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Position estimation with 802.11 and location fingerprinting
has been a topic in research for quite some time already. But
there are still some unaddressed issues that are the reason
why such systems are not widely used. First, the positioning
accuracy still leaves space for improvements. Second, users
generally have no information about the quality of the esti-
mated position. Especially in cases where the positioning error
is large, the user’s trust in the system suffers if he is not noti-
fied. Third, most systems that rely on a location fingerprinting
approach need a time and effort consuming setup phase in
which the training data has to be collected and processed. In
this paper, we give an overview of existing possibilities to
improve location fingerprinting systems under each of these
three aspects. Several alternative solutions for each problem
are presented. Finally, a discussion gives an overall picture of
the usability of the solutions when considering the system as
a whole.

I. INTRODUCTION

Nowadays, as the development of mobile devices continues,
numerous applications and services for nomadic users become
possible that might have been utopian a decade ago. With high
processing power, long-lasting batteries and high bandwith
wireless data connections, people can browse the Web at any
time, send and receive email, watch high-resolution video
streams, or even broadcast information and media-content
from their own device.

But whereas all these thrilling applications are known from
stationary computers at home or at work, there exists also
another type of services that is exclusive to mobile users: the
so-called location-based services (LBSs). LBSs are a special
category of the context-aware services because they do not
consider the complete available context information of a user
to improve their delivered service but are confined to only
using information about the user’s current whereabouts. While
this dramatically reduces the service complexity, it generally
leverages the usefulness of the offered service a lot.

When a user is located outdoors, the most prominent source
for location information used by LBSs are satellite-based
systems like the Global Positioning System (GPS) [1]. But
whereas these systems offer a good position accuracy under
optimal conditions - like in a suburban open-sky environment -

they fail to deliver precise position estimates in cases where the
mobile device has no line of sight to at least three satellites.
Unfortunately, this is the case in those places where users
spend most of their time: indoors and within metropolitan
areas where large buildings shade the mobile device from the
signals of the satellites.

Several approaches exist that try to overcome these lim-
itations. For instance, to estimate a user’s position the
RightSPOT [2] positioning systems uses the FM signals of
radio stations, Place Lab [3] uses the IDs of radio beacons
like GSM cells or 802.11 access points (APs), and the system
developed by Ubisense1 performs time-difference of arrival
(TDOA) measurements of wideband pulses sent by proprietary
base stations. But whereas all of these systems offer an
alternative to GPS at first sight, they all suffer from coarse
position accuracy or the requirement for special hardware.

For the position estimation in such adverse situations where
satellite-based systems are not available, location fingerprint-
ing (LF) has emerged as a very promising alternative. With
LF, depending on the system setup, e.g., the signals of 802.11
access points (APs) or GSM cells can be used to reliably
estimate a user’s position. To achieve this, LF systems use
a two-stage approach. In the first stage – often called training
phase – the system operator creates fingerprints at selected
reference spots within the area the system shall cover and
stores them in a database together with the coordinates or
an identifier for the location where they were collected. Each
fingerprint reflects the unique properties of the signal space
at its specific position and can incorporate e.g., the set of
receivable APs, the average signal strength of each AP or a
signal strength distribution for each AP. During the second
stage – the position determination phase – the mobile device
creates the equivalent of a fingerprint at the yet unknown
position of the user. The positioning system then compares
this fingerprint to all the fingerprints stored in the database
and selects – according to a system-specific metric – the best-
matching counterpart. Basically, the coordinates or the location
of that counterpart are then returned to the user as a position
estimate.

A good overview and taxonomy of 802.11-based LF systems

1http://www.ubisense.net



Fig. 1: Overview of the issues and suggested solutions for
802.11-based LF systems addressed in this paper.

as well as also distinctive feature of LF systems can be found
in [4].

Regarding the metric used for finding the best-matching
fingerprint in the database, two major classes of algorithms ex-
ist: deterministic ones and probabilistic ones. While especially
systems that use probabilistic algorithms offer a competitive
position accuracy in most cases, they still have some draw-
backs. The first is the uncertainty that is still inherent in the
position estimation. Even besides their good average position
accuracy, there exist cases where the conditions are suboptimal
and the accuracy rapidly decreases. As most LF systems do
not offer means to estimate the error that has to be expected, in
these cases the user is not notified that the currently estimated
position might be far from his real whereabouts.

The second drawback is the need for the very time con-
suming creation of the fingerprint database. To achieve a satis-
factory positioning accuracy, a small-spaced grid of reference
spots has to be laid out over the area of operations, and at
each of these spots a high number of training measurements
have to be made [5]. This is one of the reasons why LF-
based positioning systems have not yet been widely adopted
for general use.

The goal of this paper is to give the reader an overview of
existing possibilities to improve the – from a system operator
side – most important aspect of LF systems, namely the effort
needed for setup. Additionally, the paper also points out ways
to improve the positioning accuracy of LF system and to
estimate the position error that has to be expected. These
are important issues especially from a user perspective (see
Figure 1).

Even though the concepts presented are mostly universal, we
will mainly stick to systems that use 802.11 as the underlying
radio infrastructure. The reason here is that nowadays 802.11
still is the most ubiquitous radio technology that offers the

possibility of a position accuracy sufficient for most indoor
scenarios, a sufficient coverage, and is easily usable.

The remainder of the paper is structured as follows: The
following section gives a short overview on LF systems from
past and current research. Section III then introduces current
methods from other researchers as well as from ourselves to
improve the position accuracy. This is followed by Section IV
where we present techniques to estimate the error of common
LF systems. Subsequently, Section V gives an overview on
approaches to reduce the effort for creating the fingerprint
database. In Section VI, we discuss the presented solutions
from a more general perspective before we, in Section VII,
finally conclude the paper and give some directions for future
work.

II. RELATED WORK

The development of positioning systems still is a very active
topic in the research community. During recent years, many
systems have been proposed to estimate a user’s position.
These systems use different techniques like infrared light [6],
ultra-sonic pulses [7], or radio signals [8] to fulfill the task of
position determination. All of these systems are mainly tar-
geted at indoor usage and even if some alternative approaches
exist to estimate a user’s position outdoors, there is much less
activity in this sector due to the predominance of the satellite-
based GPS [1].

The advantage of systems that use radio signals is that these
signals are not stopped by walls and, especially when using
802.11, that the infrastructure is already available in most
places where people live and work (see [3] and [9]).

One of the problems these systems have to face is the
propagation behavior that radio signals have inside buildings.
Generally, we have to cope with diffraction, scattering, shad-
ing and multipath propagation which make it very hard to
create proper propagation models and to anticipate the signal’s
properties at a certain position in space and over time [10].
Therefore, many novel systems nowadays use the location
fingerprinting approach.

Considering the different classes of metrics used for LF
systems, a representative from the class of systems that use de-
terministic metrics is the RADAR [11] positioning system that
also was the first to incorporate the concept of LF. RADAR
uses the Euclidean distance in signal space to determine the
similarity of two fingerprints.

The class of systems that use a probabilistic metric gener-
ally offers a better positioning accuracy in most cases [12].
The system introduced by Haeberlen et al. [13] is a typical
representative for this class. Given the current measurements,
this system computes a probability for each fingerprint of the
user being located at the position the fingerprint represents.
This is done using a hidden Markov model and matching the
signal strength values collected at the user’s current position to
signal strength distributions stored in the fingerprints from the
database. The fingerprint that offers the highest probability
is selected, and the position belonging to that fingerprint is
returned to the user as a position estimate.



Inspired by the fundamental research on this topic, other
systems have been proposed that extend the basic LF approach
by e.g., measurement pre- or postprocessing steps to increase
the accuracy or to reduce the training effort. An example for
such an advanced system is Horus [14] that uses an algorithm
to detect and eliminate small-scale signal variations like they
often occur when measuring the signal strength of an 802.11
access point at a fixed position.

III. POSITIONING ACCURACY

Besides the mere variation of the metric, several other
approaches exist to improve the positioning accuracy of LF
systems based on 802.11. The possibilities range from ad-
vanced pre- or post-processing steps of the sensor data over
the consideration of the position or measurement history to
the use of sensor fusion techniques.

A. Basic System Parameters

The easiest way to improve the positioning accuracy of LF
systems is to modify the system’s setup parameters. As shown
in [5], a reduction of the grid spacing between the reference
spots – in case a grid is used – has a major influence on the
achievable accuracy. In addition, the number of measurements
used to create each single fingerprint during the training phase
as well as the number used during the position determination
phase for the position estimation have a large impact on the
positioning accuracy. As a consequence, choosing unsuitable
parameters decreases the accuracy of the positioning system
significantly.

B. Measurement Processing

To improve the position accuracy of 802.11-based LF
systems further, an often suggested possibility is the use of
advanced machine learning algorithms. In [15], for instance, a
particle filter approach is chosen to estimate the position of a
user based on signal strength measurements. Particle filters
are part of the sequential Monte-Carlo methods and quite
similar to Kalman filters. They are very well suited to deal
with data and measurements that do not adhere to standardized
distributions like e.g., Gaussian distributions, as is the case for
indoor signal strength measurements. Also, particle filters are
computationally less expensive than many other methods. This
makes them especially suitable for the use on mobile devices,
being less powerful compared to stationary computers.

Widyawan et al. use a variation of the general particle filter
approach called backtracking particle filter to increase the
positioning accuracy of the underlying LF system.

C. Feature Selection

Another approach is used by SkyLoc [16]. SkyLoc is a
localization system designed to run on a mobile phone and
used to reliably determine the floor on which a user is located
in tall multi-story buildings. It uses the radio signals from
GSM cells and location fingerprints created for each floor
of the building. To find the best-matching fingerprint in the
database, SkyLoc relies on a deterministic approach – namely
the Euclidean distance in signal space.
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Fig. 2: Influence of the user’s body on the received signal
strength [17].

To additionally improve the estimation accuracy, SkyLoc
incorporates a method called feature selection. Instead of using
data for all GSM cells that were received at the user’s current
position, only a subset of these is used for matching against the
fingerprints in the database. To identify the subset that offers
the highest position accuracy in advance of the deployment,
the authors of [16] suggest three different methods: The first
one is called Forward Selection. Starting with an empty set,
the feature that offers the highest increase in average position
accuracy is added to the set of used features until it has reached
its final size. The second alternative is Backward Elimination.
It proceeds the opposite way. From the full set of all available
features, successively those are removed from the set of which
their removal offers the highest increase in the average position
accuracy. Finally, the third method, namely Per-Floor Feature
Selection, tries to find not one optimal feature set to be used
for the whole database but optimizes the set for each story
separately. Additionally, this third method also uses weights
for the single features to further increase the performance.

D. Sensor Fusion

A further improvement of the positioning accuracy can be
achieved by sensor fusion. Sensor fusion means to not only
use the readings from one single data source, in our case for
instance an 802.11 network card, but also to consider data from
other sources. This can be cameras, other radio devices like
Bluetooth peripherals, audio sensors or even systems used for
the shock protection of computer harddrives. An example for
a system that follows this approach is Compass [17]. Compass
is based on LF with 802.11 and exploits the fact that the
human body strongly attenuates 802.11 radio waves that pass
through it (see Figure 2) which can highly deteriorate the
positioning accuracy if the user is standing in an unsuitable
position. The Compass system creates not only one fingerprint
for each reference spot but a set of fingerprints with the user
heading in different directions. The directions are predefined,
and the adjustment is done using a digital compass built into
the mobile device. In the position determination phase, the



Fig. 3: Selection of the subset of used fingerprints based on
the user’s heading [17]. The arrows represent fingerprints taken
while facing in the direction of the arrow. The black dot with
the arrow shows the user and the direction he is currently
facing. Finally, the grey area represents the intervall used to
select appropriate fingerprints for the position estimation.

user’s mobile device – as well equipped with a digital compass
– creates a fingerprint of the current radio environment as
usual. This fingerprint is not matched against all fingerprints
in the database, but only against those that have a similar
orientation as the user (see Figure 3). Using this sensor fusion
approach, a significant accuracy improvement of ≈ 20% is
achieved.

E. Sampling Frequency

While it does not completely fit into the category of im-
proving the accuracy, at this point also Composcan should
be mentioned. Composcan is a system that, based on the
variance of subsequent measurements taken during the position
determination phase, can estimate whether the user is moving
or standing still. The reasons why such an approach can also
be used to increase the positioning accuracy are twofold.
First, when the user is detected as being stationary, several
consecutive measurements taken at the same position can
be combined before comparing them to the fingerprints in
the database. As shown in [5], increasing the number of
measurements used for the position estimation remarkably
increases the positioning accuracy. Second, it is well known
that the sampling of measurements with 802.11 network cards
interferes with ongoing data communication. Therefore, the
measuring frequency as well as the measurement scheme can
be adapted for a stationary user to reduce the impact on
concurrent data communication. If the user is moving the
sampling frequency is raised again. This helps to maintain
an acceptable position accuracy at the cost of decreased data
throughput.

IV. ERROR ESTIMATION

Even though reducing the overall error of LF systems is
a very desireable goal, the achievable accuracy will probably
always leave room for improvements. When considering the
average accuracy of current systems which is typically be-
tween 2.5 meters and 3 meters, small positioning errors are
acceptable for most applications. One of the remaining major
problems with the position estimation is the so-called long-tail
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Fig. 4: Example for a cumulative error distribution of an LF
system. Here, for instance, the error is smaller than 3 m in
80% of all cases.

error: the quite unlike but still existing occurrence of a very
large error. Especially for cases in which these errors occur,
an estimation of the positioning error would be of high value
to the user. In this section, we therefore introduce different
approaches that estimate the error of LF systems.

A. Error Distribution

The most basic approach of error estimation is to supply
the user with general information about the position error that
has to be expected when using a certain positioning system.
This can be achieved by, for instance, supplying him with a
cumulative error distribution of the positioning system (see
Figure 4). The user then can estimate the probability of a
certain error to happen and adapt his behavior accordingly.

Even this very simple way of dealing with error information
already has a remarkable influence on the user perception of an
LBS. As a study by Dearman et al. [18] has shown, even this
unspecific knowledge of the error distribution helps users of
an LBS to perform better when e.g., solving location-specific
tasks.

The main drawback of this approach is that it only offers a
general and not a situation-specific error estimation.

B. Multiple Regression

The authors of [18] also introduced the use of multiple
regression to estimate the position error. Using the training
data and a smaller amount of test measurements for the
reference spots, the system operator computes a linear model
of the error that has to be expected based on a defined set
of signal features. This set can contain the receivable access
points or GSM cells, the signal strengths, properties of the
noise floor or other parts of the measurements. During the
position determination phase, the user then can apply the linear
model to his currently collected data and by such compute an
error estimate.

While this approach already offers promising results, it uses
quite basic features to estimate the error. The next two methods



Fig. 5: Example for a region map computed by the fingerprint
clustering algorithm.

take a similar direction but use more advanced features to
accomplish their task.

C. Fingerprint Clustering
Introduced by ourselves in [19], the fingerprint clustering

approach is an algorithm that estimates the position error based
only on the training data. To estimate the error that has to be
expected at a certain position, the algorithm uses the training
data to identify consecutive areas of similar signal properties.
This is done by first laying out a grid of cells over the area to
cover. Each cell, in the beginning, is a single-cell cluster. Then,
physically adjacent clusters that are similar according to a
similarity measure are merged together to larger clusters. This
is continued until, due to the similarity measure, no further
merges are possible. The result is a set of physically connected
clusters of which each represents a region of similar signal
properties (see Figure 5). The information about this final
set of clusters is stored for later reference. After a position
estimate has been computed during the position determination
phase, the algorithm checks in which of the identified regions
the estimated position lies and uses the dimensions of that
region to compute the position error that is to be expected.

D. Best Candidate Set

Also introduced in [19], the best candidate set algorithm
also uses an advanced set of features and knowledge about
the internal procedures of LF algorithms to make reliable
error estimates. Taking an 802.11-based LF algorithm that
uses a probabilistic metric as a baseline, the best candidate
set algorithm exploits the fact that the algorithm during the
position determination phase has knowledge not only of the
most probable reference spot but also of the probabilities for
all other spots. The best candidate set algorithm considers this
by using the following approach. First, the set of the n most
probable fingerprints is formed. Then, the distance between
the position of most probable fingerprint and the other n− 1
fingerprints is computed. Finally, the average of these distances
is returned as an error estimate. Besides using the average
distance, also other options like using the maximum distance
were considered for the best candidate set algorithm but these
did not lead to better results. The value suggested for n is 3.
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V. EFFORT REDUCTION

It becomes clear when regarding the requirements of most
LBSs that – though undoubtfully desireable – an improvement
of the accuracy as well as the very precise estimation of the
position error is only necessary in a few cases. The reason
why LF still is only rarely adopted for position estimation
beyond academia is the need for the very time-consuming
setup of the system. As we have analyzed in [20], a fine-
grained grid of reference spots has to be used, and at least 20
measurements have to be collected at each reference spot to
achieve an accuracy sufficient for most LBSs.

A. Quick Fingerprinting

Quick fingerprinting [21] tries to reduce the calibration
effort by reusing collected training measurements. Especially
for smaller distances between the reference spots in the grid,
the inevitable variation in the 802.11 radio signals generally
results in an overlapping of the received signal strength
distributions for one access point at adjacent reference spots
(see Figure 6).

Quick fingerprinting exploits this by not only using samples
that were collected at the current reference spot, but also
the samples from the adjacent reference spots to create the
fingerprint. Doing so, the number of measurements that have
to be collected at each single spot can be reduced by ≈ 80%
without losing positioning accuracy.

B. Region-based Fingerprinting

Region-based fingerprinting goes even one step further
than quick fingerprinting. Measurements collected at different
positions are combined into one fingerprint, too. But instead
of using samples from adjacent reference spots, the samples
in this case are collected while walking through the area of
operations on pre-defined trajectories. The algorithm then –
in a similar manner as described in Section IV-C – combines
similar measurements to consecutive regions of similar signal
properties. Thus, the amount of training measurements can be
reduced, and the way the training measurements are collected



becomes much easier. This has to be traded for a minor loss
in positioning accuracy.

C. User Collaboration

The probably most effort-saving way to setup a LF system
is to let the user provide the training data for the fingerprint
database on the fly. While with this approach the system
operator loses control over the training data collection, he
gains the possibility to continuously improve the coverage and
to keep the database updated.

A good example for an LF systems that follows this
approach is Redpin [22]. It uses a software that runs on the
mobile device to collect signal measurements from GSM cells,
802.11 APs and nearby Bluetooth devices. Besides the normal
operation where a fingerprint created from live measurements
is matched against the fingerprints in the database, the software
offers the possibility to store a fingerprint for the current
location in the database in case no matching fingerprint was
found and therefore no position estimation was possible. Thus,
different users can collaborate with the system operator to
extend the system to new areas and to keep the available
data up-to-date. This reduces the training effort of the system
operator to a minimum.

Another example for a system that uses user-supplied data
was introduced by Chai and Yang in 2005 [23]. In contrast to
Redpin [22], it does not completely rely on the user-supplied
data but requires an initial fingerprint database set up by the
system operator. During the position determination phase, so-
called unlabeled traces – sequences of user measurements of
which the positions are unknown – are used to refine the
data in the fingerprint database. To identify the corresponding
fingerprints, the authors apply an algorithm introduced by
Dempster et al. [24] called EM-algorithm. This algorithm
iteratively computes maximum likelihood estimates from a
given set of incomplete observations and is split in two steps,
an expectation step and a maximization step. The advantage
of using unlabeled traces compared to Redpin is that the
operator can offer a guaranteed coverage of the area the basic
fingerprint database covers. But this also shows the limits of
this approach because the unlabeled traces can only be used to
refine existing data, and the users cannot extend the coverage
area of the system on their own.

D. Generated Fingerprints

It is also possible to computationally create the fingerprint
database. This approach can very effectively reduce the effort
to set up an LF system. Most common here is the use of a radio
propagation model in combination with a few or even only one
reference measurement. Based on these measurements and the
model, a radio map for the area to cover is computed. With
values taken from this computed radio map, fingerprints are
created for each reference spot in the area to cover and stored
in the fingerprinting database. The system introduced by Ji et
al. [25] follows this concept.

Whereas such an approach very effectively reduces the
effort, it is questionable how usable the system really is in

practice. Considering the very chaotic behavior that radio
signals show inside buildings, the performance of a system
strongly depends on the quality of the radio model: If the used
model does not reflect the real radio propagation correctly, the
entire system will be unusable.

E. Fingerprint Distribution

Up to now, we have only presented approaches to reduce
the effort for setting up an LF system. Another type of effort
reduction comes very handy especially when dealing with LF
systems on resource-constrained mobile devices.

One problem that large deployments of LF systems have to
deal with is the size of the fingerprint database. As is often the
case because of privacy considerations, the estimation of the
user’s position shall be calculated on his mobile device so that
his position is not known to the service provider. To achieve
this, the database containing the fingerprints has to reside on
the mobile device, too. Especially for large deployments, this
can present a problem for the restricted resources of a mobile
device. Therefore, in [26] algorithms are presented to supply
only the currently needed fraction of the fingerprint database
to the user’s mobile device. By chosing an adequately sized
fraction, the user’s privacy requirements can be fulfilled and
the memory consumption can be reduced.

To split the database into meaningful parts, two algorithms
that serve different memory requirements are presented in
[26]. The first one is called Union of Access Points. Here the
device requests all fingerprints in which any of the currently
received APs is contained. This variant requires most memory
on the mobile device. The second introduced algorithm named
Intersection of Access Points only transmits those fingerprints
to the mobile device that contain all APs received at the
user’s current position. This variant uses the least amount of
memory.

VI. DISCUSSION

We have shown in the previous sections that several different
solutions exist to improve the drawbacks of 802.11-based LF
systems. Each of these solutions fulfills its purpose when
considering only its specific area. But a look at the complete
picture shows that not all solutions are equally well suited for
a real system.

A. Positioning Accuracy

For example, if we consider the Compass system presented
in Section III-D, we can see that it offers a very competitive
accuracy. But because one fingerprint has to be created for
each direction considered, the effort to setup the system would
be even larger than it already is for a basic LF system.

Exactly the opposite is true for the system presented in
Section III-E. As this system only relies on data that is
available anyway and as its usage would have no influence
on other system parameters like the effort needed for setup, it
can well be adopted for widespread usage in LF system.



B. Error Estimation
As mentioned already in Section IV, the estimation of the

expected error is mainly desireable to inform the user in case
of possible large errors. This helps to increase the user’s trust
in the system. Because this is only possible with situation-
specific knowledge, using only a distribution function like the
one presented in Section IV-A seems inappropriate.

Better suited is the use of the Best Candidate Set algorithm
presented in Section IV-D. The algorithm implicitly uses both
information about the training and current data to create a
reliable error estimation.

C. Effort Reduction
Finally, also the algorithms presented in Section V have both

advantages and disadvantages. Whereas the system presented
in Section V-D very consequently reduces the effort necessary
for the setup of the system, this might come at the cost of a
heavily degraded accuracy if the selected radio model is not
suitable.

The system described in Section V-C seems to be much
better suited. The effort is very effectively reduced while the
accuracy of the system is only influenced in terms of missing
coverage.

D. Application Requirements
As stated, not all solutions are equally well suited to solve

their corresponding problem. Additionally, also the combi-
nation of different approaches is not always easily possible.
Therefore, for a real deployment, the application requirements
have to be considered as well to identify features that need
special attention.

If we, for instance, think of a friend finder application that
is used on a university’s campus, on the one hand the accuracy
could very well be reduced to room level as friends would be
easily recognizable inside of a single room. The same is also
be true for the error estimation, where only errors beyond the
size of a room would matter to the user. On the other hand,
as the campus of a university generally covers a large area,
effort reduction here is a very important factor.

In contrast, when considering a warehouse navigation sys-
tem, the situation is totally different. To locate possibly small
items within the storage shelves, a very high accuracy is
necessary. The estimation of the position error might also gain
high importance in such a case as the system could also be
used to verify access requirements. An example is an inference
algorithm that, based on the position history, checks that an
employee does not stay within a hazardous environment for
too long. Such an algorithm obviously should only consider
position estimates with a very low estimated error to avoid
false alerts. Compared to the first two properties, the effort
necessary for setup and operation is only of secondary impor-
tance in such a limited scenario.

VII. CONCLUSION

In this paper we gave a brief overview of techniques used
to address the major issues that are still obstacles to the wide
adoption of location fingerprinting.

Firstly, we have presented different techniques that can be
used to increase the positioning accuracy of 802.11-based LF
systems. Increasing the accuracy is a prerequisite to be able
to also allow the use of advanced LBSs. Secondly, several
algorithms from the field of error estimation for location
fingerprinting systems have been introduced. While this field
of research is still quite new, it nevertheless is of high
importance – especially to the users of LBSs. Subsequently,
we have presented techniques that system operators can use
to reduce the effort that is necessary to setup a location
fingerprinting database. This can help system operators to
deploy and maintain LF systems at reasonable costs and
thus to make their usage feasible. During our discussion,
we have finally shown, that whereas suitable solutions exist
for each single problem, a combination of these is neither
always possible nor always necessary. Which of the different
parameters should be optimized is highly dependent on the
targeted application.

In the future, several directions for further research are open.
Besides the ongoing optimization of algorithms for the single
problems – possibly with a focus on error estimation and effort
reduction – also the development of algorithms that offer an
adjustable solution to all issues might be considered. Addi-
tionally, also more effort is necessary to further understand
the requirements of applications and scenarios in which LF
with 802.11 is used to be able to even better tailor upcoming
systems to the requirements of real users.
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