
From Extreme Programming and Usability Engineering to Extreme Usability

in Software Engineering Education (XP+UE XU)

1
Andreas Holzinger,

1
Maximilian Errath,

1
Gig Searle, Bettina Thurnher

2
, Wolfgang Slany

3

1
Institute for Medical Informatics, Statistics & Documentation, Medical University Graz

2 Institute of Software Technology and Interactive Systems, Vienna University of Technology
3 Institute for Software Technology, Graz University of Technology

andreas.holzinger@meduni-graz.at maximilian.errath@meduni-graz.at

gig.searle@meduni-graz.at thurnher@qse.ifs.tuwien.ac.at wsi@ist.tugraz.at

Abstract

The success of Extreme Programming (XP) is based,

among other things, on an optimal communication in

teams of 6-12 persons, simplicity, frequent releases

and a reaction to changing demands. Most of all, the

customer is integrated into the development process,

with constant feedback. This is very similar to

Usability Engineering (UE) which follows a spiral four

phase procedure model (analysis, draft, development,

test) and a three step (paper mock-up, prototype, final

product) production model. In comparison, these

phases are extremely shortened in XP; also the ideal

team size in UE User-Centered Development is 4-6

people, including the end-user. The two development

approaches have different goals but, at the same time,

employ similar methods to achieve them. It seems

obvious that there must be synergy in combining them.

The authors present ideas in how to combine them in

an even more powerful development method called

Extreme Usability (XU). The most important issue of

this paper is that the authors have embedded their

ideas into Software Engineering education.

1. Extreme Programming (XP)

XP is a software development process, which aims to

solve frequent software development problems. The

"extreme" in the name refers to the fact that well-

known best practices in software development are

brought to an extreme: if testing is good, we test all the

time, including integration testing and functional

testing; if code reviews are good, we review the code

all the time; if short iterations are good, we make them

really very short; if design is good, we make it

everyone’s daily business; etc. [1], [2]. The extremely

shortened planning cycles (see figure 1) are

characteristic, as is concentration on what is feasible

and on what is most important for the customer.

Figure 1: In principle XP uses mini success
snails (compare with figure 2)

So-called User Stories (these are known as scenarios

in Usability Engineering [3]), are used to drive the

development process. Usability aspects are treated the

same way as other features. In discussion with the

developers, the customer puts the User Stories into the

order of absolute importance for the economic success

of the project, whereby the customer makes the final

decision. Through discussion between customers and

developers, it can be guaranteed that the creativity of

the whole team can be of benefit to the project. Each

User Story is assigned several engineering tasks.

Engineering tasks which do not need the minimum

realization of a User Story are not implemented:

"Simplicity – the art of maximizing the amount of

work not done – is essential". A User Story describes a

feature which, from the point of view of the customer,

cannot be broken down any further and which, in the

case of implementation, will be of maximum use to the

end user and includes usability aspects that are always

connected to the rest of the functionality. For each

story, a test case is developed, which determines the

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

functionality of the story. Hereby, the usability aspects

are also tested, for example, empirically and as

objectively as possible. The development of a story is

completed when all test cases so far implemented for

the achievement of all stories have been completed.

This means that engineering tasks belonging to user

stories which have not yet been implemented and are

not absolutely necessary for those user stories which

have been implemented, will be discarded, in full

realization that this could later lead to large alterations.

2. Usability Engineering (UE)

In order to achieve good Usability [4], [5] the Usability

Engineering Procedural Model (see figure 2) can be

used together with Usability Engineering Methods

(UEM) [6], [7]: The result of requirement analysis and

the basic concept is produced in the form of sketches

on paper (Paper Mock-ups).

With these paper models, usability tests can be

immediately carried out with the end users. Mostly a

specific task is presented and examined; how long does

it take the end user to complete the task? (Time to

perform a Task) and which difficulties arise during the

interaction? (cognitive overload).

Investigations showed that the end users make more

statements when working with such paper/pencil

models, than when they are (immediately) confronted

with a model on the computer or with a running system

[8]. The results from these early usability tests, with

which approximately 80% of all difficulties are

discovered [9], [10], flow immediately into the

development [11], [12].

Figure 2: Typical UE spiral (success snail)

From the beginning, (analysis, design, rough

conception, prototyping, usability testing), close

communication is achieved between the software

developer(s) and the end user(s).

The results, which are only present in the traditional,

sequential software development model as

documentation, are actually implemented and tested.

This early testing leads to a high probability of early

error recognition, which lowers the cost of subsequent

error correction enormously. The cyclic, iterative

procedure brings the software developers rapidly

examinable results, more motivation and finally a

substantial improvement in the quality of the software

process by way of immediate end user feedback. The

productivity of the team is thereby increased. Above

all, the risk of a project failure is reduced, since

experimentally confirmed results also offer a measure

of security. However, the danger with this method,

lays in the inadvertent dissipation of the end users’

energies in extended analysis paralysis (in German:

Detailierungssucht) – until they are unable to see the

forest for the trees. Here, rapid prototyping [8] calls for

the courage to build imperfect prototypes. On the other

hand, there is a danger that certain details, which can

only be implemented with great difficulty, are omitted

because they appear trivial and subsequently increase

development costs. Another disadvantage with this

method is the difficulty in creating requirement

specifications, since these would have to be adapted

after each cycle, which can make fashioning a contract

extremely difficult.

3. Extreme Usability (XU)

In XP, this danger of dissipating one’s energies in

details (developers are particularly susceptible) and the

client’s becomes caught up in the detail is consciously

controlled by applying short iterations, frequent re-

planning and focusing on simple design. This enables

the client to get a realistic feeling of what can be

achieved by the team, if the team implements only

what he requested, and what needs to be pushed back

to later versions in order to achieve the core

functionality needed for the economic success of the

project.

In particular, the well-known danger of featuritis is

harnessed by the conscious decision to avoid thinking

about what could happen later and could become

meaningful, while being prepared to make extensive

adjustments and changes at a later date. Extreme

Usability (XU) could become such that all the best

practices of UE are kept in the XP process during the

planning games, with a restriction of the usability

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

aspects in the next iteration and the equal treatment of

Usability and Functionality.

The advantage would be that, with the XP process, the

adjustment and gradual improvement until the end of

the project is explicitly built into the process, which is

very helpful for UE. However, UE can improve the XP

development method by focusing on the important

aspects of the usability and employing the entire

development team to make the customer continually

aware of these aspects (by daily inquiry, discussion

and testing); also the developers minds will be focused

on the most important usability aspects, when at least

one developer in the team possesses previous

knowledge about UE and by implementing pair-

programming, including the complete and frequent

mixing of the pairs as well as passing on the On-Site

Customer XP principle. Obviously, UE experience for

all developers is an advantage in every project.

A practice of XP, which is often difficult to achieve in

a realistic setting, is the customer-on-site because of

the heavy time-restraints this poses on the customer. In

XU, this difficulty could be transformed into an

advantage by allowing different customers to take part

in different iterations, if not releases, thus solving two

problems at once:

From the point of view of standard XP, the

requirement that one and the same customer (the

end-user in XU) has to be present at all times can

be relaxed, thus possibly achieving a better over-all

coverage of customer time in the team.

From the point of view of standard UE, it is very

attractive that the usability of the real system can at

all times be tested on several different real end

users, one at a time, but at any stage in great depth,

with the possibility of redesigning the user

interaction at any stage of the system, for a cost

that can be accurately specified.

Practical Experiences with XU will be collected by the

authors in several joint projects during spring 2005, the

results and experiences will be presented at the time of

the conference. In particular, a feasibility experiment

with 225 students will be held, as follows:

All students will have been exposed, theoretically, to

extreme programming as well as practically to

Usability Engineering before taking part in the course.

In the course, students will be divided into teams of

approximately 10 people, each including one customer

(end user), one manager, a coach/developer, and

several normal developers. During the course, each

team will have to solve a predefined task, that has a

strong User Interface aspect but is slightly different for

each team, in two releases; the first corresponding to

two iterations, the second to only one (due to time

limitations). They will work together in approximately

8 blocks of 8 hours each.

Customers will be represented by students that are

particularly creative in defining new features and will

never take part in developing code. Exactly at this

point, further research is necessary: Usually the end

users (customers) have neither a background in

computer science nor are they experienced with these

techniques. Consequently we will have to bring in real-

life customers into the software engineering education.

This would be a breakthrough, due to the fact that the

students would get immense insight into problems

involved with real-life customers.

Teams will observe all 12 XP practices, adapted to the

short time available for the overall project, e.g., the

40h week will be relaxed to the Wednesday-8h-

“week”.

After each iteration a few developers will be switched

randomly between teams in order to study the

robustness of XP against personnel changes.

Additionally, all customers will be switched randomly

between teams so that the teams will be able to test

their product on several customers, in particular w.r.t.

Usability using a predefined set of criteria.

During planning games, usability aspects will be

assessed by the thinking aloud method on paper mock-

up simulations of features corresponding to user

stories. Each team will have to deliver basic

functionality for the first release of the subject that has

been chosen by their first customer.

If this functionality cannot be demonstrated to the

satisfaction of the second customer at the end of the

first release, the corresponding team will be dissolved

and the former team-members assigned to new or other

teams. Members of teams that were not dissolved will

get bonus points used for calculating their grades for

the course. For the second release, again a new

customer will be assigned at random to the teams, and

the team will have to finish a product that covers both

the already implemented feature as well as the one of

the new customer.

At the final “trade show” (mini conference), the team-

products will be assessed both from the point of view

of the satisfaction of their two functionalities, quality

in terms of unit-test coverage, readability of code, and

experimental stress-testing, as well as their general

usability. All students will be able to distribute points

to different teams w.r.t. to these three measures (the

number of members of a team will be subtracted from

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

that team’s assessment numbers), and additional points

will be distributed by impartial students assistants. A

full 8 hours will be allocated for this final trade show

and all students are requested to assess as many of the

teams as possible.

4. XU in Software Engineering Education

In order to create awareness of the importance of

integrating Usability issues into Software Engineering

(SE) education much research is necessary. Most of all

we must breach the gap between theory and practice

by application of real-life projects together with

industrial partners within the education of our students.

However, we investigated the computer science

curricula of other Universities and Universities of

Applied Sciences to judge the degree of UE integration

in the SE education track.

What we could learn was that UE is integrated very

little and far too late in SE education. Usually,

students of Computer Science have a two hour lecture

for one semester in their master program. That means

that, during a period of two years, the students learn

“pure” development of systems using different

development processes from the V-Model to RUP

[13]. After these two years of programming it is very

hard to sensitize the students for any sustainable

software features such as quality aspects and especially

usability. Software quality assurance includes much

more than software testing [14].

To improve this situation we suggest a two step

iteration of the computer science curricula in Austria:

1. Explain potential risks of a lack of usability. Risks

can be seen from a technical perspective: e.g.

necessary redesign if the customer refuses to

accept the software. Risks can also be seen from a

business perspective; including loss of sale, loss of

brand reputation and market share [15];

2. Integrating UE in the SE education from scratch.

One possible methodology to reach this is the

integration of UE in the XP development process

as suggested by the authors;

6. Conclusion

The combination of Extreme Programming (XP) and

Usability Engineering (UE) which leads to a new

method: Extreme Usability (XU), is very promising,

especially for Software Engineering education. The

authors are planning future in-depth research in real-

life scenarios in order to collect more experience and

are working towards developing a comprehensive

guide for combining theory with practice: together

today for a better software engineering of tomorrow!

7. References

[1] K. Beck, "Embracing Change with Extreme

Programming", IEEE COMPUTER, vol. 32, 10, 1999, pp.

70-77.

[2] K. Beck, Extreme Programming Explained: Embracing

Change, Addison Wesley, Boston (MA), 1999.

[3] J. M. Carroll and M. B. Rosson, "Getting around the task-

artifact cycle: how to make claims and design by scenario",

ACM Transactions on Information Systems (TOIS), vol. 10,

2, 1992, pp. 181-212.

[4] B. Shackel, "The Concept of Usability" in Visual Display

Terminals: Usability Issues and Health Concerns, J. Bennett,

D. Case, S. J., and M. Smith, Eds., Prentice Hall, Englewood

Cliffs (NJ), 1984.

[5] J. Nielsen, Usability Engineering, Morgan Kaufmann,

San Francisco, 1993.

[6] A. Holzinger, "Usability Engineering for Software

Developers", Communications of the ACM, vol. 48, 1, 2005,

pp. 71-74.

[7] A. Holzinger, Multimedia Basics, Volume 3: Design.

Developmental Fundamentals of multimedial Information

Systems, Laxmi Publications, New Delhi, 2002.

(www.basiswissen-multimedia.at)

[8] A. Holzinger, "Application of Rapid Prototyping to the

User Interface Development for a Virtual Medical Campus",

IEEE Software, vol. 21, 1, 2004, pp. 92-99.

[9] R. A. Virzi, "Refining the test phase of usability

evaluation: how many subjects is enough? " Human Factors,

vol. 34, 4, 1992, pp. 457-468.

[10] C. D. Allen, D. Ballman, V. Begg, H. H. Miller-Jacobs,

J. Nielsen, J. Spool, and M. Muller, "User involvement in the

design process: why, when & how?" presented at Conference

on Human Factors and Computing Systems, Amsterdam

(NL), 1993. pp. 251-254.

[11] A. Holzinger, "User-Centered Interface Design for

disabled and elderly people: First experiences with designing

a patient communication system (PACOSY)" in Lecture

Notes in Computer Science. Vol 2398, K. Miesenberger, J.

Klaus, and W. Zagler, Eds., Springer, Berlin et al., 2002. pp.

34-41.

[12] A. Holzinger, "Experiences with User Centered

Development (UCD) for the Front End of the Virtual

Medical Campus Graz" in Human-Computer Interaction,

Theory and Practice, J. A. Jacko and C. Stephanidis, Eds.,

Lawrence Erlbaum, Mahwah (NJ), 2003. pp. 123-127.

[13] A. Holzinger, Basiswissen IT/Informatik. Band 2:

Informatik, Vogel, Würzburg, 2003.

(www.basiswissen-it.at)

[14] S. Feldman, "Quality Assurance: Much more than

Testing", ACM Queue, vol. 3, 1, 2005, pp. 27-29.

[15] C. B. Fellenz, "Introducing usability into smaller

organizations", ACM interactions, vol. 4, 5, 1997, pp. 29-33.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

