
MasterBlaster: Identifying Influential Players in Botnet Transactions

Napoleon C. Paxton

College of Computing and Informatics
UNC Charlotte

Charlotte, NC 28223
ncpaxton@uncc.edu

Gail-Joon Ahn

School of Computing, Informatics
and Decision Systems Engineering

Arizona State University
Tempe, AZ 85281

gahn@asu.edu

Mohamed Shehab

College of Computing and Informatics
UNC Charlotte

Charlotte, NC 28223
mshehab@uncc.edu

Abstract—Botnets continue to be a critical tool for hackers in
exploiting vulnerabilities of systems and destructing computer
networks. Botnet monitoring is a method used to study and
identify malicious capabilities of a botnet, but current botnet
monitoring projects mainly identify the magnitude of the botnet
problem and tend to overt some fundamental problems, such
as the diversified sources of the attacks. Most malicious botnets
have the ability to be rented out to a broad range of potential
customers, allowing each customer to launch different attacks
from the other. Consequently, under the control of multiple
botmasters, various attacks and transactions at different times
attempt to damage networked infrastructures. In this paper
we propose a multi-layered analysis system called MasterBlaster
which identifies the communication characteristics of a botmas-
ter in botnet transactions and correlates those characteristics
with evolutionary changes within botnet communication chan-
nels. Our results show the level of involvement of the monitored
botmasters within a botnet as well as their general motives. Our
system clearly indicates that the investigation of each botmaster
and analysis of botmaster interactions are essential to cope with
net-centric attacks caused by botnets.

Keywords-Botnet; Botnet Monitoring; Attribution; Botnet
Analysis

I. INTRODUCTION

Botnets are networks of compromised machines called

bots that carry out the commands of botmasters through

communication mediums–such as the Internet Relay Chat

(IRC), P2P, social networks, and so on. Botnet monitoring

has been an effective method to garner in-depth information

about the threat of botnets. The idea behind botnet mon-

itoring is to capture and modify a bot, allow the bot to

connect to its command and control center while ensuring

the modified bot will not be part of any subsequent attacks,

and then monitor actual communications that take place on

the botnet. This approach helps understand the magnitude of

the botnet problem as a whole, but a fine-grained analysis

technique with applicable protection mechanisms is still

needed to defend against discovered botnet threats. In this

paper we extend botnet monitoring techniques based on the

interactions between botmasters and their botnets. Figure 1

shows the basic operation of an IRC botnet and addresses

a deficiency present in previous publications which only

show a botmaster sending commands to a botnet, giving

the impression that there is only one botmaster in control of

the botnet. In fact, most botnets are controlled by multiple

botmasters. In Figure 1, we notice a botmaster 1 initially

creating the botnet. Once the botnet is created, botmasters 1,

2, and N (which represent all other botmasters commanding

the botnet) have their own attack agenda. Discovering these

agendas and the roles played by each botmaster is the

challenging research task.

Figure 1. Basic Botnet Operation

1. Exploit
2. Bot Download

Botmaster 2

Botmaster N

10. Attack
Command 2

13. Attack
Command 3

7. Attack
Command 1

Botmaster 1

DNS Server

Command
and Control
Server

3. DNS
Query

4.C
ontact

5.A
uthenticate

14.A
ttack

3
6.C

onnect

11.A
ttack

2
8.A

ttack
1

Online
Casino

Online
Banking

9. Identity
Theft
(attack 1)

12.
Extortion
(attack 2)

15.
DDoS
(attack 3)

Bot 2

Bot N

Bot 3

Bot 1

In this paper, our contributions are manifold as follows:

first, within the monitored data we attribute each transaction

to the botmaster and categorize the transactions based on a

modified version of the reflective-impulsive model [1]. Our

reasoning is, although a botnet is destructive, it is still just a

tool, and a tool is only as useful as the way it is used with

the intentions of the person who uses it. We categorize the

botmaster interactions as social characteristics since there is

a 2-way correspondence between the botmaster and the node

in a botnet that responds to him. There are five categories

of nodes in our system:

• Botmaster node: The entity that controls actions on the

botnet.

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.61

431

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.61

434

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.61

413

• Bot node: The entity that carries out attacks and queries.

• Compromised Machine node: The machine that was

originally attacked and turned into a bot node.

• Storehouse node: The node that provides a download

service to the botmaster node or the bot node.

• Victim node: The node that is attacked.

Second, we identify the evolution of the physical charac-

teristics (size) of a botnet. In most situations the size of

a botnet determines the magnitude of the botnet’s attack

vector.1 When it comes to size, botnets also have the

same characteristics as other networks, like human social

networks which are constantly in a state of flux. These

communication networks are born, grow, shrink, and also

disappear. We explore botnet evolution to track and garner

physical characteristics from each evolutionary stage of a

botnet. Third, we correlate the discovered social charac-

teristics and the evolutionary characteristics to shed light

on the role each botmaster plays in a botnet. To the best

of our knowledge, this is the first attempt to identify the

evolutionary characteristics of a botnet, and also to analyze

a botnet based on its botmasters.

The rest of the paper is presented as follows. Section 2

discusses the scope of our research and Section 3 gives

an overview of the system. In Section 4, we discuss our

implementation details and our results. We overview the

related work in Section 5. Section 6 gives a discussion on

the current state of botnets and limitations of our work.

The conclusions and future research directions are given in

Section 7.

II. SCOPE OF RESEARCH

Since botnets are normally massive in size, it has been

relatively easy to covertly infiltrate a botnet and monitor its

transactions. Because of this, botnet monitoring has become

a common way to analyze and identify botnets and the

destruction they cause. Most research goals in this area have

been to identify the command and control of the botnet

and shut it down (e.g., [10]), or to monitor the botnets

for statistics without taking actions (e.g.,[5], [11]). In this

paper we introduce the novel idea of monitoring botnet

traffic to identify the roles each botmaster has in the botnet.

This work builds on our earlier work in [4], [6], [7]. As

mentioned earlier in the paper, the botnet is just a tool.

The botmaster is the one that conducts the attack. When

botnets are shut down, the botmasters need only to regroup

and create another botnet such as the spam bot in [3]. Our

goal is to discover motives and characteristics, which lead

to discovering the root cause behind the botnet which is the

botmaster.

1The compromised machine bandwidth is also a major factor of attack
vector.

III. MASTER BLASTER: SYSTEM OVERVIEW

This section overviews the operation of system compo-

nents of MasterBlaster as shown in Figure 2.

A. Bot Capture

In order to capture and analyze a bot we pretend to be

a legitimate vulnerable machine that belongs to a network.

Our bot capture component has three elements:

1) Socket manager: The attacker attempts to connect to

a port through the socket manager.

2) General shell code handler: General shell code han-

dlers are created to receive the data.

3) Perl regex shell code handler: General shell code

handler passes the code to the Perl regex shell code

handler to determine what type of code it is. After

determining the type of code, the code is downloaded

without executing it.

More details of the bot capture component could be available

in [4].

B. Closed Analysis

In [1], Strack et al. introduced the reflective-impulsive

model that describes the social behavior of people. We

adapt and modify their approach to botnets. We depict social

behaior as a joint function of the two systems, Reflective and

Impulsive systems denoted by the expression SR ⇐⇒ SI .

The Reflective System is built by responses of knowledge on

facts and their decisions denoted by the expression SR = set
F that is composed of k-subsets: {fd1 , fd2 ,, fdk−1 , fdk

},

which include a finite amount of facts f and their decisions

d. In our closed analysis, we discover the ASCII text in the

bot codes which are the reflective keywords. These keywords

represent the facts. We derive the semantics of the facts from

the command and control protocol. For this perspective,

we use RFC 1459 and RFC 1812 since they define the

IRC protocol. This helps us determine our protocol based

keywords. All other keywords are user/system based. It is

important to point out that bots on the same botnet normally

have the same programmed capabilities and will react in the

same way with the same command [8]. Therefore, keywords

from one bot also represent keywords from the other bots in

the botnet. To capture this, the parser identifies and stores

all ASCII texts as keywords in the bot code. As [10] states,

botmasters change commands using bot updates. Because

of this, each update of the code is also parsed and changes

are stored using this element. The decisions d of the facts

largely depend on the Impulsive System SI .

C. Open Analysis

Here we extract the general packet information from the

botnet data. As stated in [13], botnet monitoring is always

possible, since all information about the initial bootstrapping

has to be included in the bot binary and thus can be

cloned. This component has three elements that carry out the

432435414

Figure 2. MasterBlaster System Overview

Network Monitoring

Closed Analysis

Correlation

.

. Botnet
Connection

Command
Location

Bot Agent Component

Botnet
Payload
Collection
Compoent
Packet
Headers
Payload
Contents

Payload Inspection

Statistics

User/
System
Defined

Commands

Packet Analysis

Social Map Statistics

Protocol
Defined

Commands
Botnet

Characteristics
Signatures

Closed Analysis
Results

Open Analysis
Results

Network
Monitoring Results

Characteristic Components

Connection attempt for vuln-awstats

Shell code sent after exploit

Port
80

S
o
c
k
e
t
M
a
n
a
g
e
r

Vuln-
awstats

Vuln-
awstats

Shell
code
handler

Shell
code
handler

Shell code handler with Perl
Regular Expressions
(Detect the type of shell

code)

Bot Parser

Ascii
wordsCode

Bot Capture

Agent
Creation

Open Analysis

Bot

Botmaster
Based
Patterns

Correlation
Engine

analysis: bot agent, botnet connection, and botnet payload

collection.

1) bot agent: The bot is stripped of its ability to attack

victim machines.

2) botnet connection: The bot agent to connects to the

command and control locations.

3) botnet payload collection: Captures all the readable

contents of the payload.

More details of open analysis component could be available

in [7].

D. Network Monitoring

In the Network Monitoring component we analyze the

ASCII readable data in the payload discovered by the open

analysis component and extract characteristic elements from

the content of the data. The payload of each packet is

inspected to discover conversations initiated by commands

between the bot master node and the other nodes in the

botnet. The structure of these conversations are discovered

in commands based on the command and control protocol. In

the case of this study we used the structure for RFC 1459
and RFC 1812. Within these conversations we discover

the Impulsive System and the Evolutionary Characteristics.

1) Impulsive System: This is where we model the Im-

pulsive System which integrates with the Reflective System

discussed earlier to discover the social characteristics of the

botnet. The Impulsive System SI is built on associative links

and motivational drives. To model these commands we use

the following notation, SI ≡ S = m1 ∪ m2 ∪ m3, where

S is the ground set of motivations based on 3 k-subsets of

motivations M, Destructive (M1), Monetary (M2), and Other
(M3) and mi ⊆ Mi. In our model, each command given by

the botmaster is one impulsive human initiated command.

Each subset (m1, m2, m3) is composed of a set of com-

mands. The associative links are the semantic connections

of each command to another that meet a defined criteria for

the subset. This means that each command that resides in a

k-subset is linked to each other. In our framework, after the

finite value of each k-subset is discovered, the upper-bound

k-subset determines what the motivation of the botmaster is.

Here we define the k-subsets that make up the motivational

drives:

• Destructive: Concerned with causing damage that can

physically affect potential victims’ systems. This can

also include extortion or other forceful ways to get

money from potential victims.

• Monetary: Concerned only with covertly stealing

money.

• Other: All unknown motives.

The operation of our reflective-impulsive process is as

follows: once an impulsive command e in a set S is matched

to a reflective keyword f in a set F then we determine two

entities, e and f , to be one characteristic E which conjoins

two systems, SR and SI .

2) Evolutionary Characteristics: In [12], Palla et al.

introduce the concept of social networking evolution to study

the constant evolution that happens in networks over time. It

is important to note that in our work, evolution refers to the

physical construction of the botnet based on nodes entering

and leaving botnet channels. An evolutionary change is the

addition or subtraction from the botnet by one of the botnet

nodes. Each evolutionary change (JOIN or QUIT, or PART)

is considered a characteristic. Figure 3 illustrates a life-cycle

of botnet evolution. Each stage of evolution is defined as the

following:

• Birth: The addition of a new botnet channel due to the

creation of the first node(s).

• Growth: Node/s being added to a botnet channel after

it is born.

• Contraction: Node/s being subtracted from a botnet

channel after it is born. Other nodes still remain in a

botnet channel.

433436415

Figure 3. Botnet evolutiong

none

No node present

Node added during growth and subtracted during contraction

Node present

nn

growth

birth

death

death

contraction

• Death: All nodes subtracted from a botnet channel.

E. Correlation

The correlation component is where the results from the

other components are combined and formed into patterns

based on the botmaster. The output of this component is what

allows us to discover what role each botmaster plays in the

botnet. The three elements used are component correlation,

botmaster characteristic statistics, and correlation engine.

1) Component correlation: Each result from the com-

ponents has a timestamp. Using this timestamp and

the botmaster name, the results of the components are

correlated.

2) Botmaster characteristic statistics: The reflective-

impulsive characteristics are analyzed to discover

whether the characteristics are more protocol based

or user/system based.

- Evolutionary characteristic statistics: We use the auto-

correlation function, C(t), to discover the number

of botnet nodes that consecutive timesteps t have in

common:

C(t) ≡ |β(t0) ∩ β(t0 + t)|
|β(t0) ∪ β(t0 + t)| (1)

The number of botnet nodes that are present in both

timesteps is |β(t0)∩β(t0 + t)| and |β(t0)∪β(t0 + t)|
is the number of timesteps that have both botnet nodes

in common.

- Reflective-impulsive characteristic statistics: We dis-

cover the ratio of protocol based commands to

user/system based commands to distinguish script gen-

erated commands from human generated commands

which are more personalized.

3) Correlation engine: Correlates the results of the closed

analysis component, the open analysis component,

the network monitoring component, and the botnet

characteristic component to discover the botmaster

based patterns.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

All the components are implemented on a Pentium III

cpu with 3GB RAM and 360GB of disk space. The results

from all the components are stored on a Dell PowerEdge

2900 server using the relational database. We built our bot

capture component on top of the Nepenthes platform [14]

which is housed on a Debian OS Virtual Machine (VM).

The closed analysis component is also implemented on the

VM which houses the bot capture component. The open

analysis component is implemented on two VMs. One VM

is the client running Windows XP operating system with

a vulnerable awstats service. It receives the bot from bot

collection and allows each bot to connect to its command

and control center. The other VM is the server running

Debian Linux operating system. It monitors activities on the

client system and prevents it from participating in attacks

using iptable firewall rules. The network monitoring

component resides on a VM with Windows XP. It takes

the packets discovered in the open analysis component as

input. It consists of a Java program that parses through

the packets and returns the social characteristics located

in the payload as well as the header information in each

packet. The correlation component resides on the same VM

as the network monitoring component and consists of a Java

program that correlates the results from all the components

and separates them into patterns based on the botmaster.

B. Results

The results of bot capture and the input into our system
was identified as an IRC shellbot written in Perl. Closed
analysis was performed based on the amount of files down-
loaded from storehouse nodes. Changes in commands of the
bots are discovered and updated with each bot code update.
The following scripts in one version of the bot codes were
identified by closed analysis:

123if(/ˆ\:$owner!.*\@.*PRIVMSG.*:!who(.*)/){
124 print $sock "who ".$channel."\n";}
125
126if(/ˆ:.+?\s+352\s+\S+\s+\S+\s+(.+?)$/) {
127 my $nicks = $1;
128 #$nicks =˜ s/\n//;
129 #$nicks =˜ s/\r//;
130 push(@WHO, split(/ /,$nicks));
131 print STDOUT "$who[1]\n";}
132
133if(/ˆ\:$owner!.*\@.*PRIVMSG.*:!dccflood(.*)/){
134 for (1 .. 10) {
135 print $sock "PRIVMSG ".$mescalina.": \001DCC
136 CHAT chat 1121485131 1024\001\n";}
137
138if(/ˆ\:$owner!.*\@.*PRIVMSG.*:!hop (.*)/){
139 print $sock "JOIN ".$1." : ".$2."\n";
140 for (1 .. 10) {
141 print $sock "PART ".$1." : ".$2."\n";
142 print $sock "JOIN ".$1." : ".$2."\n";}

434437416

Table I
TOP 10 COMMANDS AND RATIO

Botmaster Commands Protocol:User/System

Botmaster 1 65535 18702:46833
Botmaster 2 2836 695:2141
Botmaster 3 1672 395:1277
Botmaster 4 1082 109:973
Botmaster 5 216 194:16
Botmaster 6 100 84:16
Botmaster 7 48 48:0
Botmaster 8 48 48:0
Botmaster 9 48 48:0
Botmaster 10 40 40:0

Reflective keywords extracted from these results are

PRIVMSG which is found in line 123, 133, 135, and 138.

Also, or dccflood was found in line 133. There were a

total of 23124 unique reflective keywords discovered in the

captured bot nodes. In our open analysis component, we

discovered ∼5 GB of packets over one month. Each packet

was stored as a row in a database with the sections of the

packet as the fields. Using our framework, we were able

to identify 558 botmasters completing transactions on the

botnet. Table 1 shows the number of impulsive commands

generated by the top 10 botmasters.

Now we present the results of our correlation as a whole.

First, we discovered the impulsive command ratio shown in

Table 1. Our results show that active botmasters (botmasters

with a larger number of commands generated) generated

more human user/system commands while botmasters that

were not very active generated more protocol based com-

mands. This is a key finding which means most of the

impulsive commands generated by the active botmasters

are human based and therefore are more apt to reflect the

true intentions of the botmaster. Figure 4 shows the auto

correlation results for 4 significant botnet channels. Here we

divide the temporal periods of the botnet into 50 timesteps.

The auto correlation discovered the amount of decay of the

botnet nodes in the channels over the timesteps. Whenever

the auto correlation value decreases from 1 to 0, the original

bots have left the channel. We call this event a recycle of

bots. As shown in Figure 4 larger channels decayed more

rapidly. This was the case in both botnets.

This phenomenon has also been observed in other types

of networks [12], which opens up the door for future work

in modeling botnets using social networking techniques.

In Table II we show the patterns that result from the

correlation of one represented botmaster in each tier. As

shown, masters are often present on multiple channels within

the botnet. Each botmaster is grouped into tiers based on

their level of interaction with the botnet as a whole. We

discovered that more active botmasters had a higher ratio of

human initated elements to protocol based elements. This

is very important since it means the botmaster is using his

own intuitions in this channel and most of the transactions

Figure 4. Auto-Correlation Statistics

0 10 20 30 40
0

0.5

1

t

(a) Botnet Channel 1 (max nodes: 5798)

0 5 10 15 20 25
0

0.5

1
(b) Botnet Channel 2 (max nodes: 271)

t

5 10 15 20 25 30 35 40
0

0.5

1
(c) Botnet Channel 3 (max nodes: 5798)

t
10 15 20 25

0

0.5

1
(d) Botnet Channel 4 (max nodes: 37)

t

0 5 10 15 20 25 30 35 40 45
0

0.5

1
Evolution of Botnet Channels 1 − 4

t

These graphs show the auto-correlation of the nodes over the timesteps in the botnet

(a) Bot channel 1 is the largest of the botnet channels and is also the most dynamic.

 The auto-correlation value decayed completely 4 times, representing 4 complete

 recycle periods of botnet nodes.

(b) Bot channel 2 recycled once and had a steady decay. This is most likely due to it

 being small in size.

(c) Bot channel 3 decayed slowly until timestep 30. During this time the botnet grew

 tremondously in size do to bot recruitment. It became more dynamic after it grew in size.

(d) Bot channel 4 decayed the slowest of all. This is most likely do to it being the smallest

A
u

to
-c

o
rr

e
la

ti
o

n
A

u
to

-c
o

rr
e

la
ti

o
n

A
u

to
-c

o
rr

e
la

ti
o

n

are not by scripts. As discussed in [15], this is important

since human error continues to be the best way to catch

botmasters or malware writers in general. Another important

finding shows that each attack by a botmaster is performed

in the growing stage of evolution and at the time when the

size of the botnet is near maximum capacity in each case of

attack.

V. RELATED WORK

In this section we discuss other research approaches that

are similar to our work with respect to botnet monitoring

and defense. To the best of our knowledge we are the

first to analyze botnet traffic based on the botmaster and

to incorporate evolutionary factors in botnet analysis.

Multifaceted approach to understanding the botnet phe-
nomenon [5]: In this work the authors introduce their system

which monitored botnets on a wide scale on the Internet.

During their study they tracked 192 unique botnets of a

multitude of sizes and show that botnets represent 27% of

the Internet’s unwanted data which is now much higher [3].

Their approach to monitoring the data is similar to ours in

that they have a system setup that gets infected and securely

connects back to its command and control and is then under

the control of the botmaster while being monitored by the

security professional. In this work, the authors focus on the

identification of the widescale problems botnet present, but

do not provide a fine-grained analysis approach as mentioned

in our work.

435438417

Table II
CORRELATED PATTERNS

Name Botnet Msg No. Attacks Evolution User/System Protocol Motivation

Tier 1

Master 1

Channel 1 300 DDoS: 56 Grow: 500 500 320 Destruction
Channel 2 1434 DDoS: 228 Grow: 5000 5274 1475 Destruction
Channel 2 697 Identity Theft: 30 Grow: 5092 2379 1052 Monetary
Channel 3 35 None None: 253 60 22 Other

Tier 2

Master 2
Channel 1 734 DDoS: 120 Grow: 493 2393 1299 Destruction
Channel 2 245 Identity Theft: 13 Grow: 5121 432 211 Monetary
Channel 3 12 None None: 255 25 13 Other

Tier 3

Master 9

Channel 16 8 None None: 254 0 8 Other
Channel 19 5 None None: 152 1 12 Other
Channel 20 5 None None: 171 1 12 Other
Channel 22 8 None None: 75 1 12 Other
Channel 23 5 None None: 172 1 12 Other

Tier 4

Master 245
Channel 34 0 None None: 228 25 0 Other
Channel 35 0 None None: 54 45 0 Other
Channel 36 0 None None: 119 35 0 Other

Bot countermeasures [16]: In this work the authors at-

tempt to identify and disrupt bot-like activity in a production

system. Their method is to setup a system that includes a

honeypot on the DMZ of a network. When the firewall of the

network detects IRC botnet communications, a rule is trig-

gered to redirect the traffic to the honeypot to interact with

the botnet. The authors then use the information discovered

to learn the command structure and submit commands to dis-

able or uninstall the bots from the botnet. Their monitoring

of a botnet is much like our botnet monitoring approach. As

mentioned in [3], shutting down the botnet only forces the

botmasters to recruit more bots and continue botnet activities

elsewhere. Our approach focuses on identifying the patterns

of the botmasters toward the attack attribution.

Proactive botnet countermeasures: an offensive ap-
proach [13]: In this work the authors discuss proactive ways

to defend against botnets. They categorize their approaches

in three areas; addressing, command, and exploitation layers.

In each area they describe ways to connect to and shutdown

the botnet. The case studies presented in this work display

the effectiveness of the approaches, but as mentioned before

our approach is focused on monitoring the botnet traffic to

identify the role each botmaster plays so we can eventually

stop those who are responsible for using the botnet.

VI. DISCUSSION

Botnets vary greatly in terms of command and control

and the level of sophistication. In this section we discuss the

current state of botnets and some limitations of our work.

A. Current state of botnets

Although IRC based botnets are still destructive and still

need to be researched, botnets with other forms of command

and control are becoming more prevalent and destructive.

Http-based, P2P-based, and hybrid botnets are more difficult

to defend. This is due mainly to the flexibility the botmaster

has in controlling the botnet. In IRC based botnets, the

command and control represents a single point of failure

meaning if the command and control is shut down the

botnet is also inactive. In the newer forms of botnets such

as P2P, any of the nodes in the botnet can become the

command and control. In this case if the command and

control gets shutdown, one of the other nodes can now act

as the command and control. The command and control

protocol should not have an effect on our method, since

the initial bootstrapping of any botnet node must be present

in the binary so a clone can be made to join the botnet

and monitor its activity [13]. We leave the monitoring of

more advanced command and control protocols for the future

work.

B. Limitations

A key limitation of our work is we can only identify

the botmaster characteristics of transactions that have been

decrypted. We are aware that many botnets now encrypt

their malware and communications between them and their

command and control servers, but there are many research

projects aimed at decrypting payloads and malware data. In

the future we may incorporate some of these techniques such

as doing a memory dump of an encrypted bot as addressed

in [9], but currently we are concentrating on the analysis

of the data after it is decrypted, so encrypted payloads are

beyond the scope of this paper. Our method of identifying

the commands is based on the interpretation of the protocol

based on RFCs and known system commands. Currently we

have to manually identify how the commands are structured

so that we can automatically extract the characteristics which

is another limitation of our work. At the moment we are

436439418

analyzing only IRC based botnet monitoring data and as

shown with the recent DDoS attack on Twitter [18], IRC

based command and control botnets are still very dangerous

threats to the Internet. Hence, it is inevitable to continuously

monitor the relevant activities.

VII. CONCLUSIONS

The real threats from botnets come from the botmasters

that use them. In our research we addressed this critical

issue by monitoring the traffic between the botmasters and

the botnet and identifying the roles each botmaster played

in the botnet. Since multiple botmasters are found on each

separate botnet channel, automatically discovering the role

each botmaster plays significantly helps reduce analysis time

and provide a list of suspects to aid in the attribution

of attacks. Our approach also enabled us to identify the

generalized motives for each botmaster as well as the level

of involvement each botmaster has on each botnet channel.

Our results indicated that the physical construction of the

botnet has a significant effect on botnet transactions since

most attacks occurred during times where the botnet was at

its largest size. We believe our work is an important and

encouraging start to eventually identifying comprehensive

patterns created by the transactions of botmasters.

Our future work would focus on other forms of botnets

such as http-based, P2P-based, and hybrid attacks. In ad-

dition to automatic identification of command structures, it

is crucial to create a taxonomy of botmaster patterns and

corresponding botnet threat level alerts that will help identify

the specific threats each botmaster poses within a monitored

botnet. We will also integrate static malware analysis into

the closed analysis component to identify a higher level of

granularity in our reflective keyword discovery.

ACKNOWLEDGEMENTS

This work was supported, in part, by funds provided by

National Institute of Justice.

REFERENCES

[1] F. Strack and R. Deutsch. Reflective and impulsive deter-
minants of social behavior. In Proceedings of Person. Soc.
Psychol. Rev 8, 8:220–247, March 2004.

[2] IC3. IC3 Report. Available at
http://www.ic3.gov/IC3Report.pdf, March 2010.

[3] m86security. Security labs report. Available at
http://www.m86security.com, January 2010.

[4] N. Paxton, G-J. Ahn, B. Chu. Towards practical framework
for collecting and analyzing network-centric attacks. In IRI
’07: Proceedings of the IEEE International Conference on
Information Reuse and Integration, pages 73 - 78, Las Vegas,
NV, USA, 2007. IEEE.

[5] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon. In
IMC ’06: Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, pages 41–52, New York, NY, USA,
2006. ACM.

[6] N. Paxton, G-J. Ahn, R. Kelly, K. Pearson, B. Chu. Collecting
and analyzing bots in a systematic honeynet-based testbed en-
vironment. In CISSE ’07: Proceedings of the 11th Colloquium
for Information Systems Security Education, 2007.

[7] G-J. Ahn, N. Paxton, K. Pearson. Understanding irc bot
behaviors in network-centric attack detection and prevention
framework. In ICIW ’08: Proceedings of the 3rd International
Conference on i-Warefare & Security, 2008.

[8] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee. Active
botnet probing to identify obscure command and control
channels. In ACSAC 09: Proceedings of the 2009 Annual
Computer Security Applications Conference, pages 241–253,
Washington, D.C., 2009. IEEE.

[9] Y. Park and D. S. Reeves. Identification of bot commands by
run-time execution monitoring. In ACSAC ’09: Proceedings of
the 2009 Annual Computer Security Applications Conference,
pages 321–330, Washington, D.C., 2009. IEEE.

[10] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent denial of
service attacks. In ESORICS’05: Proceedings of ESORICS
2005. IEEE, 2005.

[11] honeynet. Know your enemy: Tracking botnets. Available at
http://www.honeynet.org/papers/bots, August 2008.

[12] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying social
group evolution. Nature, 446:664–667, April 2007.

[13] F. Leder and T. Werner. Know your enemy: Containing
conflicker. The Honeynet Project, April 2009.

[14] P. Baecher, M. Kotter, T. Holz, M. Dornseif, and F. Freiling.
The nepenthes platform: An efficient approach to collect
malware. In RAID ’06: Proceedings of the 9th International
Symposium on Recent Advances in Intrusion Detection, pages
41–52, 2006.

[15] J. Calvet, C. Davis, and B. Pierre-Marc. Malware authors
don’t learn, and that’s good. In MALWARE’09: Proceedings
of the Fourth Annual Conference on Malicious and Unwanted
Software. IEEE, 2009.

[16] V. Thomas and N. Jyoti. Botnet countermeasures. In Journal
in Computer Virology, 2007.

[17] L. Corrons. Mariposa botnet. Available at
http://pandalabs.pandasecurity.com/, March 2010.

[18] J. Wortham and A. E. Kramer. Professor main target of assault
on twitter. The New York Times, page B1, August 2009.

[19] N. J. Rubenking. New botnet may have infected half of
fortune 1000. PCMAG.COM, August 2009.

437440419

