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Abstract

The use of collaborative network services is increas-
ing, therefore, the protection of the resources and relations
shared by network participants is becoming crucial. One of
the main issues in such networks is the evaluation of par-
ticipant reputation, since network resources access may or
may not be granted on the basis of the reputation of the
requesting node. Therefore, the calculation of the reputa-
tion of the nodes becomes a very important issue. There are
several reputation models presented in the literature. Some
of these models (e.g., Ebay or Sporas) are very simple and
participants cannot express their preferences in the reputa-
tion computation process. On the contrary, there are other
reputations models (e.g., Reget or Fire) too complex to be
applied when privacy is a primary concern.

In this paper, we propose a new reputation model based
on OWA and WOWA operators. The key characteristics of
our proposal are that reputation is computed in a private
way using the homomorphic properties of elGamal crypto-
system and it is possible to introduce user preferences inside
reputation computation. We present the feasibility of this
new reputation model by considering a Web-based Social
Network scenario.

1. Introduction

In several applications, such as peer-to-peer sys-
tems [17], collaborative/social networks [7], or recom-
mender systems [3] trust and reputation cover a key role.
Although the notion of trust is often associated with the one
of reputation, there exists a relevant difference between the
two concepts. As pointed out by [15], trust denotes whether
(and possibly how much) a given entity A considers trust-
worthy another entity B. Therefore, trust expresses a per-
sonal opinion of A about B, and thus trust can be considered
as a subjective (or local) measure of trustworthiness. In con-
trast, reputation denotes the trustworthiness of a given entity
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for all the entities in a network. Thus, reputation expresses
the collective opinion of a community on one of its mem-
bers, and therefore it is an objective (or global) measure of
trustworthiness. Additionally, an analysis of the related lit-
erature shows that there does not exist a unique definition of
trust/reputation [16], whose definition may vary depending
on the context and for which purposes they are used. For
instance, in current Web-based Social Networks [12], trust
is a measure of how much a user trusts another node in the
network either with respect to a specific topic (topical trust)
or in general (absolute trust), whereas in peer-to-peer sys-
tems the trustworthiness of a given peer mainly depends on
its reliability in providing a given service. In contrast, when
trust is used for access control/privacy protection [7, 6], it
should convey information about how much trustworthy a
given user is not to reveal private or sensitive information
to unauthorized users, and thus its purpose has some simi-
larities with the notion of security level used in mandatory
access control models [11].

However, regardless of the specific notion of
trust/reputation adopted, it is fundamental to devise
mechanisms that help to automatically (or partially
automatically) compute their value. In the literature,
there are several proposals in this respect for a variety
of scenarios. Probably the most widely used are those
applied by eBay [2] and Amazon [1]. It is well-known
that such approaches have several problems, such as the
necessity of a central node [4] or the negative effect of
considering all trust ratings in the same way [26]. For
this reason, other (more complex) approaches have been
proposed [9, 19, 20, 26]. However, none of them considers
privacy threats related to trust computation. In contrast,
our goal is to consider a scenario where trust is one of the
parameters on which access control is based, and where
the privacy of both network relationships and information
about user decisions, which are instrumental for reputation
computation, have to be protected (we refer to this scenario
as Collaborative Private Network).

Even though there is a lot of research in the field of pri-
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vacy enhancing technologies, the work directly analyzing
privacy concerns in reputation systems seems to be limited,
particularly when trust is used for access control purposes.
Usually, when privacy issues are addressed, trust computa-
tion services are centralized and the reputation information
is stored in a trusted central repository [25]. Obviously, this
can be the bottleneck for the system. On the contrary, when
trust computation services are distributed [4] user privacy is
disregarded. We believe that the support for both these fea-
tures it fundamental for the widespread adoption of collab-
orative platforms. With regard to reputation systems, there
are few proposals for privacy of the raters, such as e.g. [14],
where rates are interchanged using a public key encryption
schema. In this protocol, network participants store their
own reputation rates without any involvement from a cen-
tral authority. However, it is mandatory a trusted third party
(TTP) checks all the rates, therefore a new bottleneck arises.

In this paper, we revisit some of the reputation models
presented in the literature describing the reasons because
they are not suitable for our target scenario. For this reason,
we describe a new reputation computation model, based on
OWA [24] and WOWA [21] aggregation operators, that in
combination with the multiplicative homomorphic proper-
ties of the ElGamal crypto-system [10] is able to compute
user reputation in a private way using an encrypted public
audit file in a complete decentralized way

The rest of this paper is organized as follows. In Sec-
tion 2 we explain some preliminary concepts about ElGa-
mal and aggregation functions. In Section 3 we review some
well-known reputation models. In Section 4, we present our
target scenario. Section 5 describes our reputation compu-
tation model for private collaborative networks and gives a
detailed description of our audit system. Finally, in Section
7 the paper draws some conclusions and future work.

2. Background
2.1 ElGamal

The ElGamal [10] encryption system is a public key en-
cryption algorithm which is based on the Diffie-Hellman [8]
key agreement. ElGamal encryption can be defined over
any cyclic group G. Its security depends upon the difficulty
of the Decisional Diffie-Hellman (DDH) problem in G re-
lated to computing discrete logarithms. It is based on the
following components:

o Configuration. A cyclic subgroup G = (g) of Z,, is
chosen generated by g, with order ¢, where ¢|p — 1 (¢
has to divide p — 1) for two prime numbers p and q. p,
q and g are public.

e Key Choose sk € Zj; at random, and publish pk =
g**mod p.
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e Encyption. Encrypt message m € G. Take r € Z
randomly, compute R = g"mod p and s m -
pk"mod p. The ciphertext is ¢ = (R, s). r is secret.

e Decrypt. Given the secret key sk and the ciphertext
c = (R, s), the plain text is given by: m = zizmod p

ElGamal encryption system is multiplicatively homo-
morphic. That is, given ¢; = (g™, m1 - pk™) and ¢y =
(g™, mgo - pk™) two encryptions of m; and ms, we can ob-
tain an encryption of m4 /ms as:
g™ mq - pk"

T1—7T2

)= (g, 2

Cl®62:(

- pk™ T2,

g2’ my - pkr2 ma

Specifically, to compute such a proof, let H : {0,1} —
Zq4 be a cryptographic hash function. The prover acts as
follows.

1. Choose at random uyi,up € Zg, compute 77 = g“1,
Ty = g"2 and T5 = pk¥1 742,

2. Compute h = H(g, Ri1, Ry, s1,82,11,T5, T3)
3. Compute wy; = u; — rih and wy = ug — r2h.
4. Define the proof as (h, w1, ws).

To verify the correctness of a proof (h,wy,ws) with re-
spect to ciphertexts ¢; = (Ry,s1) and c2 = (Raz, s2) and
public key pk, one checks if

h=H (gaRhRQa817SQ?.QU)IR}lL?ngR’QZpkwl_wQ . (SI/SQ)h ) .

Using standard techniques (see [5, 23] for some similar
proofs), it can be proved that this protocol enjoys all the
required zero-knowledge properties [13]. In particular, no
information about the random values r1,r, and about the
common plaintext encrypted in c; and c; is leaked.

2.2 Aggregation functions

Aggregation functions [22] are numerical functions used
for information fusion. They typically combine N numeri-
cal values supplied by N sources into a single datum. Prob-
ably the most widely used aggregation functions are the
arithmetic and the weighted mean. The former gives the
same importance to all data sources, whereas the latter gives
a different importance (reliability) to each data source.

In this work, we will consider a different family of ag-
gregation functions. First of all, we consider the Ordered
Weighted Aggregation (OWA) operator [24]. Two defini-
tions exist for OWA, one applicable when the number of
sources is known in advance, and another that do not re-
quire to know how many sources will be combined. We
will adopt this latter definition, that uses fuzzy quantifiers.



Definition 1 A function @ : [0,1] — [0,1] is a reg-
ular monotonically non-decreasing fuzzy quantifier (non-
decreasing fuzzy quantifiers for short) if it satisfies: (i)

Q(0) = 0; (ii) Q(1) = 1, (iii) x > y implies Q(x) = Q(y).

Using fuzzy quantifiers, the OWA operator [24] is de-
fined as follows.

Definition 2 Let (Q be a non-decreasing fuzzy quantifier,
then OWAg : RN — R is an Ordered Weighting Aver-
aging (OWA) operator if:

N

> (QG/N) = Q((i = 1)/N))aq(

i=1

OWAQ(al,

aaN)

where o is a permutation such that a(;y > Gg(i11)-

The interest of the OWA operators is that they permit the
user to aggregate the values giving importance to large (or
small) values. In the case of the quantifiers given above, the
smallest the « is, the largest is the importance for the largest
values being aggregated. In contrast, the largest the « is, the
lowest the importance of the largest values (and the largest
the importance given to low values) is.

However in many cases, it is necessary to model situa-
tions in which one is interested in taking into account both
the importance of the values and the importance of the in-
formation sources. The second aggregation function con-
sidered in this work is the WOWA operator [21]. It was
introduced to deal with this kind of situations.

Definition 3 Let (Q be a non-decreasing fuzzy quantifier
and let p be a weighting vector of dimension N; then,
WOWA, g : RY — R is a Weighted Ordered Weight-
ing Averaging (WOWA) operator of dimension NV if-

N
WOWA, q(a,...,an) = Zwiaa(i)
i=1

where o is defined as in the case of the OWA operator, and
the weight w; is defined as:

wi = QY pot) — QQ_Poti)-

j<i j<i
3 Reputation Models

Surely the most widely used reputation models are those
applied in eBay [2] and Amazon [1]. Both these models are
implemented as a centralized rating system so that users can
rate and learn about the reputation of the other network par-
ticipants. For instance in Ebay, after each interaction, a net-
work user can rate its partner with a trust value ¢; € [—1, 1],
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the largest is the value the best is the reputation. Such rat-
ings are stored in a central node and reputation R is com-
puted as R = > t;. These models are very intuitive and
easy to apply, however, they are too simple (in terms of their
trust ratings and the way they are aggregated) for collabora-
tive networks. Another important problem of these models
is that new users start with a reputation R = 0, then if a
network participant has a low reputation (lower than 0), it
is better for such user to change his/her (old) identity for a
new identity with reputation equal to 0.

Sporas [26] extends the eBay and Amazon models by in-
troducing a new method for trust aggregation and fixing the
problems with negative reputation values. Specifically, it
does not store all the ratings but rather it updates the global
reputation value of a network participant according to its
most recent rating. More formally, reputation is computed
according to Definition 4 above.

Definition 4 Let A and B be two network users. Let us
assume that at time i, user A interacts with user B. After
such interaction user B modifies the reputation value of A
using the following formula:

A _
Ry, =

(2

R + &350 (R R (tir — E(tin1)

®(R)=1— ——mpr Elti1) =

1+e
where © is a constant greater than 1, t; stands for the
trust value given by user B, RE stands for the the reputa-
tion of user B, D is the range of the reputation values and
o is the acceleration factor of the damping function ®(R).

In Sporas, the initial reputation of a new user is equal to
0 and it can increase up to the maximum of D. As trust
values are always positive (¢; € [0.1,1]), it is guaranteed
that no user can ever have a reputation value lower than the
reputation of a new user. Then, it is useless for a network
participant to change his/her identity. The damping function
®(R) ensures that reputation of trustworthy participants are
more robust against temporary malicious attacks, in other
words, one network user cannot reduce the reputation of an-
other user adding low trust ratings. The main drawbacks of
Sporas are that it is a centralized approach as Ebay/Amazon
and it only considers direct interactions (rates) when repu-
tation is calculated, disregarding in this way other network
information, such as the role of the node in the network.

To solve these two drawbacks, other methods, such as
for instance Regret [20], Fire [9] or Repage [19], have been
proposed in the literature. On the one hand, to avoid the
presence of a central node, these models decentralize repu-
tation computation, and each user stores his/her ratings into
a local log file. On the other hand, These models also sep-
arate direct ratings (i.e., auctions evaluation) from indirect
ratings (i.e., witness evaluations or neighbors evaluations)



and role ratings (e.g., playing the same role in a company
influences trust computation). The goal of considering dif-
ferent data sources for reputation computation is to increase
the quality of the reputation computation reducing the effect
of the noise in ratings. These models aggregate the different
data sources using the arithmetic or the weighted mean.

These models improve the quality of the previously dis-
cussed reputation models and they fix the problem of the
central node. However to be applied, it is necessary that
all network relationships are public. As we have introduced
before, our target scenario are collaborative networks where
relationships may be kept private. Therefore, these recent
models are unsuitable for this scenario. For this reason, in
Section 5 we will present a model specifically coinceved for
private collaborative networks.

4 Private Collaborative Networks

A common way to model a collaborative network is as
a directed labelled graph, where nodes correspond to net-
work members and edges denote relationships between two
different members. In particular, the initial node of an edge
denotes the member who established the corresponding re-
lationship and the terminal node denotes the member who
accepted to establish the relationship, whereas the label rep-
resents the type of the established relationship. Since a rel-
evant feature of collaborative networks is that relationships
are characterized by a trust level, representing how much a
given member considers trustworthy another member with
whom he is establishing a relationship, it is assumed that
each edge has a further label, modeling the trust level ¢
(t € [0,1]). Two members A and B are in a relationship
of a given type rt if there is a path, consisting only of edges
labelled with the type rt, connecting A with B. The length
of such path corresponds to the depth of the corresponding
relationship: if depth = 1, we say that the relationship is
direct, whereas, if depth > 1, we say that the relationship
is indirect (it is assumed that relations are transitive).

In our reference collaborative private network, access
control and privacy requirements are expressed and en-
forced according to the model presented in [7, 6], that we
briefly summarize in what follows. As far as access control
is concerned, each resource to be shared in the network is
protected by a set of access rules, denoting the members au-
thorized to access the resource in terms of the type, depth,
and trust level of existing relationships in the network. Each
access rule has the form (rsc,AC), where AC'is a set of ac-
cess conditions that need to be all satisfied in order to get
access to the resource rsc. Formally, an access condition is
a tuple ac = (v, rt,d_max,t_min), where v is the mem-
ber, referred as target node, with whom the requestor of a
given resource must have a direct or indirect relationship to
obtain the access, whereas rt, d_max, and t_min are, re-
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spectively, the type, maximum depth, and minimum trust
level that the relationship must have. For the sake of sim-
plicity, in this paper we assume that access control rules are
composed by only one access condition. Moreover, we as-
sume that each resource is administered by the owner and
by the users to which the owner possibly delegates the ad-
ministration. Since the delegation model is out of the scope
of this paper, we simply assume that once a user has been
authorized to access a given resource, he/she becomes au-
tomatically authorized to administer that resource, that is,
to grant or deny accesses on it to other participants. Other
delegation models can be used as well without requiring a
modification of the proposed framework.

One of the main characteristics of the access control
model presented in [7] is that access control enforcement
is performed client-side. According to this approach, a re-
questor is authorized to access a resource only if he/she is
able to demonstrate that he/she satisfies the access rules ap-
plying to the requested resource. This implies that the re-
questor has to provide the owner a proof showing that there
exist the relationships required by the specified access rules,
with the required depth and trust level. For this reason, each
relationship is certified by the members participating in it
and the certificate is distributed to the other network par-
ticipants. According to this assumption, a proof of the ex-
istence of a relationship between two members is given by
the set of certificates corresponding to each relationship in
the path connecting them. Thanks to this set of certificates,
which we refer to as certificate path, the owner is able to
verify whether the relationship satisfies the constraints on
depth and trust level stated in the access rule.

To enforce privacy requirements on network relation-
ships, each certificate has an associated distribution rule
controlling its distribution, stating the set of users autho-
rized to know the existence of the corresponding relation-
ship. For the sake of simplicity, here, we consider that cer-
tificates are network resources, therefore the certificate ac-
cess is enforced in the same way than for the other network
resources. Therefore, an intruder cannot have access neither
the user relationships nor the network resources.

5 Private Reputation Computation

Now, we introduce two different reputation computation
models that can be applied to the scenario described be-
fore. The first one does not consider temporal information,
i.e. past actions have the same importance than recent ones,
while in the second model such information is considered.

5.1 Basic Reputation Model

When a participant performs all decisions in accordance
with the specified access rules, he/she has a good behavior



and therefore he/she has to be assigned a good reputation
(the reputation value has to be maximum and, thus, equal to
1). In contrast, if a participant does not correctly enforce ac-
cess control rules, his/her reputation level should be lower.

To formalize the model, we need to introduce the possi-
ble wrong decisions a participant can make in the reference
scenario. These are identified by considering the main re-
quest of collaboration a participant receives in a private col-
laborative network: the request for releasing a resource, ac-
cording to the specified access control rules. Then, we have
a wrong decision when a user decides to deny a owned or
delegated resource to an authorized user (a user does not re-
lease a resource rsc even if the requestor provides a correct
proof which matches the specified access rules). We call
this wrong decision denial of resource releasing (DRR). A
further kind of wrong decisions comes when a user decides
to disseminate resources to non-authorized users. For exam-
ple, a user releases a resource rsc when the provided proof
is not correct. We call this wrong decision unauthorized
resource dissemination (URD).

In devising the model for reputation computation, we
consider that not all wrong decisions have the same rele-
vance. To model the relevance of wrong decisions, we clas-
sify them according to three dimensions. Let us consider
the decision of a user A about releasing or not to user B
a resource rsc. Let us assume that AR is the access rule
applying to rsc, and that crt path is the certificate path
provided by user B as a proof. Then, the first dimension,
denoted by AC, and called trust dimension, corresponds to
the difference between the minimum trust required in AR
and the trust computed on the basis of the path extracted
from crt path. Note that when AC} is lower than zero and
the resource has not been released, A performs a DRR. In
contrast, if AC} is greater than zero and the resource has
been released, A performs a URD. As we are only inter-
ested in the negative values when A performs a DRR action
or positive ones when A performs a URD action, we can
compute the absolute value of AC}, therefore ACY is always
in the [0, 1] interval. The second dimension, referred to as
depth dimension, denoted as ACYy, is defined as the differ-
ence between the depth required in AC' and the depth of the
path extracted from crt path, ACy is unbound and there-
fore its interval is [0, oo]. The third dimension, called path
dimension denoted as AC,, is used to model situations as
the next one. Let us consider an access rule consisting only
of the following access condition AC' = (B,rt1,3,0.5),
and let p = (A —,4, B)(B —,+, E) be the path extracted
from crt path. Obviously, this crt path is not a valid proof,
since the rto relationship is not referred by the access rule,
and the last node in the path is not the node specified in the
access condition. Formally, AC), is an integer value rang-
ing from O to 3: O if the path extracted from crt path is
correct or adding one for each of the following problems in

250

the path: (a) there exists in the path at least a relationship
whose type is not equal to the one required in AC; (b) the
first node (resp. last node) in the path is not equal to the re-
questor (resp. the target node) in AC; (¢) there exists in the
path at least a relationship 7 such that the node whose estab-
lished it is not equal to the node with which the relationship
preceding 7 has been established.

In order to combine these dimensions, values have to be
in a common domain. In practice, we map all such values
in the [0, 1] interval. Formally, the path dimension is nor-
malized dividing the values by 3 (the maximum difference
allowed in the previous definition) and the depth dimension
is normalized dividing the corresponding value by a con-
stant (the maximum difference expected; in case of larger
values than expected, the dimension is set to one). Note
that the trust dimension is already in the [0, 1] domain.

Let us now formalize how we combine all the wrong de-
cisions taken by a user A to calculate his/her overall repu-
tation value R 4. To do so, we first aggregate the values in
each dimension and then combine all the dimensions. The
aggregation in each dimension is based on the OWA opera-
tor (defined in Section 2.2) that permits to represent either
the case of assigning larger importance to the most serious
decisions (the ones with larger values), or to assign the same
importance to all wrong decisions.

Definition 5 Let A be a user, let ACspr, be the set of ac-
cess control decisions made by A. Let DRRy C ACsgr,
be the set of DRR wrong decisions with respect to trust
(whose AC, trust dimension is lower than 0). Let URD; C
ACsgT, be the set of URD wrong decisions with respect to
trust (whose ACY trust dimension is greater than 0). Then,
the set of wrong decisions related to access control with re-
spect to trust is defined as WD,, = DRR; UURD,, and
the aggregated value AGtac, wr, Of wrong decisions in
W Dt 4 with respect to the trust dimension is given by the
following formula:

AGtACSETA = OWAQ(’LUdl, e 7wd|WDtA ‘)

where Q) is a non-decreasing fuzzy quantifier, and wd;
are the absolute values of the AC, in WDy, (as OWA is a
symmetric function, the ordering of the wd; is irrelevant).

The above definition aggregates the values for the trust
dimension. The same applies to the other dimensions. In
this way, we obtain aggregated values for the three con-
sidered dimensions. We denote them by: AGtacspr,
AGdACSETA and AGpACSETA .

We can now formalize the formula for the computation
of the reputation value.

Definition 6 Ler A be a user; let AGtACSETA,
AGdacspr, and AGpacsy,, be the aggregated values



for trust, depth and path dimension, respectively. The repu-
tation value R 4 of user A is defined as:

Ry=1-— %(AGtACSETA + AGdACSETA + AGpACSETA)
5.2 Damping Reputation Model

In the basic reputation model introduced before, the
weight (importance) of a wrong decision is assigned tak-
ing into account only its value. This allows us to consider as
more important for reputation computation wrong decisions
with a large impact. For example, not to release a resource
whose access rule has depth equal to 4 has not the same im-
portance as not to release a resource with depth equal to 1.
Indeed, the consequence of the first decision is more serious
than the second one, since it affects more users of the social
network. However, as we have explained in Section 3, it is
also important to take into account the time when the wrong
decision has been done, since past actions usually are less
important than more recent actions.

To easily take into account this temporal dimension in
our reputation model, we propose to use the WOWA oper-
ator instead of the OWA operator, when trust values are ag-
gregated. To do this, we can use the same fuzzy quantifier
applied in the basic model, of course the interpretation of
such quantifier is exactly the same as in the OWA operator,
but we have to define a weighting vector p. This weighting
vector will have the same interpretation than the weighting
vector of the weighted mean: it measures the importance of
each data source.

In our scenario the importance of each data source
(wrong action) is given by the time the action has been done.
Then, we can built the weighting vector p using a damping
function ®, as it was introduced in Sporas. Considering the
weighting vector p we can re-formulate the aggregation of
the trust values using the following definition.

Definition 7 Let A be a user, let ACsgr, be the set of ac-
cess control decisions made by A. Let DRR; C ACsgr,
be the set of DRR wrong decisions with respect to trust
(whose ACY trust dimension is lower than 0). Let U RD; C
ACsgr, be the set of URD wrong decisions with respect to
trust (whose AC; trust dimension is greater than 0). Then,
the set of wrong decisions related to access control with re-
spect to trust is defined as WD,, = DRR; UURDy, and
the aggregated value AGtsc, w1, Of wrong decisions in
W Dt 5 with respect to the trust dimension is given by the
following formula:

AGtACSETA = WOWAP’Q(wdl, N 7/U“)d|WD1,A|)

where Q) is a non-decreasing fuzzy quantifier, p is weight-
ing vector, and wd; are the absolute values of the ACY in
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W Dy ,. Note that WOWA is not a symmetric function, then
the ordering of the wd; is now relevant, in this case wrong
decisions have to be sorted considering when the decision
was taken (from the oldest to the newest).

The reputation value can then be computed as before.

6 Audit files

In order to compute reputation, each user has to store the
decisions made with regards to access control into a private
audit file. For privacy purposes, After that, each node has
also to create an anonymized audit file available to all users.
Here, we formally introduce the information stored into the
private and anonymized files. Then, we discuss how, by us-
ing the anonymized information, a user is able to determine
whether a decision has been correctly evaluated.

6.1 Audit File Generator

Let us start to consider the private audit file. Since we
are interested in computing reputation according to the way
a user answers to an access control request, the audit file
has to contain information about the decisions made by a
node when he/she receives such requests. To model this
type of decisions, each entry contains information about the
access request, the access rule associated with the requested
resource as well as the certificate path provided as proof by
the requestor. The formal definition of the private audit file
entry is the following.

Definition 8 Let AcR=(rsc, ts, r, AR) be an access re-
quest, where rsc is the identifier of the requested resource,
ts is a timestamp, r is the identifier of the requestor, and
AR is the access rule applied to resource rsc. The corre-
sponding access request entry is defined as:

eqc = (AcR, crt path,t,, dec)

where crt path is the certificate path provided by the re-
questor r as a proof, ty, is the trust value computed from the
path extracted from crt path, and dec is a boolean value
set to 1, if the resource rsc has been released to requestor
r, set to 0, otherwise.

According to the proposed reputation computation strat-
egy, the anonymized audit file is generated by anonymizing
each entry of the audit file. In the following, we introduce
the formal definition of the anonymized access request en-
try. In this definition, we exploit notation C'(R, text) to de-
note the ElGamal encryption of text by using the random
number 7. Recall that to encrypt a message using elGamal,
we take randomly a value (in our case ) and we compute
R = ¢g"mod p (g and p are the parameters of elGamal de-
fined in Section 2.1). R is needed to decrypt the ciphertext
text = m - pk"mod p (pk is the public key of the user).



Definition 9 Let A be the owner of an audit file f, and let
eqc be an access request entry stored into f. The corre-
sponding anonymized access request entry is defined as:

A€qc = <Cr7 CtT7 Ct7 C’I‘t7 tpatmin7 dmamv dec, ,ts, Cp>

where C,. C(R,,r) is the encryption, using the
random number 1., of the requestor identifier stored into
eac-AcR'; Cy = (Ry, AcR.AR.v) is the encryption, us-
ing the random number 1y, of the target node of the ac-
cess rule eqc. ACR.AR; Cy = (Ry, eqr.tp) is the encryp-
tion, using the random number ry, of the trust value eq..t,;
Crt = (Ryt, AcR.AR.rt) is the encryption, using the ran-
dom number 4, of the relationship type of the access rule
€ac-AcR.AR; 1, is the trust value associated with the path
extracted from crt path; t,i, is the minimum trust required
by eqr - AcR.AR, dyqq is the maximum depth required by
ear-AcR.AR; decis a boolean value set to 1, if the resource
rsc has been released to requestor r, set to 0, otherwise, ts
is the timestamp, and C,, is the anonymous path structure
defined on the path extracted from crt path (Definition 10).

Anonymized entries make use of the anonymous path
structure. This structure is the building block of the pro-
posed approach to verify whether the decision correspond-
ing to an entry is correct or not. To verify the correctness
of a decision, it is essential to check the structure of the
path extracted by the certificate path crt path received as
proof. In order to determine whether the decision dec was
made correctly, we need to check the following character-
istics of the path p extracted from the received certificate
path crt path: (a) whether all relationships in p have type
equal to the one required in the AR; (b) whether the first
node (resp. last node) of the first relationship (resp. last
relationship) in p is equal to the requestor (resp. the tar-
get node); (c) whether all relationships r in p have the node
whose established it equal to the node with which the rela-
tionship preceding r has been established; (d) whether p’s
depth is less than or equal to the maximum depth required
in AR; (e) whether p’s trust is greater than or equal to the
minimum trust required in AR.

Thus, the anonymous path structure has been devised
to make a user able to verify the above mentioned condi-
tions. In particular, the basis of such anonymous verifica-
tions is provided by the homomorphic property of the E1Ga-
mal crypto-system. To exploit this property for comparing
two texts, it is necessary to know the difference between the
random numbers used in the encryption of both texts. Re-
call that each time a message is encrypted with ElGamal, a
new random number 7 € Z; (kept private) is generated, and

'Here and in what follows, we use the dot notation to denote specific
components within a tuple.
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R = g"mod p (public). Then, the encryption of a message
m is computed as s = m - pk"mod p.
The anonymous path structure is defined as follows.

Definition 10 Ler A be a node in the network. Let crt path
be a certificate path contained into an access request en-
try of the audit file of A. Let p be the path extracted from
crt path. Let d be the depth of the path extracted from
crt path. The anonymous path C,, generated from p is de-
fined as C, = (C.p, Dy) where:

o C,, is a set containing for each relationship r; in p,
7 = 1...d, adifferent tuple of the form:

CCI) = <CO]'5 Cdj7 Crtjy Ctja Dodj7 Dth>

where C,, = C(R,,,0:q;) is the encryption of the
identifier of the user with which r; is established us-
ing the random number r,;; Cq, = C(Ry,,d;) is the
encryption of the identifier of the user who established
r; using the random number rq;; Cry; = C(Rpy,, t5)
is the encryption of the type of relationship r; using
the random number r..;; Cy, = C(Rtj,tj) is the
encryption of the trust value of r; using the random
number ry;. Moreover, we set D,q, as the difference
To; — Td;_, for j = 2,...,d —1; Dy, as the differ-
ence Try; — Ty for j = 1,...,d where 1. is the ran-
dom number used in the encryption of the relationship
type in the anonymized access request entry. Remem-
ber that these differences are needed to use elGamal
as a zero-knowledge proof (see Section 2.1 for more
details).

e D, isequalto D; = ry — (Z?:o T¢;), where 1y is the
randomness used to encrypt the trust of crt path in the
anonymized access request entry.

As all entries are encrypted is impossible for an intruder
to discover from the anonymized log files some precise in-
formation on the performed actions.

6.2 Audit file verification

In this section, we show how the data contained in an
anonymized entry can be used by any network participant
to determine if the corresponding action is compliant with
the specified access rules. We recall that, this information is
then exploited to evaluate user’s reputation (see Section 5).
In general, to verify whether an anonymized access control
entry ae,. refers to a right or wrong decision, it is neces-
sary to check the certificate path received together with the
request of collaboration to which the entry refers to.



Since to protect user privacy, information about the cer-
tificate path are encrypted exploiting the ElGamal encryp-
tion scheme (see Definitions 9 and 10), it is possible to ver-
ify the aforementioned conditions by exploiting the multi-
plicative homomorphic property of this scheme. In particu-
lar, in order to verify whether the above conditions hold or
not a user has to check that some of the encrypted values in
the path correspond to the same plaintext. Such proof can
be done following the protocol described in Section 2.1.

Due to lack of space, the complete algorithms and some
examples are omitted, but they can be found in [18].

7 Conclusions

In this paper, we have revisited some of the most well-
known reputation models. As we have shown, none fulfills
all requirements for computing user reputation in private
collaborative networks. Therefore, we have presented two
different reputation models that use OWA and WOWA op-
erators to aggregate the different trust values obtained from
the access control decisions made by a network participant
and that are well suited for the private network scenario. We
have also described how to develop the audit file generator
needed to apply our reputation models.

We are currently developing an implementation of the
proposed framework in order to test its performance and the
effectiveness of the proposed reputation models.
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