

RADAR

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r

Oxford Brookes University – Research and
Digital Asset Repository (RADAR)

Directorate of Learning Resources

Bayley, I and Zhu, H
Specifying behavioural features of design patterns in first order logic
Bayley, I and Zhu, H (2008) Specifying behavioural features of design patterns in first order logic. IEEE
International Computer Software and Applications 2008 (COMPSAC 2008), Proceedings. pp. 203-210.
ISSN 0730-3157
Doi: 10.1109/COMPSAC.2008.67

This version is available: https://radar.brookes.ac.uk/radar/items/bfd6a865-e6bf-7220-a13b-
0783c63057a4/1/
Available in the RADAR: April 2009

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can
be downloaded for personal non-commercial research or study, without prior permission or charge. This
item cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder(s). The content must not be changed in any way or sold commercially in any format
or medium without the formal permission of the copyright holders.

This document is the publisher’s version of the conference paper. Some differences between the
published version and this version may remain and you are advised to consult the published version if
you wish to cite from it.

https://radar.brookes.ac.uk/radar/items/bfd6a865-e6bf-7220-a13b-0783c63057a4/1/
https://radar.brookes.ac.uk/radar/items/bfd6a865-e6bf-7220-a13b-0783c63057a4/1/

Specifying Behavioural Features of Design Patterns in First Order Logic

Ian Bayley and Hong Zhu
Department of Computing, Oxford Brookes University, Wheatley, Oxfordshire, OX33 1HX, UK

Abstract

The formal specification of design patterns is widely
recognised as being vital to their effective and correct use
in software development. It can clarify the concepts under-
lying patterns, eliminate ambiguity and thereby lay a solid
foundation for tool support. This paper further advances
an approach that uses first order predicate logic to specify
design patterns by capturing the dynamic behaviour repre-
sented in sequence diagrams. A case study of all 23 patterns
in the Gang of Four catalogue demonstrates that it can not
only capture dynamic features but also simplify the specifi-
cation of structural properties.

1 Introduction

Software design patterns are a technique for document-
ing solutions to recurring design problems and for shar-
ing design expertise in an application-independent fashion
[4, 3, 8]. They are commonly presented in Alexandrian
form, in which design principles are first explained in in-
formal English, and then clarified with illustrative class di-
agrams and specific code examples [8]. This format is in-
formative enough for humans to understand the design prin-
ciple and to learn how to apply patterns to solve their own
problems, but it is also informal enough to risk ambiguity.
It is widely recognised that poorly presented patterns can
result in poor system quality [18]. The formal specifica-
tion of patterns employs mathematical theories and nota-
tions that help to eliminate this ambiguity and to clarify the
notions underlying the patterns. Moreover, it is not enough
to understand individual patterns in isolation. They need to
be catalogued [21] and combined to solve real-world prob-
lems. Formal specification can also lay a solid foundation
for reasoning about properties of patterns and the relation-
ships between them, as shown in [1]. However, as discussed
in section 2, despite of the large research effort in the past
few years, existing techniques of pattern specification have
not satisfactorily captured all features of software patterns,
especially the dynamic features.

This paper is concerned with the specification of dy-
namic features of patterns. It advances the approach pro-
posed in [1] by employing a first-order predicate logic de-

fined on a domain containing both class and sequence dia-
grams. We report a successful case study of the patterns in
the Gang of Four (GoF) book [8].

The remainder of the paper is organised as follows. Sec-
tion 2 briefly reviews related work and discusses the dif-
ficulties of specifying behavioural features. Section 3 de-
scribes the proposed approach. Section 4 illustrates the pro-
posed method by a number of examples. Section 5 analyses
the results of the case study on the patterns of the GoF book
[8]. Section 6 concludes the paper with a discussion of the
advantages of the approach and directions for future work.

2 Related work and open problems

In the past few years, many research efforts have focused
on the formal specification of software design patterns. Ex-
isting work can be classified into two categories. The
first category proposes special-purpose formal languages or
semi-formal graphic modeling languages in order to define
patterns rigorously. The second category, to which our work
belongs, simply employs or adapts existing formal or semi-
formal languages.

Among the work in the first category is the Design Pat-
tern Modelling Language of Mapelsden et al [14], which
defines a whole new language just for patterns. Similarly,
Eden [5, 6] devised a new graphical language LePUS for
the purpose of modelling patterns. In the second cate-
gory, Taibi [19, 20] formalises class diagrams as relations
between program elements, specifies post-conditions with
predicate logic and describes the desired behavior with tem-
poral logic. Mikkonen [15] formalises temporal behaviours
in a temporal logic of actions. Le Guennec et al [9] extend
the UML meta-model to incorporate collaboration occur-
rences and use the Object Constraint Language (OCL) to
constrain the collaborations. Mak et al [13] define the no-
tion of collaborations by extending UML to action seman-
tics. France et al [7] also uses UML meta-modelling fa-
cility to describe the structural properties in class diagrams
and dynamic properties in sequence diagrams, and seman-
tic information by templates of OCL constraints. Zdun
et al [22] identified architectural primitives that occur in
patterns from the component-and-connector view. Finally,
Kodituwakku and Bertok [10] use category theory to for-
mally define the relationships between patterns and study

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

203

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.67

203

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.67

203

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

the mathematical structure of pattern organisations. While
each of these approaches are demonstrated with examples,
it remains an open question whether they can be used to
specify all design patterns.

Tools have also been developed to recognise patterns by
analysing source code [16]. Also focusing at the code level,
Lano et al. [11] consider patterns to be transformations
from flawed solutions to improved solutions. Lauder and
Kent [12] propose a three layer modeling approach consist-
ing of role models, type models and concrete class models.
The disadvantage of focusing at code level is that many be-
havioural properties are hard to determine. Moreover, al-
though tools like PINOT [16] are desirable, design-level
tools are preferable as they would help designers avoid er-
rors at the earlier design stage. Better still would be to de-
velop tools like PINOT in such a manner that they can be
proven correct with respect to a formal specification.

Recently, Bayley and Zhu [1] have also advanced a
method for the formal specification of patterns using pred-
icate logic defined on the domain of UML class diagrams.
All 23 patterns in [8] are formally specified as predicates in
the first-order logic on the domain of class diagrams. They
demonstrated how a concrete design represented in a UML
class diagram can be recognised as an instance of a pat-
tern by proving the satisfaction of the predicate. They also
shown how properties of design patterns can be proved in
first-order logic. This approach has many advantages over
its rivals. First, the specifications are easy to understand and
readable by both humans and computers. The notation is
expressive too as demonstrated by its successful application
to all 23 patterns in the GoF book [8]. Moreover, reason-
ing about the properties of patterns and their relationships
can be done using inference in first-order logic, which is
well-understood and supported by software tools. A similar
alternative approach is simply to use OCL, but OCL is not
designed for the meta-level and even when lifted, it cannot
specify the absence of a relationship between classes. Other
problems with OCL were noted by France et al in [7].

However, although the work in [1] characterises well the
structural properties of patterns, by relying on the design in-
formation contained in class diagrams, it shares with most
other approaches (an exception being [9] and [7]) the major
flaw that dynamic properties cannot be captured. These are
the properties we observe at runtime. Examples include a
message being sent to all instances of a class and a specific
message being sent to a specific object only after a certain
event happens at runtime. For instance, the Observer pat-
tern [8] has the dynamic property that “all observers are
notified whenever the subject undergoes a change in state.”
Dynamic properties are usually stated as comments in the
class diagram, and/or as explanatory text in the Alexandrian
form, or at best, illustrated using sequence diagrams. The
ambiguities in both of these forms is the reason why such

properties are difficult to specify. As with structural proper-
ties in [1], the formalisation of behavioural properties is all
about clarifying the underlying principles.

This paper advances the approach proposed in [1] by
specifying dynamic properties, based on information con-
tained in UML sequence diagrams. The choice of sequence
diagram is because they are more widely used than other
diagrams of this sort, and contain most of the important in-
formation about dynamic behaviour.

3 Specification of patterns as meta-modelling

Each pattern is a subset of design models with certain
structural and behavioural features. Therefore, the formal
specification of patterns is a meta-modelling problem. As
in [1], our approach to meta-modelling is first to define the
domain of all models by an abstract syntax in the meta-
notation GEBNF [23], which stands for Graphic Extension
of BNF. It extends traditional BNF notation with a ‘refer-
ence’ facility to define the graphic structures of diagrams.
Then, for each design pattern, we define a first-order pred-
icate to constrain the models such that each model that
satisfies the predicate is an instance of the pattern. So, a
meta-model in our approach comprises an abstract syntax
in GEBNF plus a first-order predicate.

3.1 The Domain of Models

In this subsection, we first review the meta-notation
GEBNF [23, 1] and then use it to define the domain of mod-
els for class diagrams and sequence diagrams.

3.1.1 GEBNF Notation

In GEBNF, the abstract syntax of a modeling language is
defined as a tuple 〈R, N, T, S〉, where N is a finite set of
non-terminal symbols, and T is a finite set of terminal sym-
bols, each of which represents a set of values. Furthermore,
R ∈ N is the root symbol and S is a finite set of production
rules of the form Y ::= Exp, where Y ∈ N and Exp can
be in one of the following forms.

L1 : X1, L2 : X2, · · · , Ln : Xn

X1|X2| · · · |Xn

where L1, L2 , · · ·, Ln are field names, and X1, X2 , · · ·,
Xn are the fields. Each field can be in one of the following
forms: Y , Y ∗, Y +, [Y], Y , where Y ∈ N ∪ T .

The meaning of the meta-notation is given in Table 1.
Note that where an element is underlined, it is a reference
to an existing element on the diagram as opposed to the in-
troduction of a new element.

204204204

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

Table 1. Meanings of the GEBNF Notation

3.1.2 Class Diagrams

The GEBNF definition of UML class diagrams is obtained
from [17] by removing those attributes not required to de-
scribe patterns, and by flattening the hierarchy in to elimi-
nate some meta-classes for simplicity.

A class diagram consists of classes, linked with associ-
ation, inheritance and whole-part (compag for composite
or aggregate) relations between them. A class has a name,
attributes, and operations.

ClassDiagram ::= classes : Class+,
assocs : Rel∗, inherits : Rel∗, compag : Rel∗

Class ::= name : String,
[attrs : Property∗], [opers : Operation∗]

Here, String denotes the type of strings of characters.
An operation has a name, parameters and five flags. Each

parameter has a name, type, optional multiplicity informa-
tion and direction. Since return values play much the same
role as out parameters, they are treated as just another sort
of parameter, as in [17].

Operation ::= name : String, [params : Parameter∗],
[isAbstract : Bool], [isQuery : Bool],
[isLeaf : Bool], [isNew : Bool], [isStatic : Bool]

Parameter ::= [name : String], [type : Type],
[direction : ParaDirKind], [mult : Multiplicity]

ParaDirKind ::= “in” | “inout” | “out” | “return”
Multiplicity ::= [lower : Natural],

[upper : Natural|“ ∗ ”]
Here, Natural denotes the type of natural numbers and
Bool denotes the type of boolean values.

A property has a name, type, multiplicity information
and a flag isStatic.

Property ::= name : String, type : Type,
[isStatic : Bool], [mult : Multiplicity]

Similarly, relationships between classes can be defined
as follows.

Rel ::= [name : String], source : End, end : End
End ::= node : Class,

[name : String], [mult : Multiplicity]

In the sequel, when there is no risk of confusion, we will
also use the name field of a classifier as its identifier.

3.1.3 Sequence Diagrams

A sequence diagram is an ordered collection of messages
sent between lifelines. Each lifelines has a class and a col-
lection of activations. It can be either an object lifeline
(isStatic = false), in which case they may have a name,
or a class lifeline (isStatic = true), in which case they
don’t. Here, we need only consider synchronous messages
for the sake of simplicity.

SequenceDiagram ::=
lifelines : Lifeline∗, msgs : Message∗,
ordering : (Message, Message)∗

Lifeline ::= activations : Activation∗,
className : String, [objectName : String],
isStatic : Bool

The actions of sending, receiving and returning from (ac-
tivations started by) messages are all events, so both acti-
vations and messages must refer to events. Messages also
refer to operations in the class diagrams, which include pa-
rameters, and hence return values.
Activation ::= start, finish : Event, others : Event∗

Message ::= send, receive : Event, sig : Operation

3.2 Predicates on Diagrams

As shown in [23], an abstract syntax in GEBNF induces
a first-order language for writing first-order predicates as
constraints on the models.

In a GEBNF definition, every field f : X of a term T
introduces a function f : T → X . Function application
is written x.f for function f and argument x. For exam-
ple, because opers : Operation∗ is a field of Class, then
C.opers denotes the set of operations in class C.When there
is just one class diagram or one sequence diagram, functions
on them are written without their arguments, as classes,
lifelines etc. From functions deduced from GEBNF syn-
tax, first-order predicates can be defined as usual using re-
lations and operators on sets and basic data types and logic
connectives and quantifiers. Further functions and relations
can be defined as usual in the first-order logic. For the sake
of readability, we will also use infix and prefix forms for
defined functions and relations. Thus, we then write the
application of function f to argument x with the more con-
ventional prefix notation f(x). Here follows some functions
and relations used in many patterns.

Let bounds(x) = (x.mult.lower, x.mult.upper), for
x : End. We write C1 �−→ C2 for the relation r ∈
compag such that r.source.node = C1, r.end.node = C2,
bounds(r.source) = (1, 1) and bounds(r.end) = (1, 1).
Let C �−→∗ C′ be similar but with bounds(r.end) =

205205205

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

(1, ∗). Let −→ and −→∗ be the equivalent syntactic sugar
for assocs.

Let C be a class. Then subs(C) denotes the set of
concrete subclasses of C. C..op denote the redefinition
of op for class C. We define isAbstract(C) ≡ ∃op ∈
C.opers · (op.isAbstract) and we write allAbstract(ops)
when op.isAbstract is true for every op ∈ ops.

Let m and m′ be messages. We will write m <
m′, if (m, m′) ∈ ordering. We define fromAct(m)
to be the unique activation a such that m.send ∈
a.others, fromLL(m) to be the unique lifeline l such
that fromAct(m) ∈ l.activations, and fromClass(m)
to abbreviate fromLL(m).class. Similarly, we de-
fine toAct(m), toLL(m) and toClass(m). Finally,
trigs(m, m′) means that message m starts (or “triggers”)
an activation that sends message m′ or, more formally,
toAct(m) = fromAct(m′).

For operations op and op′ we define calls below, and
promote it to classes. A much-used predicate is callsHook,
defined when an operation calls another at the root of an
inheritance hierarchy.

calls(op, op′) ≡ ∃m, m′ ∈ msgs·
(m.sig = op ∧ m′.sig = op′ ∧ trigs(m, m′))

calls(C, C′) ≡ ∃m ∈ msgs·
(fromClass(m) = C ∧ toClass(m) = C′)

callsHook(op, op′) ≡
∃C ∈ subs(C′) · calls(op, C.op′)

For all messages m and objects o, we define that
hasReturnParam(m, o) is true if o is the return param-
eter for m. If there is only one such o for a message m, we
write returns(m) = o.

3.3 Consistency Constraints

We define patterns only for design models that are well-
formed and consistent with respect to a set of constraints
[23]. There are so-called intra-diagram constraints, which
affect the diagrams in isolation, and inter-diagram con-
straints, which concern the way that two diagrams must
work together. Inter-diagram constraints for class diagrams
include the constraints on operations already mentioned, the
inheritance of attributes, operations and associations, that
all classes must have different names (and operations and
attributes within the same class must do too), that every ab-
stract class is subclassed by a concrete class and that inher-
itance is irreflexive, and so on. For sequence diagrams, we
require that every message must start an activation.

∀m ∈ msgs · ∃l ∈ lifelines,
a ∈ activations(l) · (m.receive = a.start)

Note that this constraint would not be necessary for par-
allel machines where two versions of the same operation
can be executed simultaneously.

Inter-diagram constraints between the class and se-
quence diagrams, include the following.

• Every message to an activation must be for an opera-
tion of a concrete class:

∀m ∈ msgs · (m.sig ∈ toClass(m).opers
∧¬isAbstract(toClass(m)))

• if a message is for a static operation, the lifeline must
be a class lifeline; but if a message is for a non-static
operation, the lifeline must be an object lifeline:

∀m ∈ msgs·
(m.sig.isStatic ⇒ toLL(m).isStatic ∧
¬m.sig.isStatic ⇒ ¬toLL(m).isStatic)

• every class in the class diagram must appear in the se-
quence diagram:

∀C ∈ classes · ∃l ∈ lifelines · (l.class = C.name)

Descriptions of patterns in the literature sometimes vio-
late such consistency constrains. For example, in [8], the
Builder pattern breaks the final constraint with the Product
class.

4 Examples of Formalisation

Both the structural and behavioural features of patterns
can be formally specified as predicates on diagrams in the
same way as consistency constraints. We have successfully
specified all 23 patterns in the GoF book [8]. Here, we only
give some examples to illustrate the style. A complete list
of all specifications can be found in [2].

For each pattern, the formal specification consists of
three parts. The first part, entitled Components, declares a
set of variables, which are existentially quantified over the
scope of all predicates in the specification of the pattern.
In this way, it sets the background for the formulae by as-
serting the existence of certain components in the system
design. The second part, entitled Static Conditions, con-
sists of a number of predicates for the structural relations
between the components. Such predicates can be evaluated
using the information contained in the class diagram of a
design. The third part, entitled Dynamic Conditions, con-
sists of a number of predicates for the dynamic behaviour
of the system, using information in the sequence diagram
of a design, and sometimes in the class diagram too. In the
latter case, consistency between the diagrams is ensured by
the consistency constraints in subsection 3.3. We omit the
text descriptions, context and solutions to save space, but
we include the diagrams from the GoF book for the sake of
readability.

We start with a simple example, the Adapter pattern.

4.1 Adapter

The structure of Adapter pattern is shown in Figure 1.
There are four participants, Target, Client, Adapter and

206206206

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

Figure 1. Adapter pattern class diagram

Adaptee, so they are all declared as components, with the
exception of Client which may not necessarily be a specific
class in the system, although it often is.
Components
• Target, Adapter, Adaptee ∈ classes
• requests ∈ Target.opers
• specreqs ∈ Adaptee.opers

The most important property of Client is that it only
accesses and depends on Target but not any other compo-
nents, such as Adaptee. This illustrates a common situa-
tion, in which there is a relationship from a class Client to
the root of a class hierarchy. It means that if a message is
sent from a class that is not explicitly mentioned in the pat-
tern then the operation must be declared in the root class.
So, we write CDR(C), short for client depends on root,
where C is the root class. Formally,

CDR(C) ≡
∀m ∈ msgs · (toClass(m) ∈ subs(C)
⇒ m.sig ∈ toClass(m).opers
∧∃o ∈ opers.C · (toClass(m).o = m.sig))

So the structural features of the Adapter pattern can be
specified as follows.
Static Conditions
• Adapter −−� Target
• Adapter −→ Adaptee
• CDR(Target)

The key dynamic feature of the Adapter pattern is that for
every client call to the Adapter’s operations, the Adapter
calls the Adaptee’s operations to carry out the request. This
can be specified as follows.
Dynamic Conditions
• a request is delegated to a specific object

∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))
A complete specification of the Adapter pattern can be as-
sembled from the three parts by removing the comments in
English, which were inserted for the sake of readability.

Note that the specification given above is for Object
Adapter. The Class Adapter pattern has the static condition
Adapter −−� Adaptee instead of Adapter −→ Adaptee,
and we must also capture the condition that it is only the
Adapter class that can send a message to the Adaptee.

∀m ∈ msgs · (toClass(m) = Adaptee ⇒
fromClass(m) = Adapter)

Figure 2. Command pattern class diagram

Figure 3. Command pattern seq diagram

Note that Adapter is typical of the structural patterns in
the GoF catalogue, as it has rich structural features, but also
some dynamic features. Note too that the structural features
of the pattern are specified more simply and clearly than [1],
where only the class diagram is used. In fact, this is true for
almost all patterns in the GoF catalog [8]. See Section 5 for
more details.

4.2 Command

Command is typical of the behavioural patterns in the
GoF catalog, in that it is rich in dynamic features. Fig-
ure 2 shows the structure of the pattern, as captured in the
Component and StaticCondition parts of the specifica-
tion, below.
Components
• Command, ConcreteCommand,

Invoker, Receiver ∈ classes,
• execute ∈ Command.opers,
• action ∈ Receiver.opers

Static Conditions
• Invoker �−→ Command
• ConcreteCommand −→ Receiver
• ConcreteCommand −−� Command
• execute.isAbstract
• ¬isAbstract(ConcreteCommand)
In the GoF catalogue, the dynamic features of a pattern

are described in the Collaborations section, which is some-
times illustrated by a sequence diagram. The sequence dia-
gram for Command pattern is given in Figure 3.

To specify the dynamic features of a pattern, we often
split the Dynamic Conditions into two sub-parts: the An-

207207207

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

Figure 4. Singleton pattern class diagram

tecedent and the Consequent. The former specifies the con-
dition or scenario in which the behavior happens. The latter
specifies the behavior itself. For the Command pattern, the
trigger is a call to the method execute.
Dynamic Conditions - Antecedent
• when a command is executed then

∀me ∈ msgs·
me.sig = ConcreteCommand.execute

Dynamic Conditions - Consequent
• the invoker is responsible, and

fromLL(me).class = Invoker

• the receiver will perform an action at once and

∃ma ∈ msgs · (calls(me, ma) ∧ ma.sig = action)
• the command to be executed is created and

∃mn ∈ msgs·
isNew(mn.sig) ∧ toLL(mn) = toLL(me)

• the command is stored in the invoker and

∃ms ∈ msgs · (ms.sig = storeCommand∧
fromAct(ms) = fromAct(mn))

• the command was created with the receiver before the
command was stored before it was executed

(mn < ms) ∧ (ms < me) ∧
hasParam(mn, toLL(ma).name) ∧
hasParam(ms, toLL(mn).name)

This captures the dynamic information that would have
been missed had we restricted our attention to the static
properties considered by [1]. This is particularly important
for patterns where the static properties are trivial, such as
the single-class Singleton pattern.

4.3 Singleton

The Singleton pattern is a creational pattern with a sim-
ple structure shown in Figure 4, but with dominant dynamic
behaviour, though its GoF description contains no sequence
diagram.
Components
• Singleton ∈ classes
• getInstance ∈ Singleton.opers

Static Conditions

Figure 5. Factory method class diagram

• getInstance.isStatic

Dynamic Conditions - Antecedent
• when a new Singleton object is created

∀m ∈ msgs·
isNew(m.sig) ∧ toClass(m) = Singleton

Dynamic Conditions - Consequent
• this must be triggered by a request for an instance

∃m′ ∈ msgs·
(m′.sig = getInstance ∧ calls(m′, m))

• there cannot be any earlier requests for an instance

∀m′′ ∈ msgs·
(m′′ < m′ ⇒ m′′.sig = getInstance)

• any subsequent request for an instance will return the
same instance

∀m′′′ ∈ msgs·
(m′ < m′′′ ∧ m′′′.sig = getInstance

⇒ returns(m′) = returns(m′′′))

Note that sequence diagrams do have a limitation here, in
that they cannot be used to state explicitly the intent that
only one instance is created, nor that the instance is re-
trieved from a field. Instead both of these must be and can
be inferred from the dynamic conditions given above.

4.4 Factory Method

As discussed in Section 1, patterns when documented
informally will inevitably contain ambiguities or even inac-
curacies, so often, as with the Factory Method pattern, we
must choose between alternatives.

Let us first introduce a predicate isMakerFor(op, C),
which is true if op starts an activation that creates and re-
turns an object of class C. Formally,

isMakerFor(op, C) ≡ ∃m ∈ msgs · (m.sig = op
⇒ ∃m′ ∈ msgs · (isNew(m′.sig)

∧ calls(m, m′) ∧ toClass(m′) = C
∧ returns(m) = toLL(m′).name))

Then Factory Method can be specified as follows.
Components
• Creator, Product ∈ classes
• factoryMethod ∈ Creator.opers

208208208

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

Static Conditions

• factoryMethod.isAbstract
• foreach creator subclass there is one product subclass

∀C ∈ subs(Creator) · ∃!P ∈ subs(Product)
• furthermore, denoting witness P by f(C), then f is a

total bijection.

Dynamic Conditions

• for every creator subclass, the factory method creates
that unique product subclass:

∀C ∈ subs(Creator)·
isMakerFor(C..factoryMethod, f(C))

Now for the alternative formulations. First, in [5]
Eden allows there to be several factory methods
rather than just one as in the above. Second, one
could argue for ¬factoryMethod.isLeaf instead of
factoryMethod.isAbstract. Third, the operation
AnOperation ∈ Creator.opers is not essential to the
Factory pattern. But, if it is added to the Components sec-
tion, the condition calls(AnOperation, FactoryMethod)
should also be added to the Dynamic Conditions.

5 Analysis of case study

We now report the findings of our case study where we
formally specified all 23 patterns in the GoF book [8].

First, every specification is simpler in its structural fea-
tures than, for example, those in [1]. Our notations match
more closely the arrows of UML class diagrams. More
importantly though, when only a class diagram was avail-
able, the behavioural features were expressed as static con-
ditions. Now, they can be expressed more naturally using
sequence diagrams. For example, the calls relation between
operations was previously defined as a dependency relation
between operations, but it is more naturally expressed in
sequence diagrams. This allows us to choose the simpler
option when one notion can be expressed in two different
ways. The consistency assumption, itself specified with
first-order predicates, also allows us to reduce redundancy
by removing equivalent expressions. In Table 2 the column
entitled Simpler structural properties shows where we have
been able to make simplifications.

Second, as one would expect, sequence diagrams enable
us to characterise dynamic properties more accurately and
adequately. A class diagram can dictate that one method
calls another, as discussed in Section 2, and this can be
enough for some patterns but others require more informa-
tion, such as the temporal ordering of messages, which must
come from sequence diagrams. In Table 2 the column en-
titled Improved behavioural properties indicates that 5 pat-
terns are specified without an obvious improvement, and 12

Table 2. Findings of the Case Study

patterns show a slight improvement when the additional in-
formation contained in sequence diagrams is used, but for 6
patterns, the improvement is significant.

Third, some patterns have alternative non-equivalent
specifications, as noted in [1]. Sometimes there is ambigu-
ity even in the best documented patterns and clarification is
needed to select between the alternatives. Sometimes, how-
ever, each alternative is a different specialisation of the pat-
tern. These alternatives, each with their pros and cons, may
form sub-patterns if they are significant enough in practice.
An advantage of the method is that we can now document
each of the subpatterns separately, exploring the alternatives
without having to commit to any of them. The reader can
then make an informed choice. In Table 2, the column enti-
tled Many alternatives shows there are 11 patterns for which
there were many equally valid alternatives.

Finally, as UML diagrams contain only some informa-
tion about the system and at a high level of abstraction, one
may find a specification based on these does not fully ex-
press all the properties required. Three examples of this
now follow.

In the Builder pattern, the BuildPart operations in the
Builder class must each build a different part of the Prod-
uct, and the first creates the object of class Product. This
cannot be accurately expressed. The rest of this pattern can
be captured adequately, however, and better than in [1] as

209209209

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

the sequence diagram is constrained.
In the Composite pattern, the Composite class must

propagate messages sent to it to each of its children, but
without an object diagram, we cannot tell which lifelines
must be the target of the messages. Naturally, this is also a
problem with the Interpreter pattern, but we can at least dic-
tate that the recursive calls are parameterised by the same
Context object.

In the Flyweight pattern, since the Flyweight class has
two different subclasses, one holding the intrinsic state and
the other holding the extrinsic state, the missing parts of the
state should be passed to operations on the former. This
cannot be fully expressed, too, because such information
cannot be included in design models of UML class and se-
quence diagrams.

In Table 2, the column entitled Specified adequately in-
dicates whether the structural and behavioural features have
been fully specified; in 6 out of 23 patterns it has not.

6 Conclusion

In this paper, we further advanced the approach proposed
in [1]. The advantages of the approach as demonstrated in
[1] and summarised in Section 2 apply here too but we omit
the demonstrative examples to save space.

The main contribution of this paper is an investigation
into the behavioural features of patterns. The case study
shows that the method improves the accuracy and adequacy
of formal specification of design patterns for almost all pat-
terns in the GoF book, with the exception of the Flyweight
pattern.

For future work, we believe that a generic pattern-based
software design tool based on formal specifications could
make a significant impact on the practical use of patterns
in software development and to ensure the quality of soft-
ware patterns and pattern languages. It will also be interest-
ing to conduct further case studies of the method with more
complicated patterns, such as patterns in distributed systems
where dynamic behavioral features play a dominant role.
We also plan to formally define when patterns can be com-
posed into larger patterns like Model-View-Controller[8].

References

[1] I. Bayley and H. Zhu. Formalising design patterns in
predicate logic. In Proc. SEFM’07, London, 2007.

[2] I. Bayley and H. Zhu. Specifying behavioural fea-
tures of design patterns. Tech. Report DOC-TR-08-
01, Dept. of Comp., Oxford Brookes Univ., Oxford,
UK, 2008.

[3] S. Berczuk. Finding solutions through pattern lan-
guages. IEEE Computer, 27(12):75–76, Dec. 1995.

[4] P. Coad. Object-oriented patterns. Communications of
the ACM, 35(9):152– 159, September 1992.

[5] A. H. Eden. Formal specification of object-oriented
design. In Int. Conf. on Multidisciplinary Design in
Engineering, Montreal, Canada, November 2001.

[6] A. H. Eden. A theory of object-oriented design. Infor-
mation Systems Frontiers, 4(4):379–391, 2002.

[7] R. B. France, D.-K. Kim, S. Ghosh, and E. Song.
A uml-based pattern specification technique. IEEE
Trans. Softw. Eng., 30(3):193–206, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[9] A. L. Guennec, G. Sunyé, and J.-M. Jézéquel. Precise
modeling of design patterns. In Proc. UML’02, LNCS
1939, 482–496. Springer, 2000.

[10] S. R. Kodituwakku and P. Bertok. Pattern categories: a
mathematical approach for organizing design patterns.
In Proc. CRPIT’02, 63 – 73, Melbourne, Australia,
June 2003. Australia Computer Society, Inc.

[11] K. Lano, J. C. Bicarregui, and S. Goldsack. Formal-
ising design patterns. In BCS-FACS Northern Formal
Methods Workshop, September 1996.

[12] A. Lauder and S. Kent. Precise visual specification
of design patterns. In Proc. ECOOP’98, LNCS 1445,
114–134, Springer, 1998.

[13] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise
modeling of design patterns in uml. In Proc. ICSE’04,
252–261, 2004.

[14] D. Mapelsden, J. Hosking, and J. Grundy. Design pat-
tern modelling and instantiation using dpml. In Proc.
CRPIT ’02, 3–11. Australian Comp. Society, 2002.

[15] T. Mikkonen. Formalizing design patterns. In Proc.
ICSE’98, 115–124. IEEE CS, April 1998.

[16] N. Nija Shi and R. Olsson. Reverse engineering of de-
sign patterns from java source code. In Proc. ASE’06,
123–134, September 2006.

[17] OMG. Unified modeling language: Superstructure,
version 2.0, formal/05-07-04.

[18] PLAC’2007. The first international workshop
on patterns languages: Addressing challenges.
http://www.engr.sjsu.edu/ fayad/workshops/PLAC07,
Accessed on 12 Sept. 2007 2007.

[19] T. Taibi. Formalising design patterns composition.
IEE Proc. on Software, 153(3):126–153, June 2006.

[20] T. Taibi, D. Check, and L. Ngo. Formal specification
of design patterns-a balanced approach. Journal of
Object Technology, 2(4), July-August 2003.

[21] T. Winn and P. Calder. A pattern language for pattern
language structure. In Proc. CRPIT’02, 45–58. Aus-
tralia Computer Society, Inc., June 2003.

[22] U. Zdun and P. Avgeriou. Modelling architectural
patterns using architectural primitives. In Proc.
OOPLSA’05, 133–146, 2005.

[23] H. Zhu and L. Shan. Well-formedness, consistency
and completeness of graphic models. In Proc. UK-
SIM’06, 47–53, April 2006.

210210210

Authorized licensed use limited to: OXFORD BROOKES UNIVERSITY. Downloaded on April 22, 2009 at 07:47 from IEEE Xplore. Restrictions apply.

	bayley2008specifyingcs.pdf
	
	

