [12]:  
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where Ih h  or Qh h , the parameter   stands the 

average fading power, and m is inversely proportional to the 
amount of fading.  

It is well-known that such a model generalizes several 
simpler ones: m=1 conforms to the Gaussian h , thus the 
Rayleigh envelope, m=0.5 corresponds to the one-sided 
Gaussian envelope model, m>1 covers the fading scenarios 
with the intensities lighter than Rayleigh and m<1 
correspond to the hyper-Rayleigh model [20-21]. 

III. DERIVED ANALYTICAL RESULTS 

For a model stated in Section II, we proceed with the 
closed-form derivation of the ESRC (3). First, let us denote 
the instantaneous kSINR  as k  and 2log (1 )   . It is 

known that in the case when the channel coefficient 
quadrature components follow the Gaussian model the 
postprocessing SINR distribution corresponds to the 
Gamma-type family (including chi-squared). Since the 

assumed channel model (see Section II) in several particular 
cases degenerates into those simplified cases we’ll assume 

that ˆˆ ,Г( )
d

k     (where the notation 
d

  stands for 

“distributed as”). To find the parameter values ˆˆ ,  , an 
intensive numeric simulation was performed. At this stage, 
for a wide range of system and channel parameters, a large 
set of samples of k  were generated and fitted with gamma 

distribution with the parameters estimated via maximum 
likelihood procedure in such a way to simultaneously 

conform with the Pearson 2  and the Kolmogorov 
goodness of fit tests at the statistical significance level 0.05. 
It was found out that almost for all parameter combinations 
ˆ 1ML  . Thus for further analysis, we’ll assume that 

ˆ1,Г( )ML

d

k   . 

Applying this assumption and performing the classic 
random variable transformation procedures   
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where   2log (1 )f x x  . Thus 
1

ln 2,
d



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with    Gompertz-Makeham distribution [22-23].  

Applying the definition of the moment generating 

function (MGF)  M   in terms of the Laplace transform, 

  , i.e. 

 
0

( ) ( ) ( ) xsM s w x w x e dx  


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considering that for the Gompertz-Makeham distribution it 
is known  
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where  E   is the exponential integral [24] and applying 

the fact that ZF-processing decorrelates k  the ergodic 

sum-rate capacity MGF is can be evaluated as: 
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where  U   is the Tricomi confluent hypergeometric 

function [19].  

Applying the identity 13.6.6 [24] helps to derive 

( )M s : 
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The resultant probability density function of the ergodic 
sum-rate capacity can be equated by inverting the Laplace 
transform of (10): 

 1( ) ( )Cw x M s
 

  .                     (11) 

Although (11) cannot be performed analytically there is 
a wide range of approaches [25] to perform it numerically 
with high accuracy. 

The advantage of the MGF approach is that the average 
sum-rate capacity can be derived without direct computation 
of the probability density function. To do this we need to 
evaluate the first-order derivative of the MGF at s=0. 
Applying the product rule for derivatives yields: 
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Applying the identity 13.6.4 from [24] the limiting form 
of the Tricomi confluent hypergeometric function simplifies 
to: 
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Thus expression for the ergodic sum-rate capacity 
reduces to: 
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The derivative  1I s  can be evaluated in closed-form:  
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where  3,0
2,3G   is the Meijer G-function [24]. 

Performing limiting operation 
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the resultant expressions for C  will be  





1

0

1 1
Г 0,

ln 2
i

N

i i

C e




 
    

 
 .         (17) 

with ˆ ˆ
ii ML   are the maximum likelihood estimates for 

each of the N users. Thus the last expression presents the 
concluding result of the stated problem.  

IV. SIMULATION AND RESULTS 

To demonstrate the impact of channel parameters and 
bordering procedure upon the ergodic sum-rate capacity 
numeric simulation was performed. 

The MIMO system setup under analysis was as follows: 

 Multi-User Multiple Input Multiple Output system 
with an equal number of elements on the transmitting 
and receiving sides (8 elements), and all users being 
active (N=8). 

 Varying fading power Ω ={0.8, 1, 1.2}. 



 The amount of fading parameter m was set to be 
either 0.7 delivering hyper-Rayleigh, or 2.5 
conveying lighter than Rayleigh situation. 

 Variable input SNR per receiving antenna: form 0 dB 
to 20 dB with step 1 dB. 

 Varying one-step correlation coefficient   from 0 to 
0.5. 

 Bordering threshold varying from 2 to 8 elements, 
yielding from tridiagonal to full correlation matrix 
model. 

The results of the simulation are presented in Fig. 1 - 
Fig. 3.  

 

Fig. 1. The ergodic sum-rate capacity of ZF post-processing. 

 

Fig. 2. The ergodic sum-rate capacity of ZF post-processing and per 
antenna SNR=10 dB. 

 

Fig. 3. The ergodic sum-rate capacity of ZF post-processing with 

3bandl   and per antenna SNR=10 dB. 

First, the correctness of the derived approximating 
ergodic sum-rate capacity expression (17) was verified by 
comparing it with the numeric simulation.  

To do this, a ZF processing (2) for a MU-MIMO system 
(described by (1), (4) and (5)) was simulated, and then (3) 
was used to estimate the sum-rate capacity. The results for 
the two fading scenarios (heavy fading and light fading) are 
depicted in Fig.1 with markers. The same samples were used 

to estimate î  via maximum likelihood algorithm, and then 

(17) was used to calculate C  , predicted by the proposed 

analytic approximation. It can be seen that the derived 
solution performs excellently for all the conditions 
irrespective of the input signal-to-noise ratio. 

The carried out analysis demonstrated that for all of the 
cases the performed post-processing eliminates the impact 
of the amount of fading parameter.  

For all cases under consideration, the improvement of 
per-antenna SNR (see Fig.1) and reduction of the one-step 
correlation coefficient (see Fig.3) both lead to the same 
effect – an increase of ergodic sum-rate capacity.  

Analyzing the impact of bordering (see Fig.2), it can be 
noticed that in the situation of high bordering (tridiagonal 
correlation matrices) the decrease in the capacity is quite 
pronounced: up to 1 bit/s/Hz. But starting with 3bandl   this 
decrease diminishes. Hence, high bordering (up to 
pentadiagonal structures) can be used without significant 
losses in ergodic sum-rate capacity.  

In contrast to banding, the improvement in fading 
conditions introduces only a minor increase in ESRC 
(compare solid and dashed lines in Fig.2). Moreover, the 
increase in the one-step correlation coefficient leads to the 
smaller impact of channel improvement (compare red and 
black curves in Fig. 3). 



V. CONCLUSION  

The research studies the ergodic sum-rate capacity of the 
MU-MIMO system with a one-sided banded model of the 
system correlation matrix. Under the assumption that at the 
receiving side zero-forcing processing is employed and that 
the multipath fading channel transmission coefficients are 
distributed according to the complex Nakagami-m model, 
the analytic expression for the sum-rate capacity is derived. 
The obtained solution was numerically analyzed, and for all 
of the assumed system parameters demonstrated excellent 
correspondence with simulation. The research demonstrated 
that the system correlation matrix (in case when exponential 
model is considered) can be bordered up to pentadiagonal 
structure without introducing any discrepancies in to the 
sum-rate capacity. The results of the research can be of 
possible interest for the performance prediction of the 
multiantenna wireless communication systems. 
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