2009 33rd Annual IEEE International Computer Software and Applications Conference

An Architecture for Verification of Access Control Policies with Multi Agent
System Ontologies

Fatih Tekbacak, Tugkan Tuglular
Department of Computer Engineering
Izmir Institute of Technology
Urla, Izmir, Turkey 35430

{fatihtekbacak, tugkantuglular} @iyte.edu.tr

Abstract

Multi-agent systems (MAS) which communicate with
intra-domain and inter-domain agent platforms have access
control requirements. Instead of a central mechanism, a
fine-graned access control mechanism could have been ap-
plied to MAS platforms. This paper emphasizes MAS-based
domain and security ontologies with XACML-based access
control approach for MAS platforms. The domain depen-
dent behaviour and access control parameters in agent on-
tologies could be combined within a common XACML pol-
icy document that is used through different MAS applica-
tions. Agent-based access control requirements and com-
mon XACML policy documents should be consistent to en-
force policies for MAS. To obtain this condition, the trans-
lation of organizational policies and platform based poli-
cies have to be considered in detail and the verified policy
features have to be enforced in MAS to provide access for
resources.

1. Introduction

Traditional access control approaches use users, groups
or roles in information systems. However, organizational
structure of MAS needs organizational policy based ap-
proaches in addition to traditional vision. The different
multi-agent systems that have to obey same rules should
agree on common policies to ensure the non-existence of
conflicts.

In our architecture, flexible characteristic of XACML
and semantic structure of MAS ontologies have been used
together. They have been adapted to data layer by transla-
tion of XACML and OWL to description logic (DL) con-
cepts. However, business logic layer as in the multi-agent
system architecture and XACML framework could not be
directly aware of the translation support. Our proposal uses

0730-3157/09 $25.00 © 2009 IEEE
DOI 10.1109/COMPSAC.2009.114

52

Oguz Dikenelli
Department of Computer Engineering
Ege University
Bornova, [zmir, Turkey 35100
oguzdikenelli @ege.edu.tr

XACML-DL for a flexible and granular MAS-based access
control approach to express the translation process.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the related work for semantic based privacy
and access control approaches. Section 3 presents the tech-
nologies that have been adapted to our proposal. Section 4
provides system architecture elements and explains in de-
tail. Section 5 describes a case study to understand archi-
tecture interactions. Finally, section 6 concludes the paper.

2. Related Work

Kolovski et al. [9] proposes mapping of WS-Policy doc-
uments to a description logic based subset of OWL, OWL-
DL. OWL reasoners can be used for verification and anal-
ysis of policies. Because of WS-Policy determines the us-
age between client and service based policy rules to connect
endpoints, there is a need for more expressive model trans-
formation approaches as combination of XACML and OWL
usage for access control.

Our approach is a solution for multi-agent systems which
uses [1] and [9]. Agent domain ontology and agent secu-
rity ontology usage for access control has been combined
and used with a general platform-independent XACML pol-
icy set. During this process, the translation of XACML to
DL based ontological definitions have been fulfilled as in

[8].
3. Proposed Architecture

The proposed architecture is shown in Figure 1. This in-
frastructure contains four basic parts as multi-agent system
structure, XACML-ontology translation, distributed policy
warehouses and XACML framework, which are explained
below.

IEEE
computer
psoue

ty

XACML Framework 1
H

H H
Policy Enforcement Agent (PEA) V1. request

! 5. response,
H H

2. request 4.response

Policy Decision Agent (PDA)

3. collect

a
H] I
H I Agent Domain Ontology |1+
H H i
LRy i T L T T T oy puspysroippepeepapy-. ' IH

G 3 f 7 os H

.. . i , X H

N . H . .
TR
AN

... 3

'
H

1 | Agent Main Security Ontology

H (including instances)

'

'

'

'

premmmmmmemn e 1 7 DL-Reasoner (Pellet) ~
LD ~ ~7
' v verification — —_— —

' '
' '
' '

'
' '
I ¢ I
' '
' '
' '
L 4

XACML-Ontology Translation

Figure 1. The architectural view of a multi agent system using XACML for access control

3.1. Multi-Agent System Structure

The proposed MAS structure is composed of agents, ref-
erence monitor, agent domain ontology, agent main security
ontology and policy ontology.

Agents request XACML framework to obtain access
privileges for communicating with other agents in the sys-
tem [11]. If XACML framework responses positively, the
requestor agent could have the access right for its goal to
interact with the related agent. Agents in MAS operate ac-
cording to their implicit actions and behaviours nearby the
ontologies in the system structure.

Reference monitor acts as a handler to capture agent re-
quests and transform these requests to communicate with
XACML framework. It also behaves like a mediator be-
tween MAS ontologies, XACML framework and agents to
manage access control operations.

Agent domain ontology represents the basic concepts
that has been shared through different agents according to
domain.

Agent main security ontology is based on the main se-
curity ontology that has been defined in [6]. Security ob-
jectives define goals that satisfies policy for the systems to
assure security constraints. Mechanisms and protocols en-
force the policies to realize the goal state successfully.

Policy ontology is based on [4] and [6] which define
capabilities for consumer and producer-side semantic web
services whereas our approach simply seems like this ap-
proach. All agents describe their security-related capability
information to allow requestor agent for querying semantic

53

policy definitions. Security requirements define the desired
security policies that would be needed to access the related
agent.

In a multi-agent system, there has been platform-based
and agent-based security policies. Platform-based security
policies imply that all of the agents have been affected by
them directly or indirectly. Agent-based policies interest
merely the related agent. For example, platform-based cer-
tificates could have been mandatory for the interaction of
open multi-agent system platforms as a platform-based pol-
icy. Otherwise, a specific agent could be obliged to certify
itself to interact with the desired agent.

3.2. XACML-Ontology Translation

Kolovski et al. [7], [8] use Description Logics (DL) to
provide a formalization of XACML. DL are a family of
knowledge representation languages which are decidable
subsets of First-Order logic commonly used as the formal
bases of object/class style ontology languages. Express-
ing policies in DL allows us both to define and effectively
implement an array of policy analysis services for a fairly
large subset of XACML. Formalization in [7] also benefits
from Description Logics being the basis for the Web On-
tology Language (OWL), which allows to use off-the-shelf
OWL reasoners as policy analysis tools and to potentially
integrate ontology-based policy descriptions with XACML
policies.

Approaches in the work of [7], [8] is based on analy-
sis services used at design time of a system. In this paper,

these analysis services translation phase of XACML to DL
formalism have been combined with agent-based ontologies
to create a hybrid solution for XACML and ontology usage
for policies in a distributed environment.

Pellet is an open-source DL reasoner that is based on the
tableaux algorithms developed for expressive Description
Logics. Pellet supports the full expressivity of OWL DL
and is only sound and complete DL reasoner that can handle
this expressivity [10]. The aim of Pellet in our proposal is to
express ontological concepts in DL perspective to compare
with XACML-based documents.

XACML-DL approach maps a large fragment of
XACML (including core XACML, XMLSchema datatypes
and the Administrative Policy profile) to Description Log-
ics (DL). This mapping causes DL reasoners to provide
analysis services for XACML documents. These services
are provided by basic software engineering principles (e.g.
unit testing to verify policies). While using this approach,
XACML-DL users don’t need to be aware of details for the
logic formalism and XACML mapping [7], [8].

In our approach, the architecture is divided into two lay-
ers as business logic layer (multi-agent system structure and
XACML framework) and data layer (XACML-ontology
translation and policy warehouse(s)). In data layer, the on-
tological platform and agent-based policies have been trans-
lated to DL based descriptions. Then translated policy con-
straints have been compared and verified to achieve consis-
tency among security policies. If the verification is success-
ful, business logic operations could be executed. If there is
a conflict between requestor’s information and data layer
translations, then the XACML framework will warn au-
thorities in the system for conflict. If the conflict has not
been solved in XACML framework, related agent’s access
request is rejected without need further XACML enforce-
ment. So that the business-logic and data layers could de-
termine their tasks with the help of other layer. However,
there is no dependency between these layers according to
software paradigms.

3.3. Policy Warehouse

Policy warehouse (PW) is the data repository definition
of distributed policies in an open environment. There could
be one or more policy warehouses in the system and the
XACML-ontology translation have been operated with the
related organizational warehouses. These warehouses in-
clude organizational domain and security policies. In a con-
ference management system, review right of the program
committee member for a paper defines organizational pol-
icy in Figure 2.

54

<Policy
Policyld="ConferenceOrganizationPolicyl"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-
applicable”>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal”>
<AttributeValue
DataType="http://www.w3.0rg/2001/XML ng"
<SubjectAttributeDesignator

/AttributeValue>

Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</SubjectMatch>
</subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal”>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">Paper</AttributeValue>
<ResourceAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:resource: resource-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal”>
<Attributevalue
DataType="http://www.w3.0rg/2001/XMLSchema#string ">review</AttributeValue>
<ActionAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchemaf#string"/>
</ActionMatch>
</Action>
</Actions>

Figure 2. XACML case study example in pol-
icy warehouse

3.4. XACML Framework

XACML [5] framework has three basic components as
Policy Enforcement Point (PEP), Policy Decision Point
(PDP) and Policy Administration Point (PAP). PEP inter-
cepts access requests and transmits these requests to PDP.
PDP retrieves and evaluates these policies. PAP(s) have the
task to specify and store policies [11]. PAP(s) have been
defined as PW in our approach.

The agents in multi-agent system requests XACML
framework to obtain an access for an element in the sys-
tem. In this proposal, there has been shown just one Policy
Enforcement Agent (PEA) for simplicity. In a realized dis-
tributed environment, there are a lot of PEAs around the net-
work. Then XACML framework passes the agent’s request
to related PEA(s) according to the PEA’s organizational in-
formation. Then PEA enforces the request and sends the
related information to Policy Decision Agent (PDA). PDA
responses the final decision information to PEA(s). If there
is more than one PEA in the system, PDA sends all PEAs
the decision information and chooses a communicator PEA
to send decision to the multi-agent system structure.

PDA collects all enforcement information coming from
PEA(s) [2]. Then it controls if any conflict between the
enforcement information. If there is a conflict, PDA warns
related PEAs by using its exceptional case ontology to cor-
rect the problem. Then related PEA(s) updates their internal
behaviours and informs PDA again until there isn’t any con-
flict for the system. When there is no conflict between the
collected information, PDA responses policy based decision
to PEA(s).

4. Case Study

Case study presents a conference management system to
explain the architecture better. The proposed conference
managent system is is composed of following elements:

Program committee member agent requests a paper
review (Agent Domain Ontology) by using their user-
name/password or X.509 certificate (Agent Main Security
Ontology and Policy Ontology) capabilities.

When the requestor triggers reference monitor, reference
monitor accesses the ontologies’ knowledge base and re-
lated ontological information with request’s content.

There are program committee members and a program
committee chair who is also a program committee mem-
ber within the ontology. These members review papers and
decides the acceptance as short paper, regular paper or a
poster. Representation of these concepts in an ontology
causes machine interpretable semantic meanings of them
that also supplies a specific platform rule to map organi-
zational specifications.

Program committee members that have user-
name/password and a related authentication protocol
capabilities could be concerned to review and comment
papers in the system. They also require program committee
chair agents to certify themselves to trust their interaction
behaviors.

Pellet is used to query and reason about agent-based poli-
cies ontology and other ontologies in multi-agent system
structure.

Policies located in PW are translated from XACML to
DL using XACML-DL. In Figure 2, program committee
members’ review action for the papers have been shown.

Program committee member (organizational policies)
can review papers and has also a capability to authen-
ticate and require certification (security policies) from
MAS.These policies have been verified by the sources com-
ing from PW and MAS ontologies by XACML-DL.

After verification, reference monitor is prepared to send
access control request to XACML framework in suitable
format and requests XACML framework (Figure 1-Stepl).

XACML framework passes request message to all re-
lated PEA(s). PEA(s) enforce policies and send their results
to PDA.

PDA collects the data from PEA(s) (Figure 1-Step2) and
PW(s) (Figure 1-Step3). It gives a final decision and sends
this decision to all PEA(s) (Figure 1-Step4). But one PEA
is chosen as a head PEA to communicate with XACML
framework, also to the MAS structure (Figure 1-Step5).

Positive response from XACML framework has been
transformed to agree program committee member agent.
Then this agent could review papers according to its capa-
bilities and requirements in MAS.

55

5. Conclusion and Future Work

In this paper, we presented an XACML and ontology-
based access control mechanism by using software agents.
By the way, the organizational policies located in PW and
agent-based policies located in multi-agent system struc-
ture have been combined and verified in a data-layer ap-
proach. Formalization of XACML and OWL under DL
concept helped the verification of policies under a common
point.

We have a goal to define and implement XACML-policy
framework and policy warehouse with open-multi agent
system concepts as norm for the future work. Then agent
policy, platform policy, organizational policy and role-
based access control policy concepts would be determined
in a detailed architecture. Also adaption of Or-BAC [3]
terms to agent terminology (e.g. provisional context) for
agent organizations will be realized.

References

[1] D. D. I. Abou-Tair and S. Berlik. An ontology-based ap-
proach for managing and maintaining privacy in information
systems. In OTM Conferences (1), 2006, pp. 983-994.

C. A. Ardagna, E. Damiani, S. D. C. D. Vimercati, and
P. Samarati. A web service architecture for enforcing ac-
cess control policies. In Proc. of the First Int. Workshop
on Views on Designing Complex Architectures, Electronic
Notes in Theoretical Computer Science, 2006, pp. 47-62.

F. Cuppens and A. Miege. Modelling contexts in the or-bac
model. In ACSAC ’03, Washington, DC, USA, 2003, pp.
416.

G. Denker, L. Kagal, T. W. Finin, M. Paolucci, and K. P.
Sycara. Security for daml web services: Annotation and
matchmaking. In International Semantic Web Conference,
2003, pp. 335-350.

eXtensible Access Control Markup Language (XACML).
Oasis. Feb 2005.

A. Kim, J. Luo, and M. H. Kang. Security ontology to facil-
itate web service description and discovery. J. Data Seman-
tics, 9:167-195, 2007.

V. Kolovski, J. Hendler, and B. Parsia. Formalizing xacml
using defeasible description logics. In Technical Report TR-
233-11, University of Maryland - College Park, 2006.

V. Kolovski, J. A. Hendler, and B. Parsia. Analyzing web
access control policies. WWW, 2007, pp. 677-686.

V. Kolovski, B. Parsia, Y. Katz, and J. A. Hendler. Rep-
resenting web service policies in owl-dl. In International
Semantic Web Conference, 2005, pp. 461-475.

Pellet. Pellet-owl dl reasoner. In http:// clarkparsia.com/
pellet/download.

T. Priebe, W. Dobmeier, C. Schlédger, and N. Kamprath. Sup-
porting attribute-based access control in authorization and
authentication infrastructures with ontologies. Journal of
Software (JSW), 2(1):27-38, 2007.

(2]

(3]

(4]

[5

—

[6

[t}

[8

—

[9

—

[10]

[11]

