Embedded Architecture Description Language

Juncao Li, Nicholas T. Pilkington, and Fei Xie

Department of Computer Science
Portland State University
Portland, OR 97207, USA

{juncao, nickp, xie} @cs.pdx.edu

Abstract

In the state-of-the-art hardware/software (HW/SW) co-
design of embedded systems, there is a lack of sufficient sup-
port for architectural specifications across HW/SW bound-
aries. Such an architectural specification ought to capture
both hardware and software components and their interac-
tions, and facilitate effective design exploitation of HW/SW
trade-offs and scalable HW/SW co-verification. In this pa-
per, we present the embedded architecture description lan-
guage (EADL). It is based on a component model for em-
bedded systems that unifies hardware and software compo-
nents. EADL does not dictate execution and interface se-
mantics of hardware and software components while sup-
porting flexible platform-oriented semantics instantiation.
EADL supports concise representation of embedded system
architectures and also formulation of architectural patterns
of embedded systems. Besides facilitating design reuse, ar-
chitectural patterns also facilitate verification reuse via as-
sociation of property templates with these patterns. Effec-
tiveness of EADL has been demonstrated by its successful
application in integrating component-based co-design, co-
simulation, co-verification, and system synthesis.

1 Introduction

Due to stringent design constraints of embedded systems
such as performance, power efficiency, and manufacture
costs, their hardware and software modules must closely in-
teract and hardware/software (HW/SW) trade-offs must be
effectively exploited. This demands HW/SW co-design.

To reduce manufacture and operation costs, it often re-
quires that for a given mission, only necessary hardware and
software modules be loaded into an embedded system. This
makes component-based development (CBD), developing
systems via assembly of components, an appealing and ap-
propriate approach to embedded system development. In
both hardware and software industries, CBD [6, 15] is a
common trend. (In hardware industry, CBD is also known

Qiang Liu
School of Software
Tsinghua University
Beijing, 100084, P. R. China
liugiang @mail.tsinghua.edu.cn

as Intellectual Property (IP) based development.) The main
objective of CBD is to reuse design and verification efforts.

A key to CBD of a hardware or software system is the
support for architectural specification of this system which
captures the components that form the system and their in-
teractions. Further architectural supports include specifica-
tion of architectural patterns for system composition, which
can facilitate both functional reuse and verification reuse.
However, in the state-of-the-art HW/SW co-design of em-
bedded systems, there is a lack of sufficient support to ar-
chitectural specifications across HW/SW boundaries. This
is largely due to the major semantics gap between hard-
ware and software components. They are often designed
in their native design/implementation languages whose ex-
ecution and interface semantics differ significantly.

In this paper, we present the embedded architecture de-
scription language (EADL) whose key features include:

e EADL is based on a unified component model for
embedded systems that unifies hardware and software
components and bridges the HW/SW semantics gaps.

e EADL does not dictate execution and interface seman-
tics of hardware and software components while sup-
porting platform-oriented semantics instantiation.

e EADL supports concise specification of embedded
system architectures and also supports formulation of
architectural patterns of embedded systems.

e EADL integrates architectural design with assertion-
based verification (ABV). It supports association of
properties (e.g., temporal correctness properties) with
components and property templates with architectural
patterns, to facilitate embedded system verification.

We have utilized EADL as the common representation
for integrating component-based co-design, co-simulation,
co-verification, and system synthesis in the Embedded Soft-
ware Integrated Development Environment (ESIDE). We
have instantiated EADL for two networked sensor platforms
with different software languages: xUML [10] (a design-
level language) and nesC [3] (an implementation-level lan-
guage). Furthermore, we have applied EADL in capturing

architectures of networked sensor systems [5, 14] and guid-
ing their HW/SW co-verification. EADL has demonstrated
its flexibility in platform-oriented instantiation and its effec-
tiveness in capturing architectures and patterns and in sim-
plifying formulation of system and component properties.
The reminder of this paper is organized as follows. In
Section 2, we review a unified component model upon
which EADL is developed. In Section 3, we introduce the
key language features of EADL. In Section 4, we discuss
how EADL is instantiated for an embedded system plat-
form. In Section 5, we present the application of EADL
in ESIDE. In Section 6, we discuss our experiences using
EADL. In Section 7, we present the related work. In Sec-
tion 8, we conclude this paper and discuss the future work.

2 Background: A Unified Component Model

In [18], a unified component model has been developed for
embedded systems that follow an abstract but representa-
tive architecture as shown in Figure 1. Under this architec-

(Software Components)
Embedded OS
Generic Processors

(Hardware Components)
ASICs

Buses

Figure 1. Abstract Architecture

ture, the software components of an embedded system exe-
cute on generic processors while the hardware components
are implemented as application specific integrated circuits
(ASICs). The software components and hardware compo-
nents interact through an embedded OS that also schedules
the execution of the software components.

From this architecture, a unified component model as
shown in Figure 2 has been derived, under which an embed-
EEEEEEEE Software - Bridge = Hardware
Y Component Component Component
Software ‘A

Component Y

} Software Bridge Hardware
********** Component ----» Component | Component

Figure 2. Unified Component Model

ded system is assembled from components. There are three
types of primitive components: software components, hard-
ware components, and bridge components. Bridge com-
ponents interact with hardware (or software, respectively)
components following hardware (or software) semantics
and bridge the semantic gap between hardware and software
components by propagating events across the HW/SW se-
mantic boundary. The semantics of bridge components to-
gether with the hardware and software semantics abstract
the processors, buses, and embedded OS of the targeted
embedded system platform. (For more details about the
bridge component concept, see Section 4.) Three types of

composite components may also be defined: software com-
ponents, hardware components, and hybrid components.
A hybrid component contains both hardware and software
sub-components and, therefore, bridge sub-components.

Components. A component C' is a triple (F, I, P) where
E is the design or implementation of C, I is an interface
including the semantic entities for C' to interact with its en-
vironment and/or for specification of properties of C, and P
is a set of temporal properties that are defined on I and have
been verified on . Hardware, software, and bridge com-
ponents differ in the specification language for E and I, but
share the same specification language for P. Each entry of
P is a pair (p, A(p)) where p is a temporal assertion and
A(p) is a set of assumptions (i.e., assumed properties) on
the environment of C' for enabling the verification of p on
C. The environment of C' includes components that interact
with C in a system, and may be different in each system.

Composition. A composite component, C = (E, I, P), is
composed from a set of components, Cy = (Ey, Iy, P),
vy Co1 = (Bp—1, In_1,Pn_1), as follows. F is con-
structed from Fy, ..., E,_1 by connecting Fy, ..., F,_1
through Iy, ..., I,—1. I may be a hardware interface, a
software interface, or a hybrid hardware/software interface
depending on what types of components C, .. ., C,,_; are.
I includes the semantic entities from I, ..., I,,—1 that are
needed for C' to interact with its environment and/or for
specification of properties of C. Properties of a composite
component are established via verification on abstractions
constructed from properties of its sub-components [18].

3 Key Language Features of EADL
3.1 Component Interfaces

To support architectural specifications, EADL refines the
unified component model to accurately capture structures
in both component interfaces and component interactions.

Events. EADL employs the event concept to abstract all
concrete hardware or software interaction mechanisms: sig-
nals, messages, function calls, etc. The event semantics are
only precisely defined when EADL is instantiated for a spe-
cific embedded system platform (See Section 4). Events in
an embedded system can be of different semantics due to
the differences between hardware and software semantics.
This enables EADL to span across HW/SW boundaries.

Ports. EADL employs the port concept to group events
that together realize a certain functionality. Depending on
whether a component is providing or utilizing the function-
ality, the port can be a “provides” or “uses” port in the com-
ponent interface specification. Each event in a port has an
input or output direction. Whether an event in a port is an
input or output to a component also depends on whether the

port is provided or used. If a component provides a port,
its events conform to the directions as specified in the port;
otherwise, its events reverse the directions.

Figure 3 shows the interface of a software sensor com-
ponent, SW_Sensor, which uses three ports CLK, ADC, and
STQ and provides one port SendRcv. The EADL interface

Send

Software Sensor Component

(sapraoid)
AYPUSS

e
Send_Ack
(Uses) (Uses) (Uses)

cak | | apc | | stQ

pUOS™S

Eill) o)
N)
nury
YS

PV

Figure 3. Interface of Software Sensor

specification of SW_Sensor is shown in Figure 4. The events
in these ports are software messages. Figure 4 also includes
the interface specification for a hardware sensor component,
HW _Sensor. It provides a single port in its interface. The
events in this port are hardware signals. (Space limitation
precludes showing the component implementations.)

In EADL, ports serve as the basic unit for design and
verification reuse. Besides events, a port can also include
properties formulated on these events as shown in Figure 5.
They are specified in xPSL [17], a property specification
language that extends the IEEE Property Specification Lan-
guage (PSL) to specify temporal properties of both hard-
ware and software, and entire embedded systems. xPSL
utilizes a common set of temporal operators while allow-
ing them to operate on both hardware and software events.
These properties are correctness assertions on the function-
ality of this port and are categorized into two sets: prop-
erties of the port provider (a.k.a. “provides assertions”)
and properties of the port user (a.k.a. ‘“uses assertions”).
The two sets of properties often serve as the assumptions of
each other. When a port is reused in a component, depend-
ing whether it is provided or used, the corresponding set of
properties are verified on the component. Ports with their
properties are put into a library for reuse in defining com-
ponents, component templates, and architectural patterns.

Composition. In EADL, components are connected on the
more abstract port level, instead of the detailed event level.
As shown in Figure 4, a connection links two components
through ports of the same type but reversed directions.

3.2 Component-Based System Architectures

EADL specifies the architecture of a composite component
(a system is a composite component) through specifying
its configuration which consists of all its sub-components,
and the connections between them. The configuration of

hybrid component HB_Sensor {
interface { provides SendRcv; mapping(SendRcv, SW_Sensor.SendRcv); }
configuration {
component SW_Sensor, HW_Clock, HW _Sensor, BG_Sensor;
connection (BG_Sensor.CLK, SW_Sensor.CLK);
connection (BG_Sensor.ADC, SW_Sensor.ADC);
connection (BG_Sensor.STQ, SW_Sensor.STQ);
connection (HW _Clock.CLK Intr, BG_Sensor.CLK Intr);
connection (HW _Sensor.SEN_Intr, BG_Sensor.SEN_Intr);

}

software port SendRev {

events { output Message Send; input Message Send-Ack; }}
software port CLK {

events { output Message C_Intr; input Message C_Ret; } }
software port ADC { provides boolean On;

events { output Message A_Intr; input Message A_Ret; } }
software port STQ { provides boolean Empty;

events { output Message S_Schd; input Message S_Ret; } }

hardware port CLK Intr { events {output Signal intr_c; }}
hardware port SEN_Intr { events {output Signal intr_s;
input Signal start_s; } }

software component SW_Sensor {
interface { provides SendRcv; uses CLK, ADC, STQ; }
configuration { source (“source_path”); }}

hardware component HW _Clock {
interface { provides CLK_Intr; }
configuration { source (“source_path”); }}
hardware component HW _Sensor {
interface { provides SEN_Intr; }
configuration { source (“source_path”); }}

bridge component BG_Sensor {
interface { provides CLK, ADC, STQ; uses CLK Intr, SEN_Intr; }
configuration { source (“BG_Sensor.bg”); } }

/*BG_Sensor.bg*/
/* Hardware interrupt to software message mappings */
(CLK Intr.intr.c — CLK.Cntr) (SEN.Intr.intr_s — ADC.A_Intr)
/* Software variable to hardware signal mappings */
(ADC.On — SEN_Intr.start_s)
/* Interrupt priorities */
Priorities(CLK Intr.intr_c, SEN_Intr.intr_s) = {0, 0}
/* Messages for initiating software tasks and their enabling conditions */
SchdSet = {(STQ.S-Schd | (STQ.Empty=False))}

Figure 4. EADL Spec for Sensor Hybrid

a hybrid sensor is shown in Figure 4. Besides the sub-
components and their connections, port maps are also pro-
vided to indicate the correspondence between the ports
of the composite component and the ports of its sub-
components. Such a map can only be one-to-one. For a
primitive component, the configuration is replaced by the
path of its source file. For instance, the source code of the
bridge component, BG_Sensor, is shown in Figure 4, which
is specified in a platform-specific bridge specification lan-
guage (BSL) [18]. (Further discussion about bridge compo-
nents and the BSL can be found in Section 4.)

3.3 Embedded System Architectural Patterns

There often exist common patterns among architectures of
systems or components. While the architecture of a sys-
tem or composite component is captured as a configuration
which consists of components and their connections, an ar-

software port SendRcv {
events { output Message Send; input Message Send-Ack; }
properties {
provides assertion Sender_Handshake : Receiver_.Handshake_S
After (Send) Never (Send) UnlessAfter (Send-Ack);
uses assertion Receiver_Handshake_S : Sender_Handshake
Never (Send_Ack) UnlessAfter (Send);
After (Send-Ack) Never (Send-Ack) UnlessAfter (Send);
uses assertion Receiver_Handshake_L : Sender_Handshake
After (Send) Eventually (Send_Ack); }

}

software template Source {
interface { provides SendRcv as SendPort; }
properties {
assertion Src_Data_PT : Receiver_Handshake_S, Receiver_Handshake_L
Repeatedly (SendPort.Send); }

software template Sink {
boolean DataConsumptionFlag;
interface { uses SendRcv as RevPort; }
properties {
assertion Sink_Data_PT : Sender_Handshake
IfRepeatedly (RevPort.Send) Repeatedly (DataConsumptionFlag);
IfRepeatedly (RevPort.Send) Repeatedly (!DataConsumptionFlag); }

software Pattern SourceToSink {
configuration {
template Source; template Sink;
connection (Source.SendPort, Sink.RcvPort); }
properties {
assertion Data_PT
Repeatedly (Sink.DataConsumptionFlag);
Repeatedly (!Sink.DataConsumptionFlag); }

Figure 5. An Example Architectural Pattern

chitectural pattern is captured as a configuration template
which consists of both concrete components and compo-
nent templates as well as their connections. Abstraction of
patterns from component or system architectures is based
on abstraction of component templates from components.
A component template is a skeleton that captures the com-
mon interface, variables, and properties shared by a class
of similar components. The properties are defined over the
interface and the variable set of the component template.

Based on the above abstractions, an architectural pattern
consists of three parts: (1) a partial description of the in-
terface for a component or system following this pattern,
which consists of ports, (2) a configuration template, from
which the configuration of the component or system is in-
stantiated, and (3) property templates specified on the inter-
face and the configuration template, from which properties
of the component or system are instantiated.

We illustrate the architectural pattern concept with a sim-
ple but representative pattern of embedded systems, the
SourceToSink pattern, as shown in Figure 5. There are two
component templates defined, Source and Sink. Their inter-
faces are defined through reuse of the port SendRcv: Source
provides the port while Sink uses it. The two component
templates are connected via this common port. This pattern
can be instantiated multiple times in a system, which yields
savings in design time and in system complexity and size.

4 Platform-Oriented Instantiation of EADL
4.1 Embedded System Platform

Embedded systems are often domain-specific. An emerging
trend in the industry is to supply domain-specific platforms
for embedded systems. Such a platform includes proces-
sors, buses, and embedded OS for developing embedded
systems of a given domain. The platform also provides
reusable hardware and software components and common
architectural patterns of this domain. A key design goal of
EADL is to support architectural specification of embedded
systems based on various platforms. To achieve this goal,
we design EADL to support platform-oriented instantiation.
We first give our definition of the platform concept. To
simplify system design and verification, the platform con-
cept will hide details of processors, buses, and embedded
OS through definition of a platform-specific BSL. The se-
mantics of hardware, software, and bridge components to-
gether abstract processors, buses, and embedded OS. With
this abstraction, an embedded system platform for an ap-
plication domain consists of: (1) software, hardware, and
bridge design/implementation languages, (2) compiler sup-
ports to these languages for simulation, verification, and de-
ployment, and (3) libraries of reusable ports, architectural
patterns, and hardware, software, and hybrid components.

4.2 Instantiation of EADL

EADL is designed as an architectural extension for the
hardware, software, and bridge design/implementation lan-
guages and it gains complete semantics when coupled with
these languages. A platform provides the semantics needed
for instantiating EADL for an application domain, as shown
in Figure 6. The software, hardware, and bridge semantics

Embedded Architecture Description Lanuguage

Software Bridge
Semantics

Hardware

Semantics Semantics

Figure 6. Instantiation of EADL

determine the semantics of the events in the interfaces of
software, hardware, and bridge components specified using
EADL. The semantics of the events in turn complete the se-
mantics of the property specification language, xPSL, since
xPSL provides the temporal operators, but does not dictate
the semantics of the atom propositions, basically, the events.

Next, we present an EADL instantiation on a sensor sys-
tem platform. The components and pattern in Figure 4 and
Figure 5 are based on this platform. For a software com-
ponent, to support high-level design, we adopt the model-
driven development [10] and specify the design E of soft-
ware components in XUML [10], an executable dialect of
UML. The interface I of a software component can include

two types of events: a set of input and output messages
and a set of exported variables in E. The component com-
municates with its environment via asynchronous message-
passing. The variables in I are mapped to hardware sig-
nals and/or utilized in specifying component properties and
scheduling constraints. This interface semantics is deter-
mined by the asynchronous interleaving message-passing
semantics of xUML.

For a hardware component, we specify the design E in
Verilog. The interface I consists of a set of variables that
the hardware component imports from or exports to its en-
vironment. The component communicates with its environ-
ment synchronously via the variables in I. This interface
semantics is determined by the synchronous clock-driven
semantics of Verilog.

Bridge components inter-connect hardware and software
components. The interface I of a bridge component is a
pair (Ig,Is). Iy is a synchronous shared-variable inter-
face for interactions with hardware components and Ig is
an asynchronous message-passing interface for interactions
with software components. The interface of the bridge com-
ponent is determined by the hardware and software compo-
nents it connects. The design F of a bridge component is
formulated in a platform-specific BSL [18]. This language
specifies (1) how hardware signals are mapped to software
messages, (2) how software variables are mapped to hard-
ware signals, (3) interrupt priorities, and (4) messages that
initiate software tasks. The design of the BG_Sensor com-
ponent in Figure 4 is specified in this language.

S EADL in Embedded System Development

5.1 Embedded System
Integrated Development Environment

Figure 7 illustrates an Embedded System Integrated De-
velopment Environment (ESIDE) that we have been de-
veloping. In ESIDE, EADL serves as the vehicle for in-

77777777777777777 Component—-Based |- - - - - - - - - - - - - - - - -,
Co-Design |—

Port Lib.
Template Lib.
Pattern Lib.

Component Lib.

EADL Arch Spec i |
and Component Component—Based
Source Code Co-Simulation

_» Component-Based |-
System Synthesis

Figure 7. Embedded System IDE (ESIDE)

— Data Flow
- - - - Feedback

Deployment
Images

tegrating component-based co-design, co-simulation, co-
verification, and system synthesis. Embedded system de-
velopment using ESIDE starts with selecting a platform for

embedded systems. This platform is utilized to instantiate
EADL and also provides the platform-specific libraries of
ports, component templates, patterns, and reusable com-
ponents. Component-based co-design generates the archi-
tectural specifications of the system being designed and its
components. Source code of these components, developed
anew or reused, is associated with their architectural spec-
ifications. The architectural specifications are utilized in
both component-based co-simulation and co-verification to-
gether with the platform-specific libraries. There are feed-
backs from co-simulation and co-verification to co-design
for reporting design errors that are detected. The validated
and verified designs are compiled into deployment images
for both hardware and software by the component-based
system synthesis. There are also feedbacks from system
synthesis to co-design for reporting deployment issues.

5.2 Component-Based Co-Design

VisualEADL Toolkit. To support architectural design us-
ing EADL, we have developed the VisualEADL toolkit, im-
plemented as an Eclipse plug-in. VisualEADL serves as
the frontend of ESIDE and integrates the co-simulation, co-
verification, and system synthesis toolkits. VisualEADL
starts by requesting the designer to select an embedded sys-
tem platform. VisualEADL then populates its modeling en-
vironment with ports, component templates, architectural
patterns, and reusable hardware, software, and hybrid com-
ponents out of the platform-specific libraries.

Component-Based Co-Design Lifecycle. The component-
based co-design lifecycle, as supported by ESIDE, consists
of the following three major phases.

Platform Creation. The lifecycle starts with creation of an
embedded system platform. A platform can be created by
an embedded system platform vendor or in house by system
designers. VisualEADL provides an interface for creating
platforms and populating the platform-specific libraries. In
this phase, the hardware platform, the operating system, and
the hardware and software design/programming languages
are selected. The BSL is defined by abstracting the plat-
form components and interfacing the hardware and soft-
ware semantics. Primitive hardware and software compo-
nents are identified from previous ad-hoc systems built on
this platform and from architectural patterns of the appli-
cation domain or are developed from scratch. These com-
ponents are designed with VisualEADL and coded in their
respective design/programming languages. These primitive
components can be further composed bottom-up to develop
reusable composite components of this platform.

We have created a platform for networked sensor sys-
tems: (1) software components specified in nesC [3], a na-
tive programming language for sensor software; (2) hard-
ware components specified in Verilog; (3) bridge compo-

SW_Coordinator

e 1 |CBQCtrl Query NetCtrl SRMsg
| |
| start) handleQuery i v <A
i stopl;{l cancelQueryl TdataReady]E\\} & % g i
T = Tsdce T T T QueryHandler | StdCtrl SRMsg|| g =N
' SW_CBQ | A
- HB_Network
I cull Datal Cul2 Data2 Cul3 Data3 | -
R I R e s |
\‘ \‘ \‘ \‘ N H<_ %] 42
| | | | | | N = | e e e e e ——— -
D) s _ L g |®E M 1
/SwuCul ~ GSI | [SwCwl GSI | Tswcul GSI | gl g | Legend i
| Y il= . solid box: concrete component .
| HB_Pulse | | HB_BloodOx | IHB_BOdyTempI | dashed box: component template |
_ = 4 e e e — - -

Figure 8. CodeBlue Architectural Pattern for Medical Sensor Systems

nents specified in a BSL that is similar to the language used
in Figure 4 while interactions with software components
are conducted through function calls instead of message-
passing. The platform-specific libraries are populated as we
used ESIDE to re-engineer the networked sensor systems
included in the TinyOS [5] distribution. The libraries are
further expanded as we re-engineered the sensor systems in
the CodeBlue [14] distribution.

Figure 8 shows the CodeBlue architectural pattern for
medical sensor systems and Figure 9 shows the EADL
specification of this pattern which includes two concrete
components and two component templates. In particular,

hybrid pattern P_.HB_CodeBlue {
configuration {

component SW_Coordinator, HB_Network;
template T_SW_CBQ;
multi template T_HB_Sensor[NumofSen];
connection (HB_Network.StdCtrl, SW_Coordinator.NetCtrl);
connection (HB_Network.SRMsg, SW_Coordinator.SRMsg);
connection (T_-SW_CBQ.StdCtrl, SW_Coordinator. CBQCtrl);
connection (T_-SW_CBQ.QueryHandler, SW_Coordinator.Query);
connection (T_HB_Sensor.StdCtrl, T_SW_CBQ.Ctrl);
connection (T_HB_Sensor.GSI, T_-SW_CBQ.Data);

properties{
assertion CBP1 : CBA1
After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
Eventually(SW_Coordinator.SRMsg.send(SRC, SINK, var>T))
UnlessAfter(SW_Coordinator.Query.cancelQuery(SRC, SINK));
assumption CBA1
After(SW_Coordinator.Query.handleQuery(SRC, SINK, T))
EventuallyAlways(T_-HB_Sensor[SRC].devSenVar>T);
}
}

Figure 9. EADL Spec for CodeBlue Pattern

T_HB_Sensor is a hybrid component template which can be
instantiated multiple times in a system instance.

System Development. New systems on the platform are de-
veloped top-down. Given its functional requirements, a sys-
tem is decomposed into its hardware, software, and bridge
components. The interface of each component is defined
and its properties are specified. The decomposition consid-
ers components from the platform-specific libraries. If there

is an existing component matching the interface and prop-
erties, the component can be reused. If there is no matching
component, the component is either developed from scratch
as a primitive component or further decomposed.

The top-down decomposition reuses architectural pat-
terns as possible. We illustrate the role of architectural
patterns with the decomposition of a multi-sensor system.
The functional requirement of this system is that it should
properly operate multiple hardware sensors, e.g., temper-
ature and pulse sensors, and transmit their readings. The
system can be decomposed into its hardware and software
components as shown in Figure 10. The decomposition fol-

Multi-Sensor | . ---- .| Sensor Network
System t---- " | Hybrid Hybrid
S-NET
[
" Bridge |
’H—CLK‘ ’ H-SEN 1‘ ’H—SEN 2‘ ’ H—NET‘

Figure 10. Pattern-Guided Decomposition

lows the architectural patterns of the networked sensor do-
main. The top-level pattern is the SourceToSink pattern in
Figure 5, following which the system is decomposed into
two hybrid components: sensor hybrid and network hybrid.
The two components are then further decomposed, which
may follow additional architectural patterns.

Platform Extension. New components may be introduced in
top-down development of new systems and they may also
be introduced through bottom-up component development
due to technology advances, such as new sensing and com-
munication modules for the networked sensor application
domain. The new components can be further composed
with existing components or among themselves to construct
larger composite components bottom-up.

5.3 Component-Based Co-Simulation

Figure 11 illustrates the architecture of a co-simulator for
component-based embedded systems. The keys of this ar-

Bridge Component

[BstL |

+ Compiler +
f ‘ f
Software Software
Application Platform
Comyp < "

Hardware
Application

Hardware
Platform

P P

HDL Source Code

NesC Source Code ‘

NesC Compiler

C Source Code

C Compiler

HDL Compiler

Software Hardware
Executable Executable

PLI
Giano Q:{> ModelSim

Figure 11. Co-Simulation Architecture

chitecture are the compilers for hardware, software, and
bridge components. The BSL compiler generates the hard-
ware platform components such as the bus and the inter-
rupt queue in Verilog and the software platform compo-
nents such as the interrupt manager and the scheduler in
nesC. Furthermore, the BSL compiler configures the plat-
form components of an embedded system such as the pro-
cessor. It is also responsible for establishing mappings be-
tween hardware signals and software functions/variables by
generating hardware code in Verilog and software code in
nesC. The HW/SW event mappings are also used to config-
ure the interface between the software simulator, Giano [1],
and the hardware simulator, ModelSim [11], which is used
for HW/SW synchronization. The software (or hardware,
respectively) components including those generated by the
BSL compiler are compiled into executables by the software
(or hardware) compiler.

5.4 Component-Based Co-Verification

In component-based HW/SW co-verification [18], hard-
ware and software components are verified as they are de-
veloped bottom-up. Properties of a primitive component are
directly model-checked and properties of a composite com-
ponent are checked on its abstractions constructed from ver-
ified properties of its sub-components. A system is verified
top-down as it is developed via recursive decompositions
into its components. Verified properties of the reused com-
ponents are reused in constructing the abstractions for veri-
fying properties of the system or higher-level components.

Architecture-Based Property Formulation and Reuse.
A major challenge in component-based co-verification is
the property formulation problem: (1) what are the system

properties to verify, (2) what are the component properties
needed for verifying the system properties, and (3) what are
the environment assumptions for establishing these proper-
ties. We utilize component templates and architectural pat-
terns, and their associated property templates to address this
challenge [8]. The basic approach is to use the property
templates to guide formulation of properties of components
and systems as they are instantiated from the component
templates and architectural patterns. We also support defi-
nition of property decomposition strategies for an architec-
tural pattern which specify how to decompose pattern-level
property templates into properties of the concrete compo-
nents and property templates of the component templates.
EADL integrates architectural design with ABV: as compo-
nents and systems are architected, their properties are for-
mulated. Property formulation and reuse take place on three
levels: port, component template, and architectural pattern.

Examples of Architecture-Based Reuse. There is a prop-
erty template Data_PT associated with the SourceToSink
pattern, which can be used to generate a property to be
verified on a system or a composite component following
this pattern, for instance, the multi-sensor system in Fig-
ure 10. The property template asserts that there is repeated
data consumption at the sink. There are also property tem-
plates Src_Data_PT and Sink_Data_PT associated with the
Source and Sink templates, which can be used to generate
component properties needed for verification of the pattern-
level property. Since the component templates include the
port SendRcv, they also inherit the port properties. What
properties to inherit depends on whether the port is provided
or used. If HB_Sensor in Figure 4 is considered as an instan-
tiation of the Source template, then the property template of
Source can be instantiated and verified on HB_Sensor.

A property template, CBP1, is associated with the Code-
Blue pattern. It asserts that after the coordinator receives
a query with SRC as the sensor to be queried, SINK as the
requester of the sensor reading, and 7T as the threshold for
reporting the sensor reading, the coordinator will eventually
report an above-threshold sensor reading to the requester
unless the request is canceled. It has an assumption that af-
ter the query is received, the hardware sensor reading even-
tually reaches and stays above the threshold.

5.5 Component-Based System Synthesis

The component-based system synthesizer employs a simi-
lar architecture as the component-based co-simulator. The
key difference is that the compilers in the co-simulator com-
pile the components into executable for simulation while
the compilers in the system synthesizer compile the compo-
nents into hardware (or software, respectively) images that
are used to program FPGAs and configure hardware com-
ponents (or loaded by the operating systems for execution).

6 Experiences with EADL

Using EADL as supported by ESIDE, we have successfully
re-engineered the sensor systems from the TinyOS distri-
bution and further the CodeBlue distribution: (1) created a
sensor system platform using ESIDE, (2) restructured the
systems following the unified component model, (3) speci-
fied all the components in EADL and included them in the
platform libraries, (4) co-simulated and co-verified all the
systems against a common set of system properties cap-
turing minimal system correctness, for instance, no buffer
overflow (safety) and repeated transmission (liveness), and
(5) compared the systems synthesized from the component-
based designs in EADL with the original systems. The
component-based co-verification was accomplished on all
the systems, many of which failed a straightforward ap-
plication of model checking to entire systems due to state
space explosion. Several buffer overflow vulnerabilities in
the sensor systems were detected. A similar re-engineering
effort for the systems based on the Microsoft Invisible Com-
puting platform [4] is currently ongoing.

7 Related Work

There have been much research on both hardware, software,
and embedded systems architecture description languages
(ADLs) (see [16, 9] for their comprehensive surveys).
Among those ADLs, the most closely related are SAE
AADL [12], Metropolis [13], and Ptolemy [7]. The AADL
is an industry standard designed for the specification, anal-
ysis, and automated integration of real-time performance-
critical distributed computer systems. Metropolis features
a flexible and formal semantics based upon the tagged sig-
nal model. Ptolemy focuses on component-based heteroge-
neous modeling. It uses tokens as the underlying commu-
nication mechanism. EADL differentiates from the above
ADLs in that it does not require any particular execution se-
mantics and can be instantiated on any hardware and soft-
ware execution semantics to enable component-based co-
design, co-simulation, co-verification, and system synthesis
based on these semantics. The EADL representation of ar-
chitectural patterns is partially motivated by ACME [2]. In
ACME, architectural patterns are explicit semantic entities.

8 Conclusions and Future Work

In this paper, we have presented EADL, an architecture de-
scription language for embedded systems. EADL captures
both hardware and software components and their interac-
tions, and gains its flexibility from its support to platform-
oriented instantiation. It has demonstrated its effectiveness
in serving as the vehicle for integrating component-based
co-design, co-simulation, co-verification, and system syn-
thesis in ESIDE. For next steps, we will explore how EADL

can be utilized to facilitate analysis of system and compo-
nent properties other than temporal correctness properties.

9 Acknowledgment

This research received financial support from Semicon-
ductor Research Corporation (Contract #: 1356.001), Na-
tional Science Foundation of the United States (Grant #:
0720546), Chinese National Basic Research and Develop-
ment 973 Program (Grant #: 2004CB719400), and Chi-
nese National High Technology 863 Program (Grant #:
2006AA01Z155,2007AA01Z122, and 2007AA047135).

References

[1] A. Forin, B. Neekzad, and N. L. Lynch. Giano: The two-
headed system simulator. Technical Report MSR-TR-2006-
130, Microsoft Research, 2006.

[2] D. Garlan, R. T. Monroe, and D. Wile. Acme: an architec-
ture description interchange language. In CASCON, 1997.

[3] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to net-
worked embedded systems,. In PLDI, 2003.

[4] J. Helander and A. Forin. Mmlite: a highly componentized
system architecture. In 8th ACM SIGOPS European Work-
shop, 1998.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In ASPLOS, 2000.

[6] M. F. Jacome and H. P. Peixoto. A survey of digital design
reuse. IEEE Design and Test of Computers, 18(3), 2001.

[7] E. A. Lee. Overview of the ptolemy project. Technical Re-
port UCB/ERL MO03/25, UC Berkeley, 2003.

[8] J. Li, E Xie, and H. Liu. Guiding component-based hard-
ware/software co-verification with patterns. In EUROMI-
CRO SEAA, 2007.

[9] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Trans. Software Eng., 26(1), 2000.

[10] S.J. Mellor and M. J. Balcer. Executable UML: A Founda-
tion for Model Driven Architecture. Addison Wesley, 2002.

[11] Mentor Graphics. ModelSim. http://www.mentor.com.

[12] S. of Automative Engineers (SAE). The SAE AADL Lan-
guage Standard (AS-5506). SAE, 2004.

[13] A. L. Sangiovanni-Vincentelli. Quo vadis sld: Reasoning
about trends and challenges of system-level design. Pro-
ceedings of the IEEE, 95(3), 2007.

[14] V. Shnayder, B. R. Chen, K. Lorincz, T. R. F. Fulford-Jones,
and M. Welsh. Sensor networks for medical care,. Technical
report, Harvard University, 2005.

[15] C. Szyperski and et al. Component Software - Beyond
Object-Oriented Programming. Addison Wesley, 2002.

[16] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nico-
lau. Architecture description languages for system—on—chip
design. In APCHDL, 1999.

[17] F. Xie and H. Liu. Unified property specification for hard-
ware/software co-verification. In COMPSAC, 2007.

[18] F. Xie, G. Yang, and X. Song. Component-based hard-
ware/software co-verification. In MEMOCODE, 2006.

