

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Advanced Grid programming with components: a biometric
identification case study

Thomas Weigold1
Peter Buhler1
Jeyarajan Thiyagalingam2
Artie Basukoski2
Vladimir Getov2

1 IBM Zurich Research Laboratory
2 Harrow School of Computer Science

Copyright © [2008] IEEE. Reprinted from the proceedings of the 32nd Annual
IEEE International Computer Software and Applications Conference, 28 July -
1 August 2008, Turku, Finland: COMPSAC 2008. IEEE, Los Alamitos, USA,
pp. 401-408. ISBN 9780769532622.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

Advanced Grid Programming with Components: A Biometric Identification Case
Study1

Thomas Weigold, Peter Buhler

{twe, bup}@zurich.ibm.com
IBM Zurich Research Laboratory

Jeyarajan Thiyagalingam, Artie Basukoski, Vladimir Getov

{jeyarat, A.Basukoski02, V.S.Getov}@westminster.ac.uk
University of Westminster, London, UK

1

 This research work is carried out under the FP6 GridCOMP project partially funded by the European Commission (Contract FP6-034442).

Abstract
Component-oriented software development has been

attracting increasing attention for building complex
distributed applications. A new infrastructure supporting
this advanced concept is our prototype component
framework based on the Grid component model. This
paper provides an overview of the component framework
and presents a case study where we utilise the
component-oriented approach to develop a business
process application for a biometric identification system.
We then introduce the tools being developed as part of an
integrated development environment to enable graphical
component-based development of Grid applications.
Finally, we report our initial findings and experiences of
efficiently using the component framework and set of
software tools.

1. Introduction
In recent years component technologies have become a
paradigm of choice in state-of-the-art software
construction. Various component models such as the
CORBA Component Model (CCM) [1], the Enterprise
Java Beans (EJB) [2], or the Distributed Component
Object Model (DCOM) [14] have been available for
different operating environments. Even though many
existing component models can be applied in distributed
systems, they do not address the Grid infrastructure issues
in their full depth. For example, in most models a single
component cannot itself be distributed and thus it cannot
be used to abstract the complexity of a distributed
application computation spanning multiple computers.
Furthermore, the capabilities of the underlying component
model vary significantly between different frameworks.
For example, the Common Component Architecture
(CCA) [3] does not support hierarchical composition nor
does it provide extensive support for component
management and dynamic reconfiguration. Other
frameworks such as ASSIST [19] support autonomic
management but are not component based. Further, there
is no integrated development environment to support

these component models, especially addressing the
contexts of Grid computing.
As a result, the design of a new Grid Component Model
(GCM) has been brought forward in the context of the
European project CoreGRID [4]. GCM provides a much
higher level of abstraction than contemporary component
frameworks and it explicitly takes Grid specific issues
such as the programmability of large-scale,
heterogeneous, and dynamic Grid infrastructures into
account. To drive the GCM ideas developed under the
CoreGRID project one step further the GridCOMP (Grid
Programming with Components) project was established
in 2006 [5]. Its main goal is the design and
implementation of a component-based framework suitable
to support the development of efficient Grid applications.
An integrated development environment for the Grid
(GIDE) is being developed to support this framework.
Here, the basic GCM architecture defined in CoreGRID is
used as the starting point. We then demonstrate the
development of a biometric identification system case
study, using the GIDE, to highlight the advantages of the
approach.
This paper provides an overview of the ongoing work and
some initial results of the GridCOMP project. After
introducing the current GridCOMP GCM framework
implementation in Section 2, the biometric identification
case study is discussed in Section 3. Afterwards, Section
4 introduces an integrated development framework
designed to best exploit the Grid component platform.
Section 5 describes our initial experiences. Finally, we
close with conclusions and future work in Section 6.

2. The GCM Framework
The core task within the GridCOMP project is to further
refine the GCM developed within CoreGRID and to
produce a component framework implementation (CFI)
acting as a reference prototype platform. Here, ProActive
[6] is used as the basic Grid middleware on top of which
the CFI is realised. The following sub-sections briefly

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

401

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.97

401

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.97

401

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

introduce ProActive and outline the main GCM features
currently being implemented.

2.1. The ProActive Middleware
ProActive is an open source Java library providing a
toolkit that simplifies the programming of parallel,
distributed, and multi-threaded applications for Grids. It is
based on the pattern of active objects (AO) and
asynchronous method calls with implicit futures [7]. An
AO is a remote object with its own thread that
sequentially processes calls received on its public
methods. Pending method calls are stored in a request
queue. Such method calls towards AOs are asynchronous
and, if non-void, return so-called future objects as a result.
If a future object is accessed the caller is automatically
blocked until the result is available. This implicit
synchronisation mechanism is known as wait-by-
necessity. Internally, ProActive implements a meta-object
protocol and uses Java RMI as a portable transport layer
to provide this functionality while hiding its underlying
complexity. As a result, an AO appears as a normal,
transparently remote, Java object to the developer.
Furthermore, to strictly separate the development of AOs
from their execution on a particular physical
infrastructure, ProActive provides a deployment
framework based on the virtual nodes (VN) concept. VNs
are used in the source code of ProActive applications as
an abstraction defining where to locate AOs. The
mapping from VNs to Java virtual machines (JVM), their
creation mechanisms, and real machines is then defined in
an infrastructure dependent deployment descriptor file in
XML (Extensible Markup Language) format [6].
However, ProActive does not provide higher-level of
abstraction like distributed Grid components since AOs
are not hierarchical and can not be distributed themselves.
Therefore, it is currently being extended by the
GridCOMP CFI as described below.

2.2. Grid Component Framework
The main technical features of the GridCOMP component
framework can be summarised as follows:
• Support for primitive and composite distributed

components and hierarchical composition.
• Components specification in XML format.
• Collective interfaces to comply with Grid specific

multi-way communication requirements.
• A comprehensive run-time API.
• Extensive support for non-functional aspects such as

component control and autonomicity.
• Advanced component deployment via the notion of

VNs.
• An XML schema for component packaging.
 To turn these features into reality the Fractal component
model [8] has been chosen as the basis for the definition
of GCM. Consequently, the CFI can be considered an

implementation of the Fractal specification with a number
of Grid specific extensions.
Fractal basically consists of a general conceptual model,
an XML-based architecture description language (ADL)
used to define component systems along that model, and a
runtime API. The model defines components to consist of
content, controller, interfaces (client, server, or control),
and bindings. Depending on their content, components are
either primitive or composite. Figure 1 illustrates how a
composite component built from two primitive
components is modelled in Fractal.

Figure 1: Fractal model of a composite component

GCM extends this model by allowing that all components
can be arbitrarily distributed. For example, all three
components shown in Figure 1, the composite and the two
primitives, could run on different remote nodes. To
achieve this, the distributed deployment facilities offered
by ProActive are reused, and the notion of virtual nodes is
integrated in the component ADL. This means,
component ADL definitions have to be associated with a
deployment descriptor. The CFI provides a number of
ADL extensions to support this. For instance, VNs can be
referenced in component definitions and cardinality
attributes are available to further control parallelism and
distribution when mapping components to real nodes.
Also, VNs can be renamed to adjust different ADLs.
To implement this extended Fractal model within
ProActive the component model must be mapped to the
AO pattern. This is achieved by representing each
component by one AO and extending the meta-object
protocol with controller objects implementing non-
functional component control. Additionally, an extended
version of the Fractal run-time API is being provided. It
allows the manipulation of components at execution and
includes facilities for legacy code wrapping, which turns
legacy code into GCM components.

2.3. Collective Interfaces
A further grid specific Fractal extension introduced by
GCM is the notion of collective interfaces [9]. This eases
parallel programming and allows exposing the collective
behaviour of a component on its interface level.

402402402

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

Collective interfaces correspond to new cardinalities for
interfaces, multicast or gathercast, representing one-to-
many or many-to-one communication, respectively. In the
CFI the collective behaviour of an interface can be
defined via Java annotations on class level as well as on
method level. Additionally, the desired data distribution
mode (broadcast, one-to-one, or round-robin) can be
defined for multicast interfaces. Figure 2 shows how
collective interfaces are modelled in GCM and how
invocation parameters are distributed and aggregated
using the one-to-one (or scatter) mode.

Figure 2: Multicast/gathercast interfaces in GCM

Collective interfaces allow managing a group of
interfaces as a single entity while the CFI takes care of
parallel invocations, data distribution, and
synchronisation. This further simplifies the design,
programming, and (re)configuration of a component
system.

2.4. Non-Functional Aspects
Non-functional aspects are targeting those features of the
GCM which are contributing to the efficiency and
reliability of the components in obtaining functional
results but are not directly involved in result computation.
The CFI provides mechanisms for autonomic component
management that can be used to deal with such non-
functional issues. Here, dynamic reconfiguration of
component properties or relationships is the prime
example.
Again, the Fractal model is extended to support
component autonomic control. As indicated in Figure 1,
the “membrane” (controller) of a component already
exposes some non-functional interfaces, for instance, for
binding and life-cycle control. Here, the CFI adds an
autonomic behaviour control (ABC) server interface. Via
this interface, a component can expose a set of
reconfiguration actions which can be triggered by its
environment. Additionally, a component can have an
autonomic manager (AM) implemented as a dedicated
sub-component that has some rules for autonomic
reconfiguration. The AM can interact with other AMs of
other components and it uses the ABC to trigger

reconfiguration actions. A component just exhibiting
ABC is called passive whereas a component also
exhibiting an AM is called active with respect to
autonomic control [10]. Finally, the CFI includes a
number of so-called behavioural skeletons, which can be
used for component composition including ABC/AM
implementations for application-specific reconfiguration
strategies [13].

3. Case Study: A Biometric

Identification System
In recent years biometric methods for verification and
identification of people have become very popular.
Applications span from governmental projects like border
control or criminal identification for civil purposes such
as e-commerce, network access, or transport. Frequently,
biometric verification is used to authenticate people
meaning that a 1:1 match operation of a claimed identity
to the one stored in a reference system is carried out. In an
identification system, however, the complexity is much
higher. Here, a person’s identity is to be determined
solely on biometric information, which requires matching
the live scan of biometrics against all enrolled (known)
identities. Such a 1:N match operation can be quite time-
consuming making it unsuitable for real-time
applications.
In order to tackle this challenge, one of the use cases
developed to evaluate the GridCOMP CFI is a biometric
identification system (BIS). Its goal is to build a real-time
biometric identification system, based on fingerprint
biometrics, which can work on a large user population of
up to millions of individuals. To achieve real-time
identification within a few seconds period our BIS
application takes advantage of the Grid via GCM
components.

3.1. BIS Architecture
The BIS use case can be considered a business-process or
workflow-driven application. Figure 3 outlines its high-
level architectural design.

Figure 3: BIS high-level architecture

403403403

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

The BIS is built around a workflow execution engine
acting as the central control unit of the system. A number
of business processes are implemented as workflow
scripts running within the engine. The processes comprise
functionality accessible from the demo application (e.g.
enrolment, identification) as well as internal system
management logic required to control the distributed
biometric matching. Furthermore, the BIS provides a
number of adapters to the workflow engine such that the
business processes can interact with external entities,
namely, the database (DB) storing information about
enrolled identities, and the interface to the Grid
infrastructure.

The workflow engine used in our implementation is the
embeddable process virtual machine (ePVM) [11], which
is available as a Java library such that it can be easily
incorporated into the BIS. Its process model is rooted in
the theoretical framework of communicating state
machines and its process definition language is
JavaScript. Consequently, in ePVM each workflow script
represents a state machine implemented in JavaScript.
The core logic of the BIS application is defined as a
number of such ePVM scripts.

The three workflow adapters, as indicated in Figure 3,
consist of Java classes implementing a particular interface
such that they can be registered with the ePVM engine.
Once registered, they can receive messages from
workflow scripts and they can send reply messages. This
way the processes defined in JavaScript can interact with
Java functionality external to the workflow engine.
The BIS Services adapter acts as the interface to external
applications making use of the identification system
whereas the DB Access adapter encapsulates identity DB
related functionality. Finally, the GCM Adapter provides
access to the Grid infrastructure. It is triggered by the
workflow scripts and offers functionality to deploy nodes
and GCM components, analyze the biometric matching
performance of the BIS Grid, distribute the database
across the GCM components, and to submit biometric
information for distributed identification.

3.2. Component Architecture
In this sub-section we describe the Grid component
architecture that allows the GCM adapter to provide the
functionality described so far. Figure 4 shows the overall
component design, the bindings between components, and
their deployment to the physical grid infrastructure.

The basic approach is to have one component
encapsulating the biometric matching functionality, which
is then deployed on all nodes in a SPMD-style setting.
This component is named CompIDMatcher and it is a
composite component built from two primitive ones,
CompAlgControl and CompAlg. The latter represents the

biometric algorithm and, as indicated in Figure 4, it
makes use of a native library containing the actual
fingerprint matching code via the Java Native Interface
(JNI).

Figure 4: Component design, bindings, and deployment

The purpose of the CompAlgControl component is to
maintain the state of the identification process and to
provide a second control flow such that the
CompIDMatcher component remains responsive while
the CompAlg component is busy with the actual matching
work.
This setting has to do with fact that in ProActive each
GCM component is represented by one AO. Furthermore,
each AO is by default single threaded. In other words,
there is only one thread that processes queued method
invocations. Consequently, the CompAlg component
cannot respond to status requests while it processes an
identification request. With the CompAlgControl
component a second thread is introduced, which can
process requests received via interface I3 while the
CompAlg component might do biometric matching within
the JNI library. The CompAlg component updates the
current state maintained in CompAlgConntrol regularly
via interface I5. Requests received via the two interfaces
I3 and I5 are synchronized automatically via the request
queue of CompAlgControl’s AO.

To exemplify how a composite component is defined via
the GCM ADL, Listing 1 shows the definition of the
CompIDMatcher component. Firstly, the two interfaces
(client and server) of the component are defined
referencing their Java interface definitions (I3). Secondly,
the ADL files of the two inner components are referenced.
Thirdly, the three bindings within CompIDMatcher are
defined. Finally, the last two tags define the component to
be a composite one, which is to be created on the BIS-
Grid VN as one instance per real node.

404404404

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

Listing 1: Composite component ADL example

When the ADL is applied it must be associated with a
deployment descriptor XML file defining a VN named
BIS-Grid. Within the deployment descriptor the VN is
mapped to a number of real nodes represented by
BISNode 1-N in Figure 4. Also, the creation protocols, for
instance, rlogin or SSH, used to create the nodes are
defined. Other features such as automatic file transfer,
here used to distribute the JNI library, are available in the
CFI. As a result, when the GCM adapter activates the
deployment descriptor the CFI automatically starts JVMs
on the nodes and transfers the JNI library.

The CompID component, with its server interface I1,
represents the main interface to external entities using the
Grid infrastructure. The GCM adapter uses this interface
to interact with the component system, for instance, to
submit live scan data of a person for identification.
Additionally, the CompID component provides the
multicast client interface I2 as shown in Figure 4 where
all the distributed CompIDMatcher instances are bound
to. It is used to broadcast, among others, identification
requests via the method identify() as shown in Listing 2.

Listing 2: Multicast interface definition

The interface definition is annotated with the data
distribution mode BROADCAST. Additionally, in the
ADL file defining the CompID component, interface I2 is
defined with the attribute cardinality=”multicast”. As a
result, the CFI translates each invocation of the identify
method into a number of parallel method invocations
depending on the number of components bound to I2.
Also, for each invocation a copy of the liveScan
parameter is used due to the broadcast mode. The CFI
automatically gathers the results into a list of future
objects of type IntWrapper. Accordingly, the definition of
interface I3 is similar to I2 except that the identify method
returns just a single object of type IntWrapper instead of a
list. This way, a significant part of the concurrent
programming task is hidden behind the multicast interface
and parallel invocations as well as synchronisation are
handled by the CFI.

3.3. Autonomic Management
The initial BIS architecture as presented above does not
address the problem of dynamic data re-distribution in
case of changes in the database or changes in the Grid
infrastructure. Therefore, it has been revised to take
advantage of the autonomic management features offered
by the CFI. Here, the concept of behavioural skeletons
(BS) [10] is used to reduce development effort. BS are
parametric composite components implementing typical
reconfiguration strategies such as self-optimization, self-
healing, or self-configuring. For the revised BIS
implementation we use the task-parallel farm BS included
in the CFI. As outlined in Figure 5, the farm skeleton
includes one or more worker components all bound to a
collective interface (unicast) port. Tasks received via this
port are distributed to the workers in a round-robin
fashion. Furthermore, the farm is equipped with an ABC
that allows dynamic increase or decrease of the number of
workers using a pool of nodes defined in a given
deployment descriptor. Finally, the farm includes an AM
which makes use of the ABC in accordance with a certain
autonomic management strategy. The default strategy is
to increase/decrease the number of workers if the average
service time for the tasks reaches certain thresholds. The
threasholds are defined by a QoS contract, here the
desired farm performance defined in tasks/second, which
can be submitted to the farm.

Figure 5: Farm Behavioural Skeleton

In order to make use of the farm skeleton for the BIS
application it has to be parameterised appropriately.
Firstly, we define the workers as instances of the
CompIDMatcher component. Secondly, we inject the
desired QoS contract into the AM such that it
autonomically adjusts the parallel degree depending on
the performance of the farm. Finally, we split the
identification process into tasks where each task
represents a part of the database to be searched. The tasks
are then submitted to the farm. Here we assume that all
workers have access to a shared database. This change in

405405405

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

the design is due to the fact that the farm skeleton does
not consider the case where workers carry state as
required in the initial BIS architecture (c.f. Section 3.2).
At the time of writing, an additional (data-parallel)
skeleton which allows injecting state into the workers
during reconfiguration is being added to the CFI to
address this issue. Anyhow, the task-parallel farm BS
provides a lot of off-the-shelf functionality for the
autonomic version of the BIS, which otherwise would
have to be implemented from scratch. As a result, the
autonomic version required about the same amount of
source code to be written as the initial version while
adding a substantial amount of functionality.

4. The Grid Integrated Development
Environment

The task of effectively using different programming
and/or component models becomes less challenging if the
developer is assisted by an appropriate tools framework.
Therefore, the Grid integrated development environment
(GIDE) is being developed along with the CFI. It is
targeted towards providing the necessary functionalities
for developing GCM-based applications. The vision of the
GIDE is to support the user in all aspects relevant to the
development phase as well as the post-development
phase. For this purpose, the GIDE provides the following
features:

• Graphical composition of GCM component-based

applications
• Deployment of applications
• Component and resource monitoring
• Steering of components and applications.

Furthermore, the philosophy of the GIDE is to provide
enhanced support with user-friendly graphical interface
while enabling direct code editing. This means that a
developer can freely switch between graphical
development and direct coding of the required artefacts.

The GIDE is based on the Eclipse framework and is
developed as a plug-in to it [12]. This approach ensures
that developers can still benefit from the Eclipse
functionalities such as the plain Java development tools
while leveraging the GCM-specific features. In addition,
the GIDE is facilitated by the Eclipse-specific application
programming frameworks, interfaces and libraries,
including the Eclipse Modelling Framework and Eclipse
Graphical Editing Framework. The functionalities of the
GIDE are provided as different perspectives – an Eclipse-
specific method for grouping a set of functionalities as a
graphical view. The following sub-sections describe
different perspectives within the GIDE that support
application composition, deployment, monitoring, and
steering.

Figure 6: The Composition perspective of the GIDE

4.1 Composition Perspective
The composition view is one of the essential features
where the application development life-cycle begins. The
composition perspective provides a toolbox with a list of
components and with a set of tools so that applications
can be visually composed. The toolbox is a mutable
collection which is used as a repository of frequently used
components. The back-end of the composition perspective
generates necessary GCM-specific development artefacts
such as ADL files and Java interfaces (c.f. Listing 1/2).
Figure 6 shows a general screen layout of the composition
perspective while defining the CompIDMatcher
component during the case study (c.f. Section 3.2). The
composition perspective also supports importing from and
exporting to these artefacts.

4.2 Monitoring Perspective
The monitoring perspective provides the views that data
centre operators need in order to properly monitor the
environment in which components operate. Three types of
monitoring are provided in order to enable proper
management of applications and thus compositions.
Firstly, resources monitoring of hosts is supported. This
includes monitoring CPU utilization of hosts, storage
space, and other platform specific status information.
Secondly, monitoring of the GCM components is
supported to provide status and location information, for
instance, to verify component co-allocation as desired in
the BIS use case. The monitoring is enabled with a zoom-
in feature for monitoring sub-components. In our example
one could zoom into the component design as shown in
Figure 4, and visualize the inner composite components
and status information of them as depicted in Figure 6.
Finally, this perspective allows monitoring of active
objects, which is necessary for developers to debug and
monitor applications during the development phase.

406406406

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

4.3 Deployment Perspective
This perspective consists of views needed for application
deployment. The main view is of a deployment descriptor
editor to map physical hosts and JVMs to VNs. For
instance, in the case study this has been used to define the
BIS-Grid VN and for mapping the BISNodes 1-N to real
machines (c.f. Figure 4). A developer may have a set of
these deployment descriptors to be used for different
hardware configurations. To complement this view, a
view of the hosts and their resource statuses is also
provided, giving a developer the ability to associate sets
of hosts with each deployment descriptor. Within the
deployment perspective the operator is able to launch
components simply via drag-and-drop operations before
moving on to steering.

4.4 Steering Perspective
The steering perspective is especially useful for data
centre operators. The perspective builds on the resource
and component monitoring view and graphically shows
the components location and their status. An additional
view shows the geography and resource availability of the
hosts, VNs, as well as the components that are running on
them. Based on these views, the operator has the facility
to start, stop, and relocate components from one VN to
another while monitoring their status to ensure correct
execution.

5. Initial Experiences
The BIS use case demonstrates that the CFI offers a very
high level of abstraction hiding the complexities of Grid
programming. This is due to a number of advanced
features such as the notion of VNs, the hierarchical nature
of the model, and most notably the concept of collective
interfaces, implicit futures, and behavioural skeletons. As
shown in the use case, it clearly eases Grid programming
and represents a significant step towards the “invisible”
Grid vision. In particular, the autonomic version of the
BIS use case has shown that a comprehensive set of
behavioural skeletons for common patterns can
significantly reduce the development effort.
Furthermore, a distinct strength of the framework is the
strict separation of concerns. In particular, the notion of
VNs, the concept of deployment descriptors, and the ADL
component definitions allow separating the design
infrastructure from the deployment (physical)
infrastructure. For example, the BIS GCM components
only rely on a VN named BIS-Grid to be present no
matter which and how many real nodes are behind it. This
is true for both the ADL files and the Java code.
Additionally, interfaces, bindings, and content are also
clearly separated and explicitly named such that
relationships are ideally not hidden in code, potentially
leading to better software design, documentation, and
maintainability.

Also, hierarchical composition allows composing new
components or complete applications from existing ones
almost without writing code. The CompIDMatcher
component, for instance, is generated by the CFI
automatically at the time its ADL definition is applied;
only its interfaces have been defined in Java files.
Overall, the advanced support for Grid specific needs
supplied by the component framework and the GIDE did
clearly speed up the development cycle of the BIS.

The use case also showed that the rich feature set offered
by the CFI and the strict separation of concerns does not
come without a price. One of the drawbacks that became
visible was the large number of development artefacts to
be generated and maintained. Quite a number of interface
definitions, ADL files, deployment files, and other Java
files including the actual functional code were required
considering that the component system of the BIS
application is relatively simple. This can turn manual
code re-factoring such as simply renaming an interface
into a fairly complex task since interface names appear in
Java files as well as in ADL files. Only a powerful toolkit
such as the GIDE outlined in the previous Section can
help resolving these issues.
Furthermore, the use case revealed some minor issues to
be fixed in the next CFI release. For example, there is no
adequate ADL support for the definition of co-allocation
constraints. This would provide an easy way of defining
that inner components, for instance, CompAlgControl and
CompAlg, must always be co-allocated with their
surrounding composite. In case of the BIS component
design this is obviously desirable for performance
reasons. Also, it turned out that the current version of the
ADL does not support creating and binding an arbitrary
number of components, for instance, as many as nodes
available in a given VN, to a multicast interface. The
number of nodes must be known a priori when writing
the ADL file since the bindings are statically defined
there. The case study also revealed that the early version
of the farm behavioural skeleton does not consider
workers to carry state. In our view, the skeleton should be
extended to that end since many real-world applications
might bear this requirement.
Overall, the integration of the Grid components into the
workflow driven BIS use case went smoothly. However,
it must be noted that business process engines such as
ePVM follow an event-driven paradigm which needs to
be adapted to work with the wait-by-necessity approach
of the CFI. In the use case the GCM adapter implemented
this adaptation by turning available future objects into
JavaScript messages sent to the workflow engine.

Finally, the development work showed that the GIDE is a
key part of the process for developing Grid applications
which provided the basis for accelerated development. In
addition to the support for ADL file generation from

407407407

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

graphical compositions, the monitoring perspective has
proven to be very useful throughout the case study for
verifying the actual component distribution/co-allocation.
Although the GIDE could have been developed as a
separate application, the approach of developing it as a
pluggable module for Eclipse had several advantages
including reduced development time, increased features,
and consistent look-and-feel for developers.
A number of initiatives exist in producing development
environments for Grid applications, such as the GriDE
[17] and Sun Grid Model for NetBeans [18]. However,
their underlying component models are not aligned with
the needs of Grid computing. The GIDE varies from
existing frameworks by providing explicit support for
Grid specific needs as well as support for different user
groups ranging from software developers to data centre
operators.

6. Conclusions and Future Work
Adopting a modularised or component-based approach is
the key to developing large-scale software systems [15,
16]. The component model we adopted for the framework
implementation, GCM [4], supports hierarchical inclusion
and is specifically designed for addressing potential issues
of Grid computing.
In this paper we have considered a potentially useful
method for developing Grid applications and
demonstrated the applicability of the method using an
industry-strength case study – a biometric identification
system. Our experience so far provides a basis for
foreseeing the future of developing and deploying
advanced component-based Grid applications. In
discussing the approach along with the case study, we
have made the following contributions:

• We provided a brief overview of the Grid-specific

component model – the GCM, developed as part of the
GridCOMP project and the current status.

• We presented a use case application, the distributed
biometric identification system, implemented using
GCM components.

• We have outlined the approach for developing a GCM-
specific IDE while supporting existing development
strategies.

• We presented the overall functionalities and features of
the GIDE to support the development of GCM-based
Grid applications.

• We presented our initial experiences and findings in
using the GCM framework and the GIDE.

Although initial prototypes of the CFI, the use case
applications, and the GIDE have been implemented, a
number of issues remain to be investigated:

• Further explore other behavioural skeletons included in
the CFI with respect to the use case.

• Enhance the GIDE to support debugging of distributed
applications and language-specific code generation.

• Explore the possibilities of validating compositions for
a well specified domain of application.

References
[1] Object Management Group (OMG). The CORBA Component

Model. Revision V4.0, 2006.
[2] B. Burke, R. Monson-Haefel. Enterprise JavaBeans 3.0. O’Reilly

Media, 2006, ISBN 9780596009786.
[3] R. Armstrong et. al. Toward a Common Component Architecture

for High-Performance Scientific Computing. Proc. of HPDC
Conference, 1999.

[4] CoreGrid NoE, Institute on Programming Model. Deliverable
D.PM.04 – Basic Features of the Grid Component Model, 2007.

[5] GridCOMP – Effective Components for the Grid, 2006,
http://gridcomp.ercim.org/.

[6] The ObjectWeb consortium. ProActive – Programming,
Composing, Deploying on the Grid. http://www-sop.inria.fr/.

[7] D. Caromel, L. Henrio. A Theory of Distributed Objects. Springer
2005, ISBN 978-3540208662.

[8] E. Bruneton, T. Coupaye, J. B. Stefani. The Fractal Component
Model. Technical report, ObjectWeb Consortium, February 2004,
http://fractal.objectweb.org/.specification/index.html.

[9] F. Baude, D. Caromel, L. Henrio, M. Morel. Collective Interfaces
for Distributed Components. Proc. of CCGrid Conference, 2007.

[10] M. Aldinucci et. al. Behavioural skeletons in GCM: autonomic
management of Grid components. Proc. of PDP Conference, 2008.

[11] T. Weigold, T. Kramp, P. Buhler. ePVM – An Embeddable
Process Virtual Machine. Proc. of COMPSAC Conference 2007.

[12] Eclipse – An Open Development Platform,
http://www.eclipse.org/.

[13] M. Aldinucci et. al. Behavioural Skeletons for Component
Autonomic Management on Grids. CoreGRID workshop on grid
programming model, Heraklion, Greece, 2007.

[14] R. Sessions. COM and DCOM: Microsoft’s Vision for Distributed
Objects. John Wiley & Sons, 1997, ISBN 978-0471193814.

[15] O. F. Rana et. al. Implementing Problem Solving Environments
for Computational Science. Proc. of EuroPar Conference, pp.
1345-1349, 2000.

[16] J. Cohen et. al. RealityGrid: An Integrated Approach to
Middleware through ICENI. Physical and Engineering Sciences,
Volume 363, Issue 1833, pp. 1817-1827, 2005, Royal Society.

[17] S. See et.al. GriDE: A Grid-Enabled Development Environment.
LNCS, Vol. 3032, pp. 495-502, Springer, 2003.

[18] Sun Grid Plugin for Net Beans, https://sungridplugin.dev.java.net/,
2007.

[19] M. Aldinucci et. al. ASSIST as a Research Framework for High-
performance Grid Programming Environments, Springer, 2005,
ISBN 1852339985.

408408408

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

