Annual IEEE International Computer Software and Applications Conference

Security Policy Enforcement in the OSGi Framework
Using Aspect-Oriented Programming

Phu H. Phung

David Sands

Chalmers University of Technology, Sweden*

Abstract

The lifecycle mismatch between vehicles and their IT sys-
tem poses a problem for the automotive industry. Such sys-
tems need to be open and extensible to provide customised
functionalities and services. What is less clear is how to
achieve this with quality and security guarantees.

Recent studies in language-based security — the use of
programming language technology to enforce application
specific security policies — show that security policy en-
forcement mechanisms such as inlined reference monitors
provide a potential solution for security in extensible sys-
tems. In this paper we study the implementation of security
policy enforcement using aspect-oriented programming for
the OSGi (Open Services Gateway initiative) framework.
We identify classes of reference monitor-style policies that
can be defined and enforced using AspectJ, a well-known
aspect-oriented programming language. We demonstrate
the use of security states to describe history-based policies.
We also introduce and implement various levels of secu-
rity states in Java to describe session level history versus
global application level history. We illustrate the effective-
ness of the implementation by deploying the security pol-
icy enforcement solution in an example scenario of software
downloading in a standard vehicle system.

1. Introduction

Vehicle telematics and infotainment systems have tradi-
tionally provided fixed functionality. The problem with this
state of affairs is the lifecycle mismatch between the vehi-
cle and its software. IT services need to be dynamic; what is
appropriate today can be completely outdated in 6 months
let alone 6 years. The current goal is to enable truly open
systems which make it easy to add third-party services.

However, such extensible systems face difficult security
problems. To get the full benefits of extensibility in such

*Department of Computer Science and Engineering, Chalmers Univer-
sity of Technology, Sweden. {phung,dave} @cs.chalmers.se

0730-3157/08 $25.00 © 2008 IEEE
DOI 10.1109/COMPSAC.2008.149

1076

systems one needs to allow potentially untrusted applica-
tions access to security sensitive resources. A simple sand-
boxing view which grants all-or-nothing access to a static
set of resources, determined on the basis of trust, is too
course grained. To be flexible we need to be able to enforce
application-specific policies.

For example, suppose a client wishes to install a third-
party service to an on-board vehicle computer, and the ser-
vice needs to be able to send SMS (text) messages in order
to function properly.

There are possible problems: the program could be ma-
licious and deliberately send too many messages e.g. to a
high-cost service. Or the application may simply have bugs,
causing it, under certain circumstances, to repeatedly send
messages. In the standard security approach one must de-
cide, on the basis of trust (e.g. established via digital signa-
tures) whether to permit the application access to the SMS
service. This all-or-nothing approach has obvious limita-
tions. In an open environment it is hard to establish mean-
ingful trust relationships, and even when one can, trust is
not equated with quality.

But access control is probably not the real security policy
that we are interested in — it is really just an implementation
mechanism. A more fine-grained security policy for such an
application — one which can be stated independently of any
trust relationships and access control mechanism — might be
something like the following: allow a third party application
to access the SMS service, but:

e restricted to a specific recipient address,

e with a limit on the number of messages sent per day,
and

e depending on the vehicle’s location.

To accommodate the last point using a standard access con-
trol mechanism one might have to additionally permit an
application access to GPS location data, thus opening up a
host of additional privacy related vulnerabilities. Another
alternative to enforce such a fine grained policy would be to
push the security into the API itself. A limitation with that

IEEE
computer
psouety

approach is the need to predict the way in which we might
wish to control the API at its inception.

One general approach to imposing such a security pol-
icy on an otherwise untrusted system is to use a reference
monitor. The concept of a security reference monitor [9] is
a classic method to specify and implement secure systems.
The reference monitor is a trusted component which inter-
cepts security relevant resource requests and applies a secu-
rity policy to decide whether to grant such requests. There
has been considerable interest recently in using reference
monitors at a purely software level — for example by rewrit-
ing software to “embed” (inline) a security policy within
it — to provide expressive and efficient application specific
security policies for software components e.g. [15, 22].

In this paper we consider the application of this inlined
reference monitor approach in the context vehicle telemat-
ics/infotainment systems — on-board vehicle computer and
communications systems. The study considers a new com-
bination of methods. We consider the OSGi (Open Ser-
vices Gateway initiative) standard [4] as a representative
open middleware platform for telematics systems. The
main questions addressed in this case study concern the
architecture and implementation of reference monitors for
third-party applications. To implement reference monitors
we adopt a language-based approach using aspect-oriented
programming with the Aspect] compiler [1, 20], rather than
a more security-specific program rewriting tools such as e.g.
PoET/PSLang [15] or Polymer [22]. A strength of this ap-
proach is that it uses a relatively complete and well-tested
tool. A weakness, in principle, is that is does not provide
direct support for policies (aspects) which make reference
to the computation history. The main questions considered
in this study are

1. What classes of reference monitor-style policies can be
enforced using Aspect]?

How can this approach be integrated with the OSGi
platform without making platform modifications?

. What are the shortcomings of using AspectJ for imple-
menting reference monitors?

Organisation The next section briefly reviews the back-
ground material for this study, including the reference mon-
itors approach, aspect oriented programming and the As-
pect] language, and the OSGi framework. Related work
is also reviewed in each field. In Section 3, we categorize
classes of security policies, and discuss the issues of vari-
ous levels of security states, history-based policies (Ques-
tion 1 above). In Section 4 considers aspects of deployment
the security policy enforcement in the OSGi framework us-
ing Aspect], and deployment architecture (Question 2). In
Section 5 we conclude our contributions, and discuss limi-
tations (Question 3) as well as further research issues.

1077

2. Background and Related Work

There are three main strands of background material for
this study, and these are briefly reviewed in this section. We
also review the related work. Firstly we discuss how ref-
erence monitors can be implemented by transforming pro-
grams so that security checks are inlined in the code — the
so-called inlined reference monitor approach. Secondly we
review the specific technology we adopt here: aspect ori-
ented programming, and, more specifically, the AspectJ lan-
guage. Thirdly, we describe the middleware framework in
which we apply this study: the OSGi framework.

2.1. Security Policy Enforcement by Pro-
gram Transformation

Security policy enforcement by program transformation
is an implementation of the reference monitor approach in
which a target program is modified so that it will adhere to
a security policy when it executes. More specifically, new
code will be added in security-relevant actions or events to
check the program respects the security policies. Thus, the
modified program is guaranteed not to violate the policy.
The mechanism needs a language to describe the security
policy and a re-write tool to modify a target program. A
number of proposals have been directed at specifying more
expressive classes of security policies and implementing the
appropriate tool to rewrite a target program so that the poli-
cies are guaranteed to be enforced in the rewritten program.
PSLang/PoET [15] is such a language/tool for security pol-
icy enforcement in Java bytecode. The implementation of
PSLang/PoET is based on security automata [25] software
fault isolation: if the original program is about to violate
the security policies, the modified program will halt in-
stead. Polymer [22] allows more expressive security poli-
cies for Java applications. Polymer provides more pow-
erful transformational responses to application events. In
general such a mechanism is useful for protecting extensi-
ble systems since it does not rely on a complex tool chain
(c.f. the proof carrying code approach [26]). However, one
current disadvantage of these tools is that they are research
prototypes and lack the robustness and completeness (e.g.
in terms of source language features) of mature industrial
tools. This puts limitations on the kinds of experimental in-
vestigations that one can currently perform in a real context
like the OSGi framework.

Our approach is to implement policy enforcement using
Aspect], an “industrial strength” aspect oriented program-
ming language. This has benefits of providing a complete
and robust tool which can be applied at an appropriate level
for this study (i.e. Java bytecode). This choice also presents
some challenges and problems that will be discussed in
this article. The next subsection gives overview of aspect-

oriented programming and the AspectJ language.
2.2. AOP and the AspectJ Language

Aspect-oriented programming (AOP) [20] is a new pro-
gramming paradigm providing programmatic means to
modularise cross-cutting functionalities of complex soft-
ware systems so that program concerns in a software system
can be captured and encapsulated in to so-called aspects.
Aspect] is a language that extends Java and implements the
paradigm of AOP. In Aspect], an aspect comprises a point-
cut, which defines the point and the condition under which
the aspect modifies the behaviour of an application, and an
advice, which defines what modifications should be applied.
Pointcuts are sets of execution points in Java such as object
constructors, method calls, method executions, variable set-
tings, and so on. Advice is expressed in the traditional Java
language. In order to apply aspects in a target Java program,
an aspect developer defines aspects, then uses an aspect tool
to combine the target program and the aspects. This stage is
called weaving, where the target program will be analysed
and modified by matching pointcuts and inserting advice.

These features of Aspect] make the language and the
weaver tool suitable as a security policy enforcement tool.
In general, security policies could be defined by aspects
with security-relevant events declared in pointcuts and se-
curity responses defined in advice. However, whether an
aspect language like Aspect] can scale up to real systems
as a policy language is still the challenge. For instance,
what sorts of security policies can be described in Aspect]?
How mature is the security assurance provided by Aspect]?
What are the shortcomings of Aspect] in the sense of secu-
rity policy enforcement that needs to be investigated in fur-
ther studies? In related work, several proposals for building
secure software systems using aspect-oriented design have
been surveyed in [12]. Basically, these proposals only in-
troduce the aspect-oriented approach as part of the general
design and development of security requirements for a soft-
ware system. This work addresses the questions by studying
the use of Aspect] in the context of dynamic security policy
enforcement for the OSGi framework in telematics systems.

2.3. The OSGi Framework in Vehicle Sys-
tems and its Security Challenges

The OSGi (Open Services Gateway initiative) [4]
is a framework implementing a complete and dynamic
component-model that is missing in stand-alone Java vir-
tual machine (JVM) environment. An application in OSGi
consists of one or more components, called bundles. Bun-
dles can be installed remotely and can be started, stopped,
updated and uninstalled without restarting the JVM. The
OSGi framework offers a co-operative model so that bun-

1078

dles can discover and use services provided by others in
the same OSGi framework. The OSGi framework has been
used in in-vehicle systems by several car manufactures. For
example, BMW used the OSGi specifications as the base
technology for its high-end infotainment platform [8]; the
GST project defines an application runtime environment for
a client system (vehicle) using the OSGi framework (c.f.
[6], Open Systems Implementation Guide).

The OSGi framework sits on top of a JVM and its secu-
rity mechanism is based on the Java 2 security model [5].
The main addition is simply the ability to authenticate bun-
dles to be able to verify bundle integrity. In other respects
it has the standard advantages of the Java security model
(e.g. memory safety), but also the standard limitations as
discussed in e.g. [14, 16]. In particular, the access control
model — as discussed in the introduction — restricts the func-
tionality of mobile code since they adopt an “all or nothing”
access to computing resources. Code signing mechanisms
only certify the origin and the integrity of code. Regarding
the expressiveness of Java’s security mechanism, policies
depending on the history of executions (other than that vis-
ible by stack inspection) or value of variables at runtime
cannot be defined in Java 2.

In the context of security for the OSGi framework, some
research [23, 24] has investigated secure bundle deploy-
ment. The solutions help certify the origin and the in-
tegrity of code. More relevant to the present work is [17]
which describes a rule-based runtime monitor integrated
into the OSGi to detect and prevent certain security viola-
tions. This proposal, of course, has a potentially high run-
time cost. To the best of our knowledge, no prior studies has
investigated on security policy enforcement for OSGi using
aspect-oriented programming as we consider in this article.

3. Classes of Security Policies in Aspect]J

In this section we categorize some of the classes of secu-
rity policies that we can encode in Aspect]. We then discuss
other issues such as history-dependent policies and levels of
security states. Dealing with multiple threads and interact-
ing among security policies are also discussed.

3.1. Security Policies by Response Actions

In Aspect], an aspect contains a pointcut and an ad-
vice. Mapping from Aspect] to a security policy language, a
pointcut is a definition of an application’s security-relevant
event, and an advice is a security decision at a defined event.
A variable in aspect objects could be considered as part of
what we will call the security state to keep track of the his-
tory of execution and application’s activity. Since runtime
parameters can be accessed at a pointcut, security policies
in aspects could be specified dynamically.

The question that arises at this point is: what kinds of
security policies can be described. This subsection cate-
gorises kinds of security policies based on kinds of response
actions (security decision) to security-relevant events. The
categorisation is inspired by the edit automata [21], a theo-
retical work which classifies rich enforceable security poli-
cies. The edit automata view goes beyond the classical
reference monitor approach because it proposes powerful
transformational abilities such as the ability to suppress ac-
tions, replace actions, insert new actions, and to truncate
execution.

In each of the following examples we illustrate one of
these policy types to show that they can be represented
directly in Aspect]. The examples are written in pure As-
pect] (and Java) code; the pure Aspect] code should be self-
explanatory.

1. Suppression: This represents prohibiting an action by
simply suppressing (ignoring) it. This is suitable for
actions whose completion is not critical for the func-
tionality of the system. This kind of policy could be
defined by the advice around. For example, the policy
“suppress the alert message when the vehicle speed is
over 80mph” could be defined in Aspect] as:

Listing 1: A suppression policy example.

import osgi.VehicleSystem;

public aspect Suppression{

pointcut alertMessage ():
(call (% VehicleSystem.alert (..)));

void around (): alertMessage (){
if (VehicleSystem.speed() >80){

VehicleSystem.log (" alert_message.” +
”during Jhighospeed”);

— OV U AW —

_—

Insertion: Action is allowed but requires insertion of
additional code before or after execution.

To insert a sequence of actions in a target program,
e.g. logging information, both the advice before and
after could be used depending when we want to insert
the actions. The listing 2 gives an example that stores
the bundle object to the instance of the class library
BundleHandler before a bundle starts in the OSGi platform.

Listing 2: An insertion policy example.
import
import
import

0sgi.*;
org.osgi.framework.BundleContext;
org.osgi.framework. BundleActivator;
import advice.BundleHandler;
public aspect BundleStart {
BundleHandler bundle;
pointcut startBundle (BundleContext context):
execution(x BundleActivator+.start (BundleContext))
&& args(context);

N=leCHEN B R R e S

bundle new BundleHandler(context);
VehicleUtils.log(”A_bundle_starts”);

before(BundleContext context):startBundle (context){

1079

3. Truncation: This corresponds to the classic run-
time monitor approach: if the application attempts
to perform a prohibited action then execution will be
aborted.

This kind of policy could be defined by the advice
before OT after. In the body of the advice, security pol-
icy developers could check whether the policy con-
dition matches, then the current application could be
stopped by calling a method of a library. Listing 3 in
Aspect] (only shows the advice) illustrates the policy
“stop the application if it attempts to operate the brake
system”!.
Listing 3: A truncation policy example.

before (): call (x VehicleBrake.brake (..)){
VehicleUtils .log(”The_application._attempts”+
”_to_operate_operates _the_brake_system”);
try{
bundle. stop ();
}catch (BundleException e){}

NN AW —

The object bundle in Listing 3 is an instance of the class
library BundleHandler and it is assumed to be initialized
previously, e.g. in the listing 2. Class BundleHandler iS an
auxiliary library class for supporting security advice.
The class is system-dependent, e.g. in this example
the class is implemented for the OSGi framework. The
method stop () Will be responsible for stopping the cor-
responding bundle.

Replacement: An action should be replaced by a safe
alternative action.

The advice around could be used to define this kind of
policy. This advice is similar to the suppression advice
but instead of logging an error, this advice should re-
turn a new action (implemented somewhere in the as-
pect file or in a library) having the sufficiently similar
functionality as the action we want to replace (e.g. to
prevent the application from crashing). The following
example would “replace the method call send(..) by
the new method secureSend()”,;

Listing 4: A replacement policy example.

public aspect Replacement{
int around ():(call (x send(..))){

1
2
3 return securedSend ();
4
5

}

3.2. Dealing with History-Dependent Poli-
cies

Some response actions of program events in a security
policy may depend on the history of the program execu-

IThe example is rather tongue-in-cheek: we are not suggesting that
systems will be that open.

—_

1
2
3
4

5
6
7
8
9
0

tion. The Chinese Wall policy [10] is such a policy ex-
ample where information access control is decided on the
basis of the earlier access. Aspect] supports a mechanism
to capture the current call stack but cannot capture the his-
tory of the earlier program execution. To deal with prob-
lems of history-dependent aspects, recent work, for exam-
ple [7, 11, 18], has focused on defining aspects that support
to directly observe the history of a computation. While this
would certainly be useful in the present context, we have
chosen to define security policies in “standard” Aspect].
The method to do so is straightforward. We use variables
as security states to record appropriate parts of the history
of the program execution in order to define history-based
security policies. Response actions can use the states in
their security decisions. The policy example in Listing 5
demonstrates the use of pure Aspect] in describing history-
dependent security policies.

3.3. System Level and Application Level Se-
curity States

In a security automaton, decisions of response actions
are based on security states at runtime. As we mentioned
above, such states could be encoded by local variables in
aspects. However, some policies require data both from the
global system level as well as the application level. For in-
stance, a global policy (across all applications) that allows
each application to send 3 SMS messages per day, but lim-
iting the total number of messages of the whole system to 10
per day requires both the data of the number of the sent SMS
messages in each application and in the system. Aspect]
only support session level states (local variables per run),
therefore, we have implemented a library to encode sys-
tem level states (class GlobalState) and application level states
(class ApplicationState). Each state level is encoded in a file,
and each file is monitored by appropriate daemon thread
bundle. The daemon thread implements the temporal com-
ponent of the policy to reset the state, i.e. the SMS count,
when the period has elapsed. The value of each state is up-
dated and synchronized via the files by the library classes
and daemons. Using the classes, policy writers could define
different levels of states in security policies. The following
Aspect] code illustrates the above policy example using the
classes.

Listing 5: A policy example illustrates the use of different
levels of security states.

import advice.GlobalState;
import advice. ApplicationState;
import advice.Duration;
public aspect StateExample{
pointcut appStart(): execution(x start (..));
ApplicationState astate =
new ApplicationState ("SMSApp”);
before() : appStart(){
if (lastate.existState ("SMSNum”)){
astate .createState ("SMSNum”);

1080

astate .setStateDuration (”SMSNum” ,
astate .setStateValue ("SMSNum” ,0);

}

¥
pointcut SMSsend (): execution(x SMS(..));
private void SMSIns(){
Integer appSMS =
(Integer)astate . getStateValue ("SMSNum”);
Integer sysSMS =(Integer)GlobalState
.getStateValue (”"SMSNum”);
astate .setStateValue (”SMSNum” ,appSMS . intValue ()++);
GlobalState . setStateValue (”SMSNum” ,
sysSMS . intValue ()++);

Duration .Day);

}
int around (): SMSsend(){
int appSMS= ((Integer)
astate . getStateValue ("SMSNum”)). intValue ();
int sysSMS=((Integer) GlobalState
.getStateValue ("SMSNum”)). intValue ();
if ((appSMS <3)||(sysSMS <10)){
SMSIns ();
return proceed ();

Yelse{

System.err.println (”Policy.violated”);

In Listing 5 example, we use one application-level and
one system-level state variable, both labelled with “SM-
SNum”. The application state object is initialized at the
beginning, line 6-7, and the “SMSNum” state is created if
necessary in line 9-13. Notice that global states must be ini-
tialized and configured when the system starts. We assume
that the global state has been initialized elsewhere. The pol-
icy is checked in line 30 inside the advice around (line 25); if
the policy is violated, the SMS function will be suppressed
(line 33-35), otherwise states are updated (line 31, call the
method in line 16-24), and the function is executed (line
32).

Dealing with multiple threads The security states are en-
coded and synchronized via files, so multiple threads (each
application in the OSGi is a thread running on the frame-
work) should access common states under mutual exclu-
sion.

Interacting among security policies Different security
policies for an application could use the same application-
level state, thus the policies can interact with each other by
reading and writing states. System-level security states al-
low security policies of different applications to interact.
These issues, which to our knowledge have not been ad-
dressed in prior security policy enforcement proposals, are
important for multiple applications running on the same
framework like the OSGi.

4. The Deployment of Security Policy Enforce-
ment in OSGi using Aspect]J: A Case Study

In this section we describe the system architecture (4.1)
— in broad terms — for weaving security policy into third-

party bundles to be deployed in the OSGi framework. We
discuss some deployment issues (4.2) of security policy en-
forcement in the OSGi using Aspect].

4.1. System Architecture and the Scenario

The Global System for Telematics (GST) project [6] pro-
vides a reference standard for vehicle systems. The standard
is J2ME/OSGi based, describes how a telematics client ap-
plication can be downloaded and installed over the air from
a control center, and specifies an interface for receiving ve-
hicle data. In this study, we use the architecture described in
the standard, and the Knopflerfish open source OSGi frame-
work [3] for the in-vehicle system.

The first questions are how and when the security policy,
as represented by aspects, will be woven into the program.
One possibility is to extend the framework itself to allow
bundles to be recompiled using the Aspect] compiler when
they are downloaded. This approach has the drawback of re-
quiring potentially a lot of modification to the OSGi client,
but also a significant computational load (compilation) to
a potentially small computing device. Our approach is to
proxy the downloading of an application via a trusted con-
trol center who takes case of the weaving on behalf of the
client.

Consider the following example practical scenario. A
hotel service company offers an infotainment application
for in-vehicle systems that provides useful information
about hotels near by the vehicle location. A driver can use
this application in his truck to find a suitable hotel when
spending a night on the way of his transportation. To install
the application, a driver makes a corresponding request to
the control center as in the GST standard. One new stage
in our scenario is that before installing over the air to the
in-vehicle system, the control center weaves the applica-
tion with defined aspects (considered as security policies) to
make sure that the application does not violate the desired
security policies. Thus, the application has been modified
following aspect-oriented mechanism and it is guaranteed
that the security policies described in aspects are enforced
thanks to the weaving process in the control center. Figure 1
illustrates steps of the scenario.

What is left open here is the choice of policy; one possi-
bility is that the policy is sent from the client together with
the bundle request. There are also possibilities for includ-
ing some centralised policy control — e.g. mandatory “min-
imum” policies enforced by the control center.

4.2. Deployment Remarks

In the deployment scenario, the control center weaves
application bundles with defined aspects (as security poli-
cies) by using the Aspect] weaver tool [1]. One additional

1081

In-vehicle system Control center

Third party

|
request a 3rd party service

request the service

the application bund

|
weave the bundle |
with defined aspects |
|
|

e

the woven bundle

install and run | (security policies)

Figure 1: The weaving process scenario

stage in this process is to modify a bundle’s manifest file so
that the bundle can use Aspect] library packages and the ad-
ditional library packages at runtime. In the in-vehicle sys-
tem, the woven bundles need the Aspect] library and our
library packages, so the libraries must be installed in the
framework before installing and running a woven bundle.
We package our library in a jar file with a manifest file that
allow bundles access the library, then install the library to
the framework. The Aspect] library is also installed after
re-packaging with a modified manifest file that allow bun-
dles access the library packages.

Test example We implemented a simple application bun-
dle simulating the hotel guide service described above. The
bundle communicates with a simple server application to
get hotel information, and to make booking. Simple secu-
rity policies reflecting various identified classes of policies
described in Aspect] (policies could be defined in one or
separate aspect files) are used to weave the bundle so that
the bundle is modified to enforce the defined policies. The
woven bundle was re-deployed and run successfully on the
Knopflerfish OSGi framework. Several test cases were per-
formed to illustrate that the defined security polices are cor-
rectly enforced for the bundle.

5. Conclusion and Further Work

Conclusion This paper has demonstrated the use of an
aspect-oriented language, AspectlJ, in the context of security
policy enforcement. We have illustrated how various sorts
of security policies are categorised and described in Aspect]
as advice. Our demonstration has resulted in the first study
of security policy enforcement using an aspect-oriented lan-
guage in an open system like the OSGi framework. The
study differs from research of security policy enforcement
in that it is based on the more industrially well-known lan-
guage Aspect] and the main stream Java language without
defining any new policy languages. We also design and im-
plement a library can be used to describe different levels of
security states such that history-dependent security policies

could be defined, even in the presence of multiple interact-
ing threads. Security policy definition and enforcement by
aspects and libraries were deployed and tested in an open
source OSGi framework. As a result, we could conclude
that the security assurance provided by the policy enforce-
ment mechanism using Aspect] is promising (and certainly
adequate for small examples) and can be deployed in the
OSGi framework.

Further Work In the small-scale examples that we in-
vestigated we did not encounter problems with represent-
ing history information explicitly. Whether this becomes a
problem for larger examples remains to be seen. Another
feature that we did not investigate is the composition of dif-
ferent security policies. Several ongoing research works on
composition of aspects are expected to be directly applica-
ble in this context [13]. Future work should also consider
the design of policy management mechanisms, dealing with
issues such as interactive policy construction.

At the level of the framework, we assume that the weav-
ing process (security policy enforcement) in the control cen-
ter is done automatically by running a script. Alternatively,
the weaving process could be executed in the in-vehicle sys-
tem side automatically by integrating the Aspect] weaver
tool in to the OSGi framework. Recently, Equinox Incuba-
tor - Aspects project [2] provides an Eclipse plug-in com-
bining the OSGi runtime of Eclipse together with Aspect].
A more recent work [19] integrates AOP into OSGi by en-
abling customised load-time weaving with OSGi. However,
these are intended to support general AOP development in
OSGi, not to focus on security policy enforcement. In fu-
ture work, we will investigate on this integration to support
“online” security policy enforcement for the OSGi frame-
work at in-vehicle systems.

Acknowledgements Thanks to Marcus Larsson at Volvo
Technology (VTEC) and the anonymous referees for helpful com-
ments. This work was partially funded by Vinnova (Swedish Gov-
ernmental Agency for Innovation Systems), project SESAME.

References

[1] The Aspect] Project.
aspectj/.
[2] Equinox Incubator - Aspects. http://www.eclipse.

org/equinox/incubator/aspects/.
[3] Knopflerfish - Open source OSGi.

http://www.knopflerfish.org/.
[4] OSGi Alliance, OSGi - The Dynamic Module System for

Java. http://www.osgi.org.
[5] Sun Microsystems, Java Security Architecture. http:

//java.sun.com/j2se/1.4.2/docs/guide/

security/spec/security-specTOC.fm.html.
[6] The Global System for Telematics (GST) project.

http://www.gstforum.org.

http://www.eclipse.org/

(7]
(8]

[91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

C. Allan et al. Adding trace matching to Aspect]. Technical

report, The abc Group, 2005.
About the OSGi Service Platform, Technical Whitepaper.

http://www.osgi.org/wiki/uploads/Links/
0SGiTechnicalWhitePaper.pdf, June, 2007.

J. P. Anderson. Computer Security technology planning
study. Technical report, Deputy for Command and Manage-

ment System, USA, 1972.
D. Brewer and M. Nash. The Chinese Wall Security Policy.

Proceedings of the 1989 IEEE Symposium on Security and
Privacy, pages 206-214, 1989.

T. Colcombet and P. Fradet. Enforcing Trace Properties by
Program Transformation. In 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
54-66, 2000.

J. Dehlinger and N. V. Subramanian. Architecting Secure
Software Systems Using an Aspect-Oriented Approach: A
Survey of Current Research. Technical report, Iowa State
University, 2006.

R. Douence, P. Fradet, and M. Siidholt. Composition, reuse
and interaction analysis of stateful aspects. In Proceedings

of AOSD ’04, pages 141-150, USA, 2004. ACM.
G. Edjlali, A. Acharya, and V. Chaudhary. History-based

Access Control for Mobile Code. In Proceedings of CCS

"98, pages 38-48, New York, USA, 1998. ACM.
U. Erlingsson. The Inline Reference Monitors Approach to

Security Policy Enforcement. PhD thesis, Cornell, 2004.
F.B.Schneider, G.Morrisett, and R.Harper. A Language-

based Approach to Security. In Informatics 10 Years Back,

10 Years Ahead, LNCS 2000, pages 86—-101, 2000.
C.-C. Huang, P--C. Wang, and T.-W. Hou. Advanced OSGi

Security Layer. In Proceedings of AINAW '07, pages 518—

523, USA, 2007. IEEE Computer Society.
P. Hui and J. Riely. Temporal Aspects as Security Automata.

In Proceedings of FOAL’ 06), pages 19-28, 2006.
T. Keuler and Y. Kornev. A Light-weight Load-time Weav-

ing Approach for OSGi. In Proceedings of Next Generation
Aspect Oriented Middleware Workshop, in conjuction with

AOSD 08, 2008.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-

gramming. In ECOOP, pages 220-242, 1997.
J. Ligatti, L. Bauer, and D. Walker. Edit Automata: Enforce-

ment Mechanisms for Run-time Security Policies. Interna-

tional Journal of Information Security, 4(1-2):2-16, 2005.
J. A. Ligatti. Policy Enforcement via Program Monitoring.

PhD thesis, Princeton University, 2006.
H.-Y. Lim, Y.-G. Kim, C.-J. Moon, and D.-K. Baik. Bun-

dle Authentication and Authorization Using XML Security
in the OSGi Service Platform. In Proceedings of ICIS '05,
pages 502-507, Washington, DC, USA, 2005. IEEE Com-
puter Society.

P. Parrend and S. Frenot. Supporting the Secure Deployment
of OSGi Bundles. In Proceedings of WoWMoM 2007. IEEE
Computer Society, June 2007.

F. B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30-50, 2000.

F. B. Schneider, D. Kozen, G. Morrisett, and A. Myers.
Language-Based Security for Malicious Mobile Code. Tech-
nical report, Cornell Univ Ithaca NY, 2003.

