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Abstract 
Component-oriented software development has been 

attracting increasing attention for building complex 
distributed applications. A new infrastructure supporting 
this advanced concept is our prototype component 
framework based on the Grid component model. This 
paper provides an overview of the component framework 
and presents a case study where we utilise the 
component-oriented approach to develop a business 
process application for a biometric identification system. 
We then introduce the tools being developed as part of an 
integrated development environment to enable graphical 
component-based development of Grid applications. 
Finally, we report our initial findings and experiences of 
efficiently using the component framework and set of 
software tools. 
 

1. Introduction 
In recent years component technologies have become a 
paradigm of choice in state-of-the-art software 
construction. Various component models such as the 
CORBA Component Model (CCM) [1], the Enterprise 
Java Beans (EJB) [2], or the Distributed Component 
Object Model (DCOM) [14] have been available for 
different operating environments. Even though many 
existing component models can be applied in distributed 
systems, they do not address the Grid infrastructure issues 
in their full depth. For example, in most models a single 
component cannot itself be distributed and thus it cannot 
be used to abstract the complexity of a distributed 
application computation spanning multiple computers.  
Furthermore, the capabilities of the underlying component 
model vary significantly between different frameworks.  
For example, the Common Component Architecture 
(CCA) [3] does not support hierarchical composition nor 
does it provide extensive support for component 
management and dynamic reconfiguration. Other 
frameworks such as ASSIST [19] support autonomic 
management but are not component based. Further, there 
is no integrated development environment to support 

these component models, especially addressing the 
contexts of Grid computing. 
As a result, the design of a new Grid Component Model 
(GCM) has been brought forward in the context of the 
European project CoreGRID [4]. GCM provides a much 
higher level of abstraction than contemporary component 
frameworks and it explicitly takes Grid specific issues 
such as the programmability of large-scale, 
heterogeneous, and dynamic Grid infrastructures into 
account. To drive the GCM ideas developed under the 
CoreGRID project one step further the GridCOMP (Grid 
Programming with Components) project was established 
in 2006 [5]. Its main goal is the design and 
implementation of a component-based framework suitable 
to support the development of efficient Grid applications. 
An integrated development environment for the Grid 
(GIDE) is being developed to support this framework. 
Here, the basic GCM architecture defined in CoreGRID is 
used as the starting point. We then demonstrate the 
development of a biometric identification system case 
study, using the GIDE, to highlight the advantages of the 
approach. 
This paper provides an overview of the ongoing work and 
some initial results of the GridCOMP project. After 
introducing the current GridCOMP GCM framework 
implementation in Section 2, the biometric identification 
case study is discussed in Section 3. Afterwards, Section 
4 introduces an integrated development framework 
designed to best exploit the Grid component platform.  
Section 5 describes our initial experiences. Finally, we 
close with conclusions and future work in Section 6. 
 

2. The GCM Framework 
The core task within the GridCOMP project is to further 
refine the GCM developed within CoreGRID and to 
produce a component framework implementation (CFI) 
acting as a reference prototype platform. Here, ProActive 
[6] is used as the basic Grid middleware on top of which 
the CFI is realised. The following sub-sections briefly 
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introduce ProActive and outline the main GCM features 
currently being implemented. 
 
2.1. The ProActive Middleware 
ProActive is an open source Java library providing a 
toolkit that simplifies the programming of parallel, 
distributed, and multi-threaded applications for Grids. It is 
based on the pattern of active objects (AO) and 
asynchronous method calls with implicit futures [7]. An 
AO is a remote object with its own thread that 
sequentially processes calls received on its public 
methods. Pending method calls are stored in a request 
queue. Such method calls towards AOs are asynchronous 
and, if non-void, return so-called future objects as a result. 
If a future object is accessed the caller is automatically 
blocked until the result is available. This implicit 
synchronisation mechanism is known as wait-by-
necessity. Internally, ProActive implements a meta-object 
protocol and uses Java RMI as a portable transport layer 
to provide this functionality while hiding its underlying 
complexity. As a result, an AO appears as a normal, 
transparently remote, Java object to the developer. 
Furthermore, to strictly separate the development of AOs 
from their execution on a particular physical 
infrastructure, ProActive provides a deployment 
framework based on the virtual nodes (VN) concept. VNs 
are used in the source code of ProActive applications as 
an abstraction defining where to locate AOs. The 
mapping from VNs to Java virtual machines (JVM), their 
creation mechanisms, and real machines is then defined in 
an infrastructure dependent deployment descriptor file in 
XML (Extensible Markup Language) format [6].  
However, ProActive does not provide higher-level of 
abstraction like distributed Grid components since AOs 
are not hierarchical and can not be distributed themselves. 
Therefore, it is currently being extended by the 
GridCOMP CFI as described below. 
 
2.2. Grid Component Framework 
The main technical features of the GridCOMP component 
framework can be summarised as follows: 
• Support for primitive and composite distributed 

components and hierarchical composition. 
• Components specification in XML format. 
• Collective interfaces to comply with Grid specific 

multi-way communication requirements. 
• A comprehensive run-time API. 
• Extensive support for non-functional aspects such as 

component control and autonomicity. 
• Advanced component deployment via the notion of 

VNs. 
• An XML schema for component packaging. 
 To turn these features into reality the Fractal component 
model [8] has been chosen as the basis for the definition 
of GCM. Consequently, the CFI can be considered an 

implementation of the Fractal specification with a number 
of Grid specific extensions. 
Fractal basically consists of a general conceptual model, 
an XML-based architecture description language (ADL) 
used to define component systems along that model, and a 
runtime API. The model defines components to consist of 
content, controller, interfaces (client, server, or control), 
and bindings. Depending on their content, components are 
either primitive or composite. Figure 1 illustrates how a 
composite component built from two primitive 
components is modelled in Fractal. 

 
Figure 1: Fractal model of a composite component 

 
GCM extends this model by allowing that all components 
can be arbitrarily distributed. For example, all three 
components shown in Figure 1, the composite and the two 
primitives, could run on different remote nodes. To 
achieve this, the distributed deployment facilities offered 
by ProActive are reused, and the notion of virtual nodes is 
integrated in the component ADL. This means, 
component ADL definitions have to be associated with a 
deployment descriptor. The CFI provides a number of 
ADL extensions to support this. For instance, VNs can be 
referenced in component definitions and cardinality 
attributes are available to further control parallelism and 
distribution when mapping components to real nodes. 
Also, VNs can be renamed to adjust different ADLs. 
To implement this extended Fractal model within 
ProActive the component model must be mapped to the 
AO pattern. This is achieved by representing each 
component by one AO and extending the meta-object 
protocol with controller objects implementing non-
functional component control. Additionally, an extended 
version of the Fractal run-time API is being provided. It 
allows the manipulation of components at execution and 
includes facilities for legacy code wrapping, which turns 
legacy code into GCM components. 
 
2.3. Collective Interfaces 
A further grid specific Fractal extension introduced by 
GCM is the notion of collective interfaces [9]. This eases 
parallel programming and allows exposing the collective 
behaviour of a component on its interface level. 
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Collective interfaces correspond to new cardinalities for 
interfaces, multicast or gathercast, representing one-to-
many or many-to-one communication, respectively. In the 
CFI the collective behaviour of an interface can be 
defined via Java annotations on class level as well as on 
method level. Additionally, the desired data distribution 
mode (broadcast, one-to-one, or round-robin) can be 
defined for multicast interfaces. Figure 2 shows how 
collective interfaces are modelled in GCM and how 
invocation parameters are distributed and aggregated 
using the one-to-one (or scatter) mode. 
 

 
 

Figure 2: Multicast/gathercast interfaces in GCM 
 
Collective interfaces allow managing a group of 
interfaces as a single entity while the CFI takes care of 
parallel invocations, data distribution, and 
synchronisation. This further simplifies the design, 
programming, and (re)configuration of a component 
system. 
 
2.4. Non-Functional Aspects 
Non-functional aspects are targeting those features of the 
GCM which are contributing to the efficiency and 
reliability of the components in obtaining functional 
results but are not directly involved in result computation. 
The CFI provides mechanisms for autonomic component 
management that can be used to deal with such non-
functional issues. Here, dynamic reconfiguration of 
component properties or relationships is the prime 
example. 
Again, the Fractal model is extended to support 
component autonomic control. As indicated in Figure 1, 
the “membrane” (controller) of a component already 
exposes some non-functional interfaces, for instance, for 
binding and life-cycle control. Here, the CFI adds an 
autonomic behaviour control (ABC) server interface. Via 
this interface, a component can expose a set of 
reconfiguration actions which can be triggered by its 
environment. Additionally, a component can have an 
autonomic manager (AM) implemented as a dedicated 
sub-component that has some rules for autonomic 
reconfiguration. The AM can interact with other AMs of 
other components and it uses the ABC to trigger 

reconfiguration actions. A component just exhibiting 
ABC is called passive whereas a component also 
exhibiting an AM is called active with respect to 
autonomic control [10]. Finally, the CFI includes a 
number of so-called behavioural skeletons, which can be 
used for component composition including ABC/AM 
implementations for application-specific reconfiguration 
strategies [13]. 
 
3. Case Study: A Biometric 

Identification System 
In recent years biometric methods for verification and 
identification of people have become very popular. 
Applications span from governmental projects like border 
control or criminal identification for civil purposes such 
as e-commerce, network access, or transport. Frequently, 
biometric verification is used to authenticate people 
meaning that a 1:1 match operation of a claimed identity 
to the one stored in a reference system is carried out. In an 
identification system, however, the complexity is much 
higher. Here, a person’s identity is to be determined 
solely on biometric information, which requires matching 
the live scan of biometrics against all enrolled (known) 
identities. Such a 1:N match operation can be quite time-
consuming making it unsuitable for real-time 
applications.  
In order to tackle this challenge, one of the use cases 
developed to evaluate the GridCOMP CFI is a biometric 
identification system (BIS). Its goal is to build a real-time 
biometric identification system, based on fingerprint 
biometrics, which can work on a large user population of 
up to millions of individuals. To achieve real-time 
identification within a few seconds period our BIS 
application takes advantage of the Grid via GCM 
components. 
 
3.1. BIS Architecture 
The BIS use case can be considered a business-process or 
workflow-driven application. Figure 3 outlines its high-
level architectural design.   
 

 
 

Figure 3: BIS high-level architecture 
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The BIS is built around a workflow execution engine 
acting as the central control unit of the system. A number 
of business processes are implemented as workflow 
scripts running within the engine. The processes comprise 
functionality accessible from the demo application (e.g. 
enrolment, identification) as well as internal system 
management logic required to control the distributed 
biometric matching. Furthermore, the BIS provides a 
number of adapters to the workflow engine such that the 
business processes can interact with external entities, 
namely, the database (DB) storing information about 
enrolled identities, and the interface to the Grid 
infrastructure. 
 
The workflow engine used in our implementation is the 
embeddable process virtual machine (ePVM) [11], which 
is available as a Java library such that it can be easily 
incorporated into the BIS. Its process model is rooted in 
the theoretical framework of communicating state 
machines and its process definition language is 
JavaScript. Consequently, in ePVM each workflow script 
represents a state machine implemented in JavaScript. 
The core logic of the BIS application is defined as a 
number of  such ePVM scripts. 
 
The three workflow adapters, as indicated in Figure 3, 
consist of Java classes implementing a particular interface 
such that they can be registered with the ePVM engine. 
Once registered, they can receive messages from 
workflow scripts and they can send reply messages. This 
way the processes defined in JavaScript can interact with 
Java functionality external to the workflow engine. 
The BIS Services adapter acts as the interface to external 
applications making use of the identification system 
whereas the DB Access adapter encapsulates identity DB 
related functionality. Finally, the GCM Adapter provides 
access to the Grid infrastructure. It is triggered by the 
workflow scripts and offers functionality to deploy nodes 
and GCM components, analyze the biometric matching 
performance of the BIS Grid, distribute the database 
across the GCM components, and to submit biometric 
information for distributed identification. 
 
3.2. Component Architecture 
In this sub-section we describe the Grid component 
architecture that allows the GCM adapter to provide the 
functionality described so far. Figure 4 shows the overall 
component design, the bindings between components, and 
their deployment to the physical grid infrastructure. 
 
The basic approach is to have one component 
encapsulating the biometric matching functionality, which 
is then deployed on all nodes in a SPMD-style setting. 
This component is named CompIDMatcher and it is a 
composite component built from two primitive ones, 
CompAlgControl and CompAlg. The latter represents the 

biometric algorithm and, as indicated in Figure 4, it 
makes use of a native library containing the actual 
fingerprint matching code via the Java Native Interface 
(JNI). 
 

 
Figure 4: Component design, bindings, and deployment 

 
The purpose of the CompAlgControl component is to 
maintain the state of the identification process and to 
provide a second control flow such that the 
CompIDMatcher component remains responsive while 
the CompAlg component is busy with the actual matching 
work. 
This setting has to do with fact that in ProActive each 
GCM component is represented by one AO. Furthermore, 
each AO is by default single threaded. In other words, 
there is only one thread that processes queued method 
invocations. Consequently, the CompAlg component 
cannot respond to status requests while it processes an 
identification request. With the CompAlgControl 
component a second thread is introduced, which can 
process requests received via interface I3 while the 
CompAlg component might do biometric matching within 
the JNI library. The CompAlg component updates the 
current state maintained in CompAlgConntrol regularly 
via interface I5. Requests received via the two interfaces 
I3 and I5 are synchronized automatically via the request 
queue of CompAlgControl’s AO. 
 
To exemplify how a composite component is defined via 
the GCM ADL, Listing 1 shows the definition of the 
CompIDMatcher component. Firstly, the two interfaces 
(client and server) of the component are defined 
referencing their Java interface definitions (I3). Secondly, 
the ADL files of the two inner components are referenced. 
Thirdly, the three bindings within CompIDMatcher are 
defined. Finally, the last two tags define the component to 
be a composite one, which is to be created on the BIS-
Grid VN as one instance per real node. 
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Listing 1: Composite component ADL example 

 
When the ADL is applied it must be associated with a 
deployment descriptor XML file defining a VN named 
BIS-Grid. Within the deployment descriptor the VN is 
mapped to a number of real nodes represented by 
BISNode 1-N in Figure 4. Also, the creation protocols, for 
instance, rlogin or SSH, used to create the nodes are 
defined. Other features such as automatic file transfer, 
here used to distribute the JNI library, are available in the 
CFI. As a result, when the GCM adapter activates the 
deployment descriptor the CFI automatically starts JVMs 
on the nodes and transfers the JNI library. 
 
The CompID component, with its server interface I1, 
represents the main interface to external entities using the 
Grid infrastructure. The GCM adapter uses this interface 
to interact with the component system, for instance, to 
submit live scan data of a person for identification. 
Additionally, the CompID component provides the 
multicast client interface I2 as shown in Figure 4 where 
all the distributed CompIDMatcher instances are bound 
to. It is used to broadcast, among others, identification 
requests via the method identify() as shown in Listing 2. 
 

 
Listing 2: Multicast interface definition 

 
The interface definition is annotated with the data 
distribution mode BROADCAST. Additionally, in the 
ADL file defining the CompID component, interface I2 is 
defined with the attribute cardinality=”multicast”. As a 
result, the CFI translates each invocation of the identify 
method into a number of parallel method invocations 
depending on the number of components bound to I2. 
Also, for each invocation a copy of the liveScan 
parameter is used due to the broadcast mode. The CFI 
automatically gathers the results into a list of future 
objects of type IntWrapper. Accordingly, the definition of 
interface I3 is similar to I2 except that the identify method 
returns just a single object of type IntWrapper instead of a 
list. This way, a significant part of the concurrent 
programming task is hidden behind the multicast interface 
and parallel invocations as well as synchronisation are 
handled by the CFI. 

 
3.3. Autonomic Management 
The initial BIS architecture as presented above does not 
address the problem of dynamic data re-distribution in 
case of changes in the database or changes in the Grid 
infrastructure. Therefore, it has been revised to take 
advantage of the autonomic management features offered 
by the CFI. Here, the concept of behavioural skeletons 
(BS) [10] is used to reduce development effort. BS are 
parametric composite components implementing typical 
reconfiguration strategies such as self-optimization, self-
healing, or self-configuring. For the revised BIS 
implementation we use the task-parallel farm BS included 
in the CFI. As outlined in Figure 5, the farm skeleton 
includes one or more worker components all bound to a 
collective interface (unicast) port. Tasks received via this 
port are distributed to the workers in a round-robin 
fashion. Furthermore, the farm is equipped with an ABC 
that allows dynamic increase or decrease of the number of 
workers using a pool of nodes defined in a given 
deployment descriptor. Finally, the farm includes an AM 
which makes use of the ABC in accordance with a certain 
autonomic management strategy. The default strategy is 
to increase/decrease the number of workers if the average 
service time for the tasks reaches certain thresholds. The 
threasholds are defined by a QoS contract, here the 
desired farm performance defined in tasks/second, which 
can be submitted to the farm. 
 

 
Figure 5: Farm Behavioural Skeleton 

 
In order to make use of the farm skeleton for the BIS 
application it has to be parameterised appropriately. 
Firstly, we define the workers as instances of the 
CompIDMatcher component. Secondly, we inject the 
desired QoS contract into the AM such that it 
autonomically adjusts the parallel degree depending on 
the performance of the farm. Finally, we split the 
identification process into tasks where each task 
represents a part of the database to be searched. The tasks 
are then submitted to the farm. Here we assume that all 
workers have access to a shared database. This change in 
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the design is due to the fact that the farm skeleton does 
not consider the case where workers carry state as 
required in the initial BIS architecture (c.f. Section 3.2). 
At the time of writing, an additional (data-parallel) 
skeleton which allows injecting state into the workers 
during reconfiguration is being added to the CFI to 
address this issue. Anyhow, the task-parallel farm BS 
provides a lot of off-the-shelf functionality for the 
autonomic version of the BIS, which otherwise would 
have to be implemented from scratch. As a result, the 
autonomic version required about the same amount of 
source code to be written as the initial version while 
adding a substantial amount of functionality. 
 

4. The Grid Integrated Development 
Environment 

The task of effectively using different programming 
and/or component models becomes less challenging if the 
developer is assisted by an appropriate tools framework. 
Therefore, the Grid integrated development environment 
(GIDE) is being developed along with the CFI. It is 
targeted towards providing the necessary functionalities 
for developing GCM-based applications. The vision of the 
GIDE is to support the user in all aspects relevant to the 
development phase as well as the post-development 
phase. For this purpose, the GIDE provides the following 
features: 
 
• Graphical composition of GCM component-based 

applications 
• Deployment of applications 
• Component and resource monitoring 
• Steering of components and applications.  
 
Furthermore, the philosophy of the GIDE is to provide 
enhanced support with user-friendly graphical interface 
while enabling direct code editing. This means that a 
developer can freely switch between graphical 
development and direct coding of the required artefacts. 
 
The GIDE is based on the Eclipse framework and is 
developed as a plug-in to it [12]. This approach ensures 
that developers can still benefit from the Eclipse 
functionalities such as the plain Java development tools 
while leveraging the GCM-specific features. In addition, 
the GIDE is facilitated by the Eclipse-specific application 
programming frameworks, interfaces and libraries, 
including the Eclipse Modelling Framework and Eclipse 
Graphical Editing Framework. The functionalities of the 
GIDE are provided as different perspectives – an Eclipse-
specific method for grouping a set of functionalities as a 
graphical view. The following sub-sections describe 
different perspectives within the GIDE that support 
application composition, deployment, monitoring, and 
steering.  

 

 
Figure 6: The Composition perspective of the GIDE 

 
4.1 Composition Perspective 
The composition view is one of the essential features 
where the application development life-cycle begins. The 
composition perspective provides a toolbox with a list of 
components and with a set of tools so that applications 
can be visually composed. The toolbox is a mutable 
collection which is used as a repository of frequently used 
components. The back-end of the composition perspective 
generates necessary GCM-specific development artefacts 
such as ADL files and Java interfaces (c.f. Listing 1/2). 
Figure 6 shows a general screen layout of the composition 
perspective while defining the CompIDMatcher 
component during the case study (c.f. Section 3.2). The 
composition perspective also supports importing from and 
exporting to these artefacts.  
 
4.2 Monitoring Perspective 
The monitoring perspective provides the views that data 
centre operators need in order to properly monitor the 
environment in which components operate. Three types of 
monitoring are provided in order to enable proper 
management of applications and thus compositions. 
Firstly, resources monitoring of hosts is supported. This 
includes monitoring CPU utilization of hosts, storage 
space, and other platform specific status information. 
Secondly, monitoring of the GCM components is 
supported to provide status and location information, for 
instance, to verify component co-allocation as desired in 
the BIS use case. The monitoring is enabled with a zoom-
in feature for monitoring sub-components. In our example 
one could zoom into the component design as shown in 
Figure 4, and visualize the inner composite components 
and status information of them as depicted in Figure 6. 
Finally, this perspective allows monitoring of active 
objects, which is necessary for developers to debug and 
monitor applications during the development phase. 
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4.3 Deployment Perspective 
This perspective consists of views needed for application 
deployment. The main view is of a deployment descriptor 
editor to map physical hosts and JVMs to VNs. For 
instance, in the case study this has been used to define the 
BIS-Grid VN and for mapping the BISNodes 1-N to real 
machines (c.f. Figure 4). A developer may have a set of 
these deployment descriptors to be used for different 
hardware configurations. To complement this view, a 
view of the hosts and their resource statuses is also 
provided, giving a developer the ability to associate sets 
of hosts with each deployment descriptor. Within the 
deployment perspective the operator is able to launch 
components simply via drag-and-drop operations before 
moving on to steering. 
 
4.4 Steering Perspective 
The steering perspective is especially useful for data 
centre operators. The perspective builds on the resource 
and component monitoring view and graphically shows 
the components location and their status. An additional 
view shows the geography and resource availability of the 
hosts, VNs, as well as the components that are running on 
them. Based on these views, the operator has the facility 
to start, stop, and relocate components from one VN to 
another while monitoring their status to ensure correct 
execution. 
 
5. Initial Experiences  
The BIS use case demonstrates that the CFI offers a very 
high level of abstraction hiding the complexities of Grid 
programming. This is due to a number of advanced 
features such as the notion of VNs, the hierarchical nature 
of the model, and most notably the concept of collective 
interfaces, implicit futures, and behavioural skeletons. As 
shown in the use case, it clearly eases Grid programming 
and represents a significant step towards the “invisible” 
Grid vision. In particular, the autonomic version of the 
BIS use case has shown that a comprehensive set of 
behavioural skeletons for common patterns can 
significantly reduce the development effort. 
Furthermore, a distinct strength of the framework is the 
strict separation of concerns. In particular, the notion of 
VNs, the concept of deployment descriptors, and the ADL 
component definitions allow separating the design 
infrastructure from the deployment (physical) 
infrastructure. For example, the BIS GCM components 
only rely on a VN named BIS-Grid to be present no 
matter which and how many real nodes are behind it. This 
is true for both the ADL files and the Java code. 
Additionally, interfaces, bindings, and content are also 
clearly separated and explicitly named such that 
relationships are ideally not hidden in code, potentially 
leading to better software design, documentation, and 
maintainability. 

Also, hierarchical composition allows composing new 
components or complete applications from existing ones 
almost without writing code. The CompIDMatcher 
component, for instance, is generated by the CFI 
automatically at the time its ADL definition is applied; 
only its interfaces have been defined in Java files. 
Overall, the advanced support for Grid specific needs 
supplied by the component framework and the GIDE did 
clearly speed up the development cycle of the BIS. 
 
The use case also showed that the rich feature set offered 
by the CFI and the strict separation of concerns does not 
come without a price. One of the drawbacks that became 
visible was the large number of development artefacts to 
be generated and maintained. Quite a number of interface 
definitions, ADL files, deployment files, and other Java 
files including the actual functional code were required 
considering that the component system of the BIS 
application is relatively simple. This can turn manual 
code re-factoring such as simply renaming an interface 
into a fairly complex task since interface names appear in 
Java files as well as in ADL files. Only a powerful toolkit 
such as the GIDE outlined in the previous Section can 
help resolving these issues. 
Furthermore, the use case revealed some minor issues to 
be fixed in the next CFI release. For example, there is no 
adequate ADL support for the definition of co-allocation 
constraints. This would provide an easy way of defining 
that inner components, for instance, CompAlgControl and 
CompAlg, must always be co-allocated with their 
surrounding composite. In case of the BIS component 
design this is obviously desirable for performance 
reasons. Also, it turned out that the current version of the 
ADL does not support creating and binding an arbitrary 
number of components, for instance, as many as nodes 
available in a given VN, to a multicast interface. The 
number of nodes must be known a priori when writing 
the ADL file since the bindings are statically defined 
there. The case study also revealed that the early version 
of the farm behavioural skeleton does not consider 
workers to carry state. In our view, the skeleton should be 
extended to that end since many real-world applications 
might bear this requirement. 
Overall, the integration of the Grid components into the 
workflow driven BIS use case went smoothly. However, 
it must be noted that business process engines such as 
ePVM follow an event-driven paradigm which needs to 
be adapted to work with the wait-by-necessity approach 
of the CFI. In the use case the GCM adapter implemented 
this adaptation by turning available future objects into 
JavaScript messages sent to the workflow engine. 
 
Finally, the development work showed that the GIDE is a 
key part of the process for developing Grid applications 
which provided the basis for accelerated development. In 
addition to the support for ADL file generation from 
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graphical compositions, the monitoring perspective has 
proven to be very useful throughout the case study for 
verifying the actual component distribution/co-allocation. 
Although the GIDE could have been developed as a 
separate application, the approach of developing it as a 
pluggable module for Eclipse had several advantages 
including reduced development time, increased features, 
and consistent look-and-feel for developers. 
A number of initiatives exist in producing development 
environments for Grid applications, such as the GriDE 
[17] and Sun Grid Model for NetBeans [18]. However, 
their underlying component models are not aligned with 
the needs of Grid computing. The GIDE varies from 
existing frameworks by providing explicit support for 
Grid specific needs as well as support for different user 
groups ranging from software developers to data centre 
operators. 
 
6. Conclusions and Future Work 
Adopting a modularised or component-based approach is 
the key to developing large-scale software systems [15, 
16]. The component model we adopted for the framework 
implementation, GCM [4], supports hierarchical inclusion 
and is specifically designed for addressing potential issues 
of Grid computing. 
In this paper we have considered a potentially useful 
method for developing Grid applications and 
demonstrated the applicability of the method using an 
industry-strength case study – a biometric identification 
system. Our experience so far provides a basis for 
foreseeing the future of developing and deploying 
advanced component-based Grid applications. In 
discussing the approach along with the case study, we 
have made the following contributions:  
 
• We provided a brief overview of the Grid-specific 

component model – the GCM, developed as part of the 
GridCOMP project and the current status. 

• We presented a use case application, the distributed 
biometric identification system, implemented using 
GCM components. 

• We have outlined the approach for developing a GCM-
specific IDE while supporting existing development 
strategies. 

• We presented the overall functionalities and features of 
the GIDE to support the development of GCM-based 
Grid applications.  

• We presented our initial experiences and findings in 
using the GCM framework and the GIDE.  

 
Although initial prototypes of the CFI, the use case 
applications, and the GIDE have been implemented, a 
number of issues remain to be investigated:  

• Further explore other behavioural skeletons included in 
the CFI with respect to the use case. 

• Enhance the GIDE to support debugging of distributed 
applications and language-specific code generation. 

• Explore the possibilities of validating compositions for 
a well specified domain of application.  
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