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Abstract— The composite materials are becoming more 

popular due to their advantages over traditional materials, 

including being lightweight, high stiffness-to-density and high 

strength-to-weight ratios. As a result, composite materials have 

been widely used in manufacturing sector for various industries 

including aerospace, automotive, marine and energy. 

Nonetheless, as machining of composites is unavoidable for 

assembly purposes, defects can be induced at various stages of 

manufacturing process. Drilling of fiber-reinforced composites 

is a complex task due to their anisotropic, inhomogeneous, and 

highly abrasive characteristics. Defects form drilling process 

including delamination and fiber pull-out can significantly 

affect the strength and performance of composites. There have 

been a wide variety of non-destructive testing (NDT) methods 

playing a major role in testing of composite materials. However, 

the current NDT solutions for in-service inspection are largely 

complex, which leads to higher inspection costs. The proposed 

solution uses artificial intelligence (AI) based algorithm utilizing 

Terahertz imaging data to detect drilling-induced defects in 

composite materials during manufacturing and assembly. A 

machine learning (ML) model has been developed to process the 

data obtained from Terahertz scanning to automatically detect 

and report the defects in composite drillings. In order to achieve 

such a system, a ML model based on Faster R-CNN neural 

network for drill holes’ defects detection has been developed. 

This automated solution will have the ability to reduce the 

manual inspection time of the operator and the costs of 

inspection process of drilling holes. The developed system 

proved to have a statistically significant efficiency in both 

performance and speed as well as reducing the sub-quality 

products. 
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I. INTRODUCTION

Composites (glass or carbon fiber) are becoming the main 
material for manufacturing future generation structures such 
as in aircrafts and wind turbines due to their inherent 
advantageous properties, like high stiffness-to-density and 
strength-to-weight ratios, which are not available with 
traditional materials. However, defects in composite can be 
introduced at various stages of the composite lifecycle such as 
during manufacturing, assembly and operation.  

The detection of delamination and defects induced during 
drilling process of composite components is a crucial and 
difficult task in any industry. Drilling of fiber reinforced 
polymers is a complex process, and it differs significantly 
from machining of conventional metals and alloys due to the 
anisotropic, non-homogeneous, highly abrasive and hard 
reinforced fibers characteristics of these materials. Several 
undesirable damages induced by drilling drastically reduce 
strength against fatigue, thus degrading the long-term 
performance of composite laminates. Among the problems 
caused by drilling, delamination is considered the major 
damage. It has been researched that, in aerospace industry, the 
refusal rate of parts consisting of composite laminates was as 
high as 60% thanks to drilling induced delamination damages 
during final assembly [1]. 

As various key components of aircrafts are made of 
composite materials, and drilling is often a final operation 
during assembly, delamination caused by drilling would be a 
very serious issue that significantly reduces the structural 
reliability of the component. Fiber reinforced composites such 
as Carbon Fiber Reinforced Plastics (CFRPs) have become 
one of the most crucial structural materials in aerospace 
industry, due to their exceptional mechanical properties such 
as anti-fatigue and high specific stiffness [2]. 

In research done by [3], the application of acoustic 
emission in drilling of glass fiber reinforced composite 
laminates was investigated. In the research an acoustic 
emission technique was applied to characterize drilling-
induced defects in composite specimens. It was concluded that 
acoustic emission technique can be used for characterization 
of drilling-induced defects in composite materials; albeit 
authors concluded that due to the nature of defects in 
composite materials, more sophisticated methods are needed. 
Moreover, in [4], digital image analysis techniques were used 
to evaluate the influence of process parameters on the 
delamination factors of CFRPs was used. It was concluded 
that the image processing techniques proved to be a 
satisfactory method in determining the CFRPs defects during 
the drilling process. 

There have been several research done studied drilling-
induced delamination in fiber composites using various 
techniques, however it is essential to choose a cost-effective, 
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user-friendly, and flexible technique to analyze the drilling-
induced delamination in composite structures. Thus, this 
research focused on the development of an Automated 
Defects Recognition (ADR) algorithm based on neural 
network machine learning to detect defects induced by drilling 
holes on composite material from Terahertz imaging dataset. 

II. MATERIALS AND METHODS

Authors have explored various neural network models in 
order to select the best algorithm for the ADR system, which 
not only could detect and classify deferent defects, but also 
can localize them with Region of Interest (ROI) bounding 
boxes. It was decided that Convolutional Neural Network 
(CNN), which is a deep learning model used for is object 
detection for single items in different applications including 
recommender systems, image and video recognition, image 
classification, natural language processing, medical image 
analysis, and financial time series could be used [5]. 
Nevertheless, due to the nature of the composite material drill 
holes batches’ defects (Fig.  1), a CNN model could not be 
utilized as the model for the ADR algorithm as there were 
several defects per input images that needed to be localized on 
top of being classified and detected. Thus, Region-CNN (R-
CNN), a CNN derivative model was selected for this task that 
could meet all three requirements for the input images i.e., 
detection, classification, and localization [6].  

Fig.  1. An example of Terahertz image of the composite drill holes with 

defects 

It was decided that a derivative of R-CCN called Faster R-
CNN to be used for the ADR algorithm as it significantly 
improves the overall performance of R-CNN [7]. Faster R-
CNN, as the name suggests, is faster compared to R-CNN and 
Fast R-CNN [8] while achieving the same detection accuracy. 
Faster R-CNN works by breaking down the detection of 
objects into two separate phases. In the first phase, regions are 
identified within the image that are expected to contain the 
object of interest. In the second phase, the algorithm runs on 
each proposed region, and outputs the object category score 
and the corresponding bounding box co-ordinates containing 
the object [7]. 

The caveat of using any derivative of CNN including R-
CNN and Faster R-CNN is that they require a lot of data in 
their training dataset in order to perform with high enough 
accuracy [9]. To compensate this, the authors used a pre- 
trained publicly available model with huge number of input 
images and labels called Common Objects in Context 
(COCO) and applied transfer learning by training their model 
on top of the pre-trained one. This way, the need for a very 
significant amount of data for training from scratch is 
significantly reduced and the model could be customized to 
accommodate the specific defects that this task requires. 
COCO is a large-scale object detection, segmentation, and 

captioning dataset that contains 330k images (>200k labelled) 
of day-to-day objects from chairs and persons to cakes and 
animals. It contains 1.5 million object instances including 91 
stuff categories, 80 object categories, 5 captions per image and 
250k people with key points [10]. 

Consequently, a neural network model based on 
TensorFlow Faster R-CNN Inception v2 COCO was 
developed for this project. Google provided several base 
models for its TensorFlow library each with advantages and 
disadvantages. The chosen base model (Faster R-CNN 
Inception v2 COCO) has a benchmark detection speed of 58 
ms and COCO mAP[^1] of 28  (TABLE I). It is important to 
note that the higher accuracy models demand more 
computation resources and require a significant amount of 
time to process images. Moreover, more complex/high 
accuracy models might not work at all on mid-range 
computers with limited computational power. In a nutshell, 
there is always a trade-off between accuracy and speed, 
especially in industrial scenarios, in which the speed is a 
strong constraint. Thus, Faster R-CNN Inception v2 COCO 
was chosen as a sweet spot as it has relatively very high 
accuracy and at the same time has a reasonable processing 
time per input image. CNN based models have been used 
previously in defects detection successfully [11] making it an 
ideal model for this research. Additionally, authors used a 
residual learning framework (ResNet) based CNN as their 
error rate was among the lowest in ImageNet validation set 
[12,13].  

TABLE I. COMPARISON BETWEEN DIFFERENT FASTER R-CNN 

MODELS [14] 

Model Name Detection speed (ms) COCO mAP[^1] 

faster_rcnn_resnet50_c

oco 

89 30 

faster_rcnn_inception_v
2_coco 

58 28 

faster_rcnn_inception_r

esnet_v2_atrous_coco 

620 37 

faster_rcnn_resnet50_c

oco 

89 30 

A. Data preparation of plenoptic images and training

The images were collected using Terahertz imaging
system and were saved as .mat files. These .mat files were 
converted into .png images for the input data for the developed 
ML model. Every image in the dataset was labelled manually 
by creating a corresponding XML file (Fig.  2) for each image 
containing the X and Y coordinates of every defect in that 
image alongside the type of that defect. A team of 
professionals in detecting the end users’ wafers’ defect types 
participated in defining and selecting the defects in the sample 
images. The coordination of these defects was done manually 
using a software called ‘LabelImg’.  
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Fig.  2. An example of a companion XML file for drill holes images. 

At the end of the labelling process, the data were fed as the 
training dataset to the developed ADR model. Overall, 200 
images were used for training and testing. The images were 
divided into three separate batches; one for training (180) and 
one for testing (10) whereas 10 images were used for 
validation purposes. In general, the quality of the model 
depends on four equally important criteria, quality of the pre-
trained model, quality of the machine learning architecture, 
quantity and variability of the training data and quality of the 
labelling [15][10]. The machine learning architecture and the 
library were selected after careful analysis of the state of the 
art as explained above. Although the amount of data is limited 
by the available dataset, the 200 images represent a good 
amount of data considering each image had on average around 
30 different defects. Among the four criteria, the labelling is 
the only critical factor relying on human manual process. The 
input image resolution was 200x600 pixels with an average of 
~20 MB in size per image. The computer used for the training 
and testing of the developed ADR system was based on a 2 X 
Intel® Xeon® Gold 6152 CPU (22-Core, 44-Threads, 30.25 
MB L3 Cache, up to 3.7 GHz with Intel® Turbo Boost 
Technology) utilizing a NVIDIA TESLA V100 PCIe 32 GB 
HBM2, 900 GB/s Bandwidth - DOUBLE-PRECISION: 7 
teraFLOPS - SINGLE-PRECISION: 14 teraFLOPS -DEEP 
LEARNING: 112 teraFLOPS and 640 GB Penta Channel 
DDR4 at 2666 MHz. 

III. RESULTS

The developed ADR model based on Faster R-CNN 
Inception v2 COCO training process took 112 hours to be 
complete for 3,665 epochs. The detection speed on average 
was around 9 seconds per image and the whole trained 
model’s total loss fluctuated between 0.07 to 0.1 as can be 
seen it can be seen from the following table (TABLE II). 

TABLE II. THE FASTER R-CNN INCEPTION V2 COCO TRAINED 

MODEL PERFORMANCE RESULT 

Type Number of Samples 

TotalLoss 0.07187 

Loss/BoxClassifierLoss/c

lassification_loss 

0.03345 

Loss/BoxClassifierLoss/l

ocalization_loss 

0.01632 

Loss/RPNLoss/localizatio
n_loss 

0.01986 

Loss/RPNLoss/objectness

_loss 

0.01145 

clone_loss 0.05322 

regularization_loss 0.01877 

Fig.  3 shows two Terahertz images fed to the ADR system 
for defect detection, classification, and localization. As it can 
be seen, the model managed to detect all of the defects with a 
very high accuracy (> 98 % confidence level on average). The 
developed ADR model was designed so the minimum 
confidence level (detection sensitivity) could be manually 
changed by a user and as the minimum confidence level 
decreases, the model could detect even more defects although 
with lower accuracy. 

Fig.  3. Detected defects of two Terahertz images by the ADR system 

IV. DISCUSSION

The development of a ML algorithm based on the Faster 
R-CNN Inception v2 COCO model to detect and localize
drilling defects in composite materials based on Terahertz
imaging has proven to be an effective and accurate approach.
Even though some research on ADR were conducted using
heuristic approach with promising results, the complexity of
defects and SNR has a direct impact on the accuracy level of
these approaches.  One the other hand, as ML-based
approaches’ effectiveness is greatly dependent on the quality
and quantity of samples for training phase. Accurate data
labelling plays a significant role in increasing accuracy and
reducing latency. Nevertheless, the overall high true positive
detection rate of a machine learning algorithm with a
relatively limited training dataset can be increased by
implementing and combining more confidence factors.

Overall, the ML-based approach is ideal for detections that 

are more sophisticated in terms of shape and color and require 

a lot of thresholding and variables such as complex defects. 

Whereas for simpler cases such as standard object detection 

based on computer vision and image-processing techniques, 

its disadvantages outweigh its benefits when dealing with 



very limited dataset; mainly due to its need for significant 

amount of system resources (i.e., memory and CPU) to 

process information beforehand. Moreover, correct and 

accurate data labelling is a painstaking task and requires a lot 

of time and labor. The developed defect detection model was 

designed so the minimum detectable confidence level could 

be manually changed by a user and as the minimum 

detectable confidence level decreases. Thus, by decreasing 

the minimum detection threshold, the model could detect 

more defects at the expense of accuracy. The results also 

showed a statistically significant true positive detection rate 

among the drilling holes. The developed model’s score was 

substantially high both in average precision and average 

recall. Overall, the model managed to detect true positive 

defects among all images with 0.84 F1 accuracy on average 

with 9 seconds of processing time per input image. 

V. CONCLUSION

This research aims to develop an ADR system and 
measurement software capable of detecting drilling-induced 
delamination in composite components using deep-learning 
approach. The developed algorithm could be applied at any 
stage of drilling process. The developed system showed an 
F1-Score of 0.84 U on average for true positive defect 
detection with the processing time of 9 seconds for each image 
based on 10 validation sample images. 

An ADR system was built based on Terahertz imaging, 
which included a ML-based processing algorithms for 
identifying and quantifying flaws in induced during composite 
material drilling process. The ADR algorithm was created to 
collect data from a Terahertz imaging device. Using a transfer 
learning technique, a deep learning neural network algorithm 
was constructed based on the Faster R-CNN Inception v2 
COCO. As a result, the defects’ characteristics were assessed 
and labelled before being fed into the developed machine 
learning model for training. Furthermore, the proposed ADR 
system was analyzed and tested for its ability to detect, 
localize, and categorize defects in composite materials caused 
by the drilling. The system was capable of drawing bounding 
boxes when defects are detected along with information about 
the defects and the detection confidence percentage. 

This study's findings could greatly reduce production costs 
by providing a system with automated knowledge and 
inspection data-based process feedback that allows for the 
traceability and detection of errors that may occur throughout 
the composite material drilling process. It will offer 
competitive and technological advantage within the 
developing production and manufacturing industry. 
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