
GUI-Based Testing of Boundary Overflow Vulnerability

T. Tuglular, C. A. Muftuoglu, O. Kaya
Department of Computer Engineering

Izmir Institute of Technology
Urla, Izmir, Turkey 35430

tugkantuglular/ardamuftuoglu/ozgurkaya@iyte.edu.tr

F. Belli, M. Linschulte
Department of Computer Science, Electrical Engineering and Mathematics

University of Paderborn
Germany

belli/linschulte@adt.upb.de

Abstract

Boundary overflows are caused by violation of con-
straints, mostly limiting the range of internal values of a
program, and can be provoked by an intruder to gain con-
trol of or access to stored data. In order to countermea-
sure this well-known vulnerability issue, this paper focuses
on input validation of graphical user interfaces (GUI). The
approach proposed generates test cases for numerical in-
puts based on GUI specification through decision tables. If
boundary overflow error(s) are detected, the source code
will be analyzed to localize and correct the encountered er-
ror(s) automatically.

1. Introduction

Graphical user interfaces (GUIs) add up to half or more
of the source code in software [2]. Unfortunately, GUIs
may allow intruders to gain control over a system or access
to its stored data by intentionally caused boundary over-
flows. A boundary overflow is an input error and occurs
when values are entered that violate the range of values
[9]. Such entries exceed the implicitly or explicitly spec-
ified but not implemented boundary values; thus this is a
consequence of deficient control mechanism in the software
concerning system constraints.

This paper focuses on input validation testing of GUIs.
We propose a control mechanism, similar to the Design by
Contract (DbC) concept, to check the boundary input val-
ues explicitly on the GUI and the source code; we assume
that constraints might be missing or wrongly set. Our ap-

proach for input validation suggests to specify user interface
requirements and to convert this specification into a formal
model from which valid and invalid test cases can be gener-
ated [3].

The novelty of our approach stems from algorithms we
introduce for the first time in this paper to detect and correct
boundary overflow vulnerabilities. Apart from checking the
error handling mechanism, these algorithms, implemented
in Java, extend SUC by adding a simple exception handling
mechanism if / where none exists. For validation of the ap-
proach an open source port scanner, developed in C++, has
been tested in a local area network (LAN).

Next section summarizes related work before Section 3
summarizes the test generation algorithm. The core of the
paper, Section 4, develops algorithms for detection and cor-
rection of boundary overflow vulnerabilities through anal-
ysis of the model and code of the SUC. Sections 5 and 6
include technical details of the approach and case study on
a port scanner. Section 7 concludes the paper and outlines
our research work planned.

2. Related Work

Our approach combines dynamic input validation with
static analysis for evaluating given constraints and makes
also use of DbC concept. Input validation checks the syn-
tax and, partly, semantics of information provided by user
via user interface (UI), mostly realized as a graphical UI
(GUI) [6]. Because UI errors may lead to malfunctions of
the entire system which, in turn, may lead to vulnerabilities
for attacks [11], various specification- and implementation-
based test techniques exist to validate UI [7]. Among them,

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.189

539

code coverage rate helps to detect possible input errors and,
by using correction algorithms, the illegal inputs can be en-
forced to set them in defined boundaries. Event sequence
graphs [3] can be used for analysis and validation of UI re-
quirements prior to implementation and testing of the code
[4]. An ESG is a simple albeit powerful formalism for cap-
turing the behavior of a variety of interactive systems that
include real-time, embedded systems, and graphical user in-
terfaces [3].

Design by Contract (DbC) is an object-oriented design
technique that was first introduced by Meyer in 1992
[10]. DbC focuses on the extension of source code, e.g.,
an operation, by pre- and post-conditions that can be
evaluated during runtime (similar to a legal contract). Thus,
implementing DbC could be used to avoid the boundary
overflow vulnerability. On the basis of DbC, there exist
some approaches that adopt the DbC-idea for testing.
Zheng et al. [17] introduced an UML-based software
component testing technique called Test by Contract.

Input: Decision table
Output: Test cases
n = number of rows of the decision table;
m = number of columns of the decision table;
type = type of the relation;
for column 4 TO n do

for row 0 TO m do
type = DecisionTable[row][0];
var1 = DecisionTable[row][1];
operator = DecisionTable[row][2];
var2 = DecisionTable[row][3];
if var1 is not in variablelist then

Add var1 to the variablelist;
end
if type = boundarycondition then

if DecisionTable[row][column] = F then
operator = complement(operator);

end
Add the condition (type,operator,var2) to
var1.conditionlist

end
else if type = variablerelation then

if DecisionTable[row][column] = T then
Add the condition (type,operator,var2) to
var1.conditionlist

end
end
Generate Test Case;
Step 1: Generate test cases according to boundary conditions of
the variables in variablelist;
Step 2: Modify the test values by considering the relations
between the variables;
Clear the variablelist;

end
end

Algorithm 1: Test Case Generation

3. Test Case Generation

While testing a system, a model of the system helps to
predict and control its behavior. Modeling a system ac-
quires the understanding of its abstraction, and in the case
of testing GUIs, there is the need of a formal specification
tool distinguishing between legal and illegal situations. De-

cision tables [1] are popular in information processing and
are also used for testing, e.g., in cause and effect graphs
[12]. A decision table logically links conditions (”if”) with
actions (”then”) that are to be triggered, depending on com-
binations of conditions (”rules”) [5]. Equivalence class
testing supplemented with boundary value analysis [16],
[8] is used to generate test cases. Equivalence class testing
is strengthened by the cause-effect testing approach which
uses decision tables to generate test cases where the input
conditions represent the causes and actions represent the ef-
fects.

A test case generation algorithm is developed to generate
test case values from a decision table by considering the
boundary conditions (restrictions) and relations between the
variables (dependencies). Algorithm 1 shows the test case
generation algorithm.

For all the rules in the decision table, a specific test value
of a variable is generated by regarding all its conditions.
First four columns in the decision table are for holding the
type of the relation, variable1, operator and variable2 (can
be boundary or variable, due to the type of the relation)
respectively.Starting from index 4, the columns hold the
related rule (true or false) for that variable1, variable2
and operator combination. If one rule for the current row
is false (represented as ”F”), then the logical operator is
complemented. The decision table that is used by the test
case generation algorithm is shown in Table 1 (see Section
6).

4. Boundary Overflow Vulnerability Detection

A vulnerability is characterized as a ”Boundary over-
flow” when the input being received by a system causes the
system to exceed an assumed boundary resulting in a vul-
nerability [9]. Instead of inserting dynamic checks into the
generated code as in [15], our approach uses static control
condition insertion into the source code to avoid boundary
overflow in advance.

We propose a detection algorithm to check the error
handling mechanism of the SUC related to boundary over-

Figure 1. Summary of the approach

540

flow. The algorithm scans the source code statically, detects
the points that may cause problems (possible violation of
boundary values) and checks the error handling mechanism
of the SUC against ”out of boundary” values. The deficient
parts of the error handling mechanism related to boundary
overflow have to be identified first. Once detected, a mecha-
nism is required to correct the deficiencies of the SUC. Our
algorithm inserts an error handling mechanism with follow-
ing features:

• insertion of necessary control conditions into the
source code where control for the boundary overflow
does not exist

• generation of related error messages when inputs are
given that lead to boundary values

• exits the currently executed function.

The approach starts with generating test cases as defined
in Section 3. After generating the test cases, the SUC is
tested dynamically by entering these values to its user inter-
face. The faults are obtained and extracted to a file. Apply-
ing our proposed detection and correction method, the new
corrected version of the SUC is tested in the real environ-
ment again. The faults before and after applying our method
are compared. The summary of the approach is shown in
Figure 1.

Boundary overflow vulnerability detection algorithm
consists of five steps. In step 1, the variable definitions with
the specified types are obtained and the variables (as type,
name, defined file, defined line, defined function) are en-
tered into the hash table. In step 2, the variables in the hash
table are matched with the conditions defined in decision
table. Matched variable’s boundary condition is set to true.
Step 3 of the algorithm detects the points that may cause
problems (input assignments from the user interface input)
and sets the trace line of the variable as the current line.

Step 4 traces the variables from their trace lines and de-
tects the lines where the variables are used first. If a vari-
able is used in a control statement (like if, while or for),
the expression(s) in the statement are parsed. After that, the
conditions are compared with the defined conditions of the
variable. If the parsed expression complies with the defined
condition of the variable, condition check of the variable is
set to true (i.e., if the defined condition is a > 0, the ex-
pression should be a <= 0 to catch the undesired input).
Step 5 of the algorithm applies the correction mechanism.
The error handling code is inserted after the trace line of
the variable where the condition check for the variable does
not exist. The boundary overflow detection algorithm (Al-
gorithm 2) is represented below.

Input: Decision table
Output: Variable list
n = number of lines;
m = size of hashtable;
Step 1. Obtain the variable definitions with the specified types and add
them to the variable list;
for line i = 1 TO n do

if line i contains a variable definition of specified types then
Add the variable to hashtable
(type,name,definedfile,definedline,definedfunction);

end
end
Step 2. Match the conditions to variables;
Match the variables with the conditions defined in decision table;
Step 3. Detect the points that may cause problems (GUI input lines);
for line i = 1 TO n do

if line i contains a GUI input then
if assignedvariable is of string type then

Trace the string variable and find the string to integer or
double conversion line;
Lookup the assignedvariable from hashtable;
if variable.boundarycondition = true then

variable.usedfile = currentfile;
variable.traceline = currentline;

end
end

end
end
Step 4. Trace the variables from the trace line numbers;
for variable.traceline i = 1 TO n do

Find the first line that the variable is used;
if line i contains a control statement (if, while, for) then

Parse the expression(s);
Lookup the variable(s) used in the expression from hashtable;
if variable.boundarycondition = true AND expression
= complement(variable.condition) then

variable.condition.check = true
end

end
else if line i contains a GUI input then

Go back to the statements in Step 3;
end

end
Step 5. Apply correction mechanism;
for all the variables in hash table i = 1 TO m DO do

if variable.boundarycondition = true AND
variable.condition.check = false then

Insert the related error handling code after the conversion line;
end

end
Algorithm 2: Boundary Overflow Vulnerability Detection
Algorithm

5. Implementation and Tool Support

For the implementation of our approach as introduced in
Section 4, we developed a tool in Java. As a static analysis
tool, it analyzes the source code of SUC, finds the deficient
parts that may cause boundary overflow vulnerability and
inserts related codes statically into the source code to com-
pensate the deficiencies of the control mechanism related to
boundary overflow. The tool runs on Microsoft Windows
and works for software developed in C++.

The boundary overflow analysis tool takes two inputs:
(1) the directory of the software to be analyzed and (2) deci-
sion table for the GUI. Our implementation requires a man-
ual matching of the listed variables with the conditions in
the decision table to identify the conditions of the variables.
The tool outputs the variables that have the boundary con-

541

Figure 2. Boundary overflow vulnerability analysis tool graphical user interface screen

dition, displays the conditions of the variables as well as
whether or not condition checks exist in the source code re-
lated to boundary overflow.

The correction mechanism is applied by informing the
user about the insertion of the error handling code where
the condition checks do not exist. Figure 2 shows GUI part
of the tool that enables to input source directory of the soft-
ware to be checked, shows the detection steps, provides the
editable decision table, correction suggestions and displays
the outputs.

6. Case Study

We evaluated our approach and the tool introduced in
Section 5 on a port scanner. A port scan function scans a
single port or a range of ports, i.e., ports between a given
minimum and maximum, to check whether they are open or
not. Test cases are generated for minimum port and maxi-
mum port from the decision table using Algorithm 1. Test of
the port scan function is evaluated in a LAN and faults have
been recorded. As a next step, our tool analyzed the source
directory to detect and correct the vulnerabilities related to
boundary overflow. Finally, the faults detected before and
after applying the boundary overflow detection algorithm
are compared.

We exemplify the case study on the basis of the port
scanner part of open source firewall software, i.e., Netde-
fender Firewall (version 1.5) [13]. Its GUI is shown in

Figure 3. Netdefender Port Scanner

Figure 3. The user interface behavior of its port scan func-
tion is tested by modeling through a decision table and by
applying our tool.

Table 1 structures the decision process by modeling pos-
sible actions for related conditions. The decision table is
built to generate test data for the minimum and maximum
port values of the port scanner according to the rules. ”Min”
and ”max” are used many times in the table due to their rela-
tion with each other and the boundary values. Algorithm 1
is applied to generate test data according to the rules of the

542

Table 1. Decision Table for ”Enter min and
max ports”

Conditions R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15
min >= 0 F F F F F T T T T T T T T T T
min <= 65535 T T T T T F F F F F T T T T T
max >= 0 F F F T T F T T T T F T T T T
max <= 65535T T T F T T F F F T T F T T T
min < max F F T T T T F F T F F T F F T
min = max F T F F F F F T F F F F F T F
min > max T F F F F F T F F T T F T F F

Actions
A1: Error1 X X X X X X X X X
A2: Error2 X X X X X X X X X X
A3: Error3 X X X X X X
A4: Accept X X

decision table. For each rule, a test pair is generated based
on equivalence class testing and boundary value approach.
The constraints in the first part (rows 1-4) of the decision ta-
ble indicate the boundary conditions. Meanwhile, the con-
straints in the second part (rows 6-8) indicate the relations
of the variables with each other.

The algorithm creates a list for each constraint contain-
ing the conditions of the variables and generates the min and
max test case pairs according to the fact that the boundaries
for port values are defined as 0 for minimum and 65535 for
maximum possible boundary. Table 2 presents test cases
generated by using decision table given in Table 1. Figure 4
shows the generated test values as the output of the test data
generation algorithm.

The port scanner is evaluated in a LAN and the gener-
ated test values are applied as inputs to the GUI of the port
scanner. The user interface outputs are obtained and the net-
work packet outputs are captured. The outputs are extracted
to a spreadsheet document. Figure 4 shows a sample view
of the spreadsheet document, which displays the test values
as input pair, GUI and network packet outputs, state of the
case (erroneous or not), error message and error type.

To sum up, the cases with out of boundary input pairs
give rise to problems in the network environment. In cer-
tain cases (2, 3, 6, 8, 9, 11, 12), the corresponding error
is a Type II error (false negative). In these cases, there are
faulty input pairs that are out of boundary values but the pro-
gram behaves as they are not faulty. This is critical, because
the program does not abandon processing the related task,
hence the resulting situation forces the program to work er-
roneously. For this reason, in some cases (2, 3, 6, 11), the
client does not stop sending the TCP packets to the target
computer, keeps on sending the packets from 1 to 65535 in
an infinite loop and therefore generates a flood in LAN.

The test results of the SUC are presented above. It is
observed that the original software does not have control

Table 2. Test cases for min,max pairs
Rule Value (min,max)
R1 (-1,-2)
R2 (-1,-1)
R3 (-2,-1)
R4 (-1,65536)
R5 (-1,0)
R6 (65536,-1)
R7 (65537,65536)
R8 (65536,65536)
R9 (65536,65537)
R10 (65536,0)
R11 (0,-1)
R12 (0,65536)
R13 (65535,0)
R14 (0,0)
R15 (0,65535)

mechanisms for the out of boundary input values that can
cause boundary overflow. Since the SUC has no error han-
dling mechanisms, our tool inserts control statements to
fulfill the deficiencies of the software. After the insertion
of control statements related to boundary constraints in the
port scanner of Netdefender firewall, the software is evalu-
ated in LAN again and the generated test cases are applied
as inputs to the GUI of the port scanner. The outputs con-
siderably differ from the ones in Figure 4. In erroneous
cases (1-13), the software outputs the right error message
and aborts sending the packets. Figure 5 displays the out-
puts of the test cases executed on the SUC modified by our
correction algorithm. It is evident that our tool has success-
fully carried out detection and correction operations. The
uncorrected fault in the test runs 1 and 2 is due to the fact
that our tool does not yet check dependencies between vari-
ables.

Analysis of the evaluation results encourages the gen-
eralization that boundary overflow vulnerabilities are not
considered and thus counter-measure actions are neglected
during software development. Therefore, tools as we intro-
duced in this paper might be useful to prevent likely failures
or undesirable situations that may occur as a consequence of
deficiency control mechanism in the software.

Figure 4. Outputs of the test cases

543

Figure 5. Outputs of the test cases after cor-
rection

7. Conclusion

In this paper, we have proposed a solution for the bound-
ary overflow vulnerability problem. Decision tables are
used for modeling GUI of SUC and generating test cases
for input validation. An algorithm is introduced to validate
the error handling mechanism of SUC related to bound-
ary overflow and provides it with necessary exception han-
dling mechanism where none exists. A port scanner has
been tested for evaluation of our tool. Results of tests show
that the approach is very effective for finding deficiencies in
the error handling mechanism of SUC concerning boundary
overflow problems. Moreover, our approach inserts appro-
priate checks into the source code of SUC to compensate
those deficiencies of SUC. Our tool can be viewed as a
novel extension of well-known tools such as pc-lint [14]
for boundary overflow analysis. Our future plans include
adding the capability to check the dependencies between
the variables to our tool and extending our formal modeling
with decision table augmented ESGs.

References

[1] I. 5806. Specification of single-hit decision tables. Informa-
tion processing, 1984.

[2] P. Amman and J. Offutt. Introduction to software testing.
2008.

[3] F. Belli. Finite state testing and analysis of graphical user
interfaces. In Proceedings of the 12th International Sympo-
sium on Software Reliability Engineering, Washington, DC,
USA, 2001, pp. 34-43. IEEE.

[4] F. Belli, A. Hollmann, and N. Nissanke. Modeling, analysis
and testing of safety issues - an event-based approach and
case study. In Proceedings of the 26th Int. Conf. Computer
Safety, Reliability, and Security. Springer, 2007, pp. 276-
282.

[5] F. Belli and M. Linschulte. On negative tests of web appli-
cations. Annals of Mathematics, Computing and Teleinfor-
matics, 1(5), 2007, pp. 44-56.

[6] J. H. Hayes and J. Offutt. Input validation analysis and test-
ing. Empirical Software Engineering, 11(4), 2006, pp. 493-
522.

[7] P. Jorgensen. Software testing: a craftman’s approach. CRC
Press, 2002, pp. 359.

[8] H. Liu and H. B. K. Tan. Covering code behavior on input
validation in functional testing. Information and Software
Technology, 51(2), 2009, pp. 546-553.

[9] P. Mell and M. C. Tracy. Procedures for handling security
patches. NIST Special Publication 800-40, 2002.

[10] B. Meyer. Applying ”design by contract”. Computer,
25(10), 1992, pp. 40-51.

[11] MSDN. Design guidelines for secure web application. In
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secmod/html/secmod77.asp, 2009.

[12] G. J. Myers. The art of software testing. John Wiley and
Sons, 1979.

[13] Netdefender. Netdefender firewall version 1.5. In
http://www.codeplex.com/netdefender, 2009.

[14] Pc-lint. In http://www.gimpel.com/html/pcl.htm, 2008.
[15] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu. A

dynamic technique for eliminating buffer overflow vulnera-
bilities (and other memory errors). In Proceedings of the
20th ACSAC Conference, 2004, pp. 82-90.

[16] T. Tuglular. Test case generation for firewall implementation
testing using software testing techniques. In Proceedings
of the International Conference on Security of Inform. and
Networks, N. Cyprus, 2007, pp. 196-203.

[17] W. Zheng and G. Bundell. Test by contract for uml-based
software component testing. In Proceedings of the Int. Sym.
on Comp. Sci. and its Appl. IEEE, 2008, pp. 377-382.

544

