

1

Postprint of article in Proceedings of the 36th Annual International Computer Software and Applications Conference
(COMPSAC 2012), IEEE Computer Society, Los Alamitos, CA (2012)

Preemptive Regression Test Scheduling Strategies:

A New Testing Approach to Thriving on the Volatile Service Environments*

Lijun Mei
IBM Research – China

Beijing, China
meilijun@cn.ibm.com

Ke Zhai
The University of Hong Kong

Pokfulam, Hong Kong
kzhai@cs.hku.hk

Bo Jiang
Beihang University

Beijing, China
jiangbo@buaa.edu.cn

W. K. Chan**
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T. H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract⎯A workflow-based web service may use ultra-late
binding to invoke external web services to concretize its imple-
mentation at run time. Nonetheless, such external services or the
availability of recently used external services may evolve without
prior notification, dynamically triggering the workflow-based
service to bind to new replacement external services to continue
the current execution. Any integration mismatch may cause a
failure. In this paper, we propose Preemptive Regression Testing
(PRT), a novel testing approach that addresses this adaptive issue.
Whenever such a late-change on the service under regression
test is detected, PRT preempts the currently executed regression
test suite, searches for additional test cases as fixes, runs these
fixes, and then resumes the execution of the regression test suite
from the preemption point.

Keywords—adaptive service composition, adaptive regression test-
ing, preemptive regression testing, test case prioritization

I. INTRODUCTION

A workflow-based web service may use ultra-late bind-
ing to invoke other web services to concretize its implemen-
tation at run time. In general, such an implementation is
known as a service-based application or a service composi-
tion. Nonetheless, the services that are invoked by the
workflow-based web services, which we refer to as external
services, may evolve without prior notification. The avail-
ability of recently used external services for the next service
request is also uncertain. Both types of changes dynamically

* © 2012 IEEE. This material is presented to ensure timely dissemination
of scholarly and technical work. Personal use of this material is permit-
ted. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright.
In most cases, these works may not be reposted without the explicit
permission of the copyright holder. Permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

** Correspondence author.

trigger the workflow-based service to bind to replacement
external services so that the former service can continue
with its execution. The testing of adaptive systems, such as
a service composition led by a workflow-based web service,
should assure that the workflow-based web service can suc-
cessfully and dynamically switch its external services and
successfully continue with the execution.

For example, during a round of regression test, a test case
t having been executed on a service composition (such as
version u of a workflow-based web service and version v1 of
an external service) may require re-execution over the
evolved version of the service composition (such as version u
of the workflow-based web service and an evolved version v2
of the external service) so as to test the adaptability of the
service composition.

Along any execution path of the workflow-based web
service, there is a sequence of service invocation points, each
of which leads the workflow-based web service to invoke an
external service to provide a result. Moreover, every such
service invocation may or may not bind to a new external
service. For a “retest-all version” of regression testing, every
test case of a regression test suite that goes through this
execution trace may potentially be rerun to assure different
sequences of binding configurations for the service invocation
points. This process is intuitively heavy. On the other hand,
testing each test case once irrespective of the possible number
of such binding configuration sequences is inadequate.

To the best of our knowledge, existing test case prioriti-
zation techniques (such as [2][8][9][14][15][17][18][19][20])
do not take into account the changes in service binding. For
instance, in a typical round of regression test, such tech-
niques simply apply all the not-yet-executed test cases once
to the service-based application. They are, therefore, inade-
quate in testing dynamic web services.

In this paper, we propose a novel approach ⎯ Preemptive
Regression Testing (PRT) ⎯ for the regression testing of
(dynamic) web services. We define a dynamic web service as
a web service that can dynamically change its own processing
logic or bind to and use new external services during the
course of an execution. We refer to such a change during

2

execution as a late-change. Whenever a late-change is
detected, PRT preempts the currently executed regression test
suite, searches for additional test cases as fixes, runs these
fixes, and then resumes the execution of the suspended
regression test suite from the preemption point. It continues to
test the service with the prioritized test suite until all the test
cases in the regression test suite have been applied to the
service without further detecting any late-change. In this
paper, we present three workflow-based strategies, each of
which concretizes PRT. They use the workflow coverage of
the web service as an indicator of whether a late-change may
have occurred. They adaptively and dynamically prioritize
and select test cases from a regression test suite until no
change in the workflow coverage of the web service by the
selected test cases is detected. We note, however, that PRT is
general and not limited to the testing of workflow-based web
services. Other PRT strategies following the preemption idea
above can be similarly developed.

The basic idea of the three PRT strategies is as follows:
Given a test case t of a prioritized regression test suite T that
aims to verify a modified version u of a workflow-based web
service, a PRT strategy executes u with t and compares the
workflow coverage of u achieved by t with that of the last
execution of u achieved by t. In case that no prior execution
of u is available, the PRT strategy compares the current
workflow coverage with that of the preceding version of u
achieved by t.

If any change in the workflow coverage of u achieved by t
is detected by the above comparison, the PRT strategy imme-
diately preempts the current execution of T, searches T, and
identifies a subset X (⊆ T) as fixes that collectively covers the
missed workflow coverage. The PRT strategy then executes X.
Finally, it resumes from the preemption point to continue
executing the remaining prioritized test cases in T \ X. How-
ever, unlike existing techniques, the execution of T \ X is not
the end of the PRT strategy.

In case that some workflow coverage missed by t is really
due to the evolved external service binding (say, the use of a
version v2), any test case in T executed before t can only
assure u in the presence of a service other than v2 ⎯ none of
such test cases, in fact, has assured u in the presence of v2.
The PRT strategy thus re-executes all such test cases. The
above procedure will continue until the entire T has been
executed on u (in a round-robin manner) and no more change
in workflow coverage is detected during the execution of the
entire test suite T. This is because, by then, the strategy has no
further evidence indicating that any external service used by
the service-based application has changed.

Intuitively, if the service environment of a web service
under test is violated, the PRT approach will conduct a “long”
regression testing, which is different from existing regression
testing techniques that may terminate too early, so that the
service adaptation characteristics of the service composition
cannot be thoroughly tested by the regression test suite.

We further note that existing test case prioritization
strategies wait until the next round of regression test to find
test cases based on the new coverage profiles. They are both
unaware of the missed coverage for a particular service
composition and unable to schedule target test cases to verify

the present service composition in time. In our PRT strategies,
a test case may be executed multiple times during the same
round of regression testing. Furthermore, a regression test
suite does not need to be completely executed before any test
case is selected for re-execution. Hence, our PRT approach
can be more lightweight than existing regression testing tech-
niques in rescheduling test cases.

We conduct an empirical study using all the subjects from
[14][17], and include a comparison between peer techniques
[17][19] and new techniques built on top of our strategies.
Our study confirms that our techniques are significantly more
lightweight than existing techniques.

The main contribution of this paper is threefold: (i) We
propose preemptive regression testing, which is a new
approach in continuous regression testing to assuring
service-based applications that address the challenges due to
the presence of external services that may evolve or are of
low availability. (ii) We concretize PRT to formulate three
strategies. (iii) We present the first empirical study on the
efficiency and effectiveness of techniques for continuous
regression testing of services.

The rest of this paper is organized as follows: Section II
gives a motivating example. Section III presents our strate-
gies and our regression testing techniques. Section IV reports
an empirical study, followed a review of related work in
Section V. Finally, Section VI concludes the paper.

II. MOTIVATING EXAMPLE

This section adapts an example from the TripHandling
project [1] to illustrate the new challenges in regression
testing of a web service such that its communicating exter-
nal services may evolve during the execution of a prioritized
regression test suite. For ease of presentation, we follow
[14][17] to use an activity diagram to depict this web service,
which we denote as P.

Fig. 1 shows a scenario where the developer of P modi-
fies version v1 into version v2. Version v1 communicates
with version s1 of an external hotel price enquiry service (de-
noted by S). Version s1 is, however, not controlled by the
developer of P. The binding of version s1 of S to v2 of P is
not guaranteed and may change dynamically. For example,
the developer of S may modify the implementation and pub-
lish a new version s2 to replace s1. Alternatively, at run time,
the quantity-of-service of s1 may not be good enough for v2,
and hence v2 finds a replacement service S' and binds to it.

Our target for testing is to assure v2. We note that v2 has a
dynamic adaptive ability; otherwise, it cannot achieve ultra-
late binding to external services. In each activity diagram, a
node and an edge represent a workflow process and a transi-
tion between two activities, respectively. We annotate the
nodes with extracted program information, such as the input-
output parameters of the activities and XPath [24]. We
number the nodes as Ai (i = 1, 2, ..., 8).
(a) A1 receives a hotel booking request from a user and stores

it in the variable BookRequest.
(b) A2 extracts the input room price and the number of

persons via XPath //price/ and //persons/ from
BookRequest and stores them in the variables Price and

3

Num, respectively.
(c) A3 invokes the service HotelPriceService to select

available hotel rooms with prices not exceeding the input
Price (that is, within budget), and keeps the reply in
HotelInformation.

(d) A4 assigns RoomPrice using the price extracted via XPath
//room[@price≤’Price’ and @persons=’Num’] /price/.

(e) A5 verifies locally that the price in HotelInformation
should not exceed the input Price.

(f) If the verification passes, A7 executes HotelBookService to
book a room, and A8 returns the result to the customer.

(g) If RoomPrice is erroneous or HotelBookService in A7
produces a failure, A6 will invoke a fault handler.

Suppose we have five test cases t1 to t5 containing the
price (Price) and the number of persons (Num) as paramet-
ric inputs as follows. We assume that only two types of
rooms are available, namely, single rooms at a price of $105
and family rooms (for 3 persons) at a price of $150.

 Price, Num Price, Num
Test case t1: 200, 1 Test case t2: 100, 5
Test case t3: 125, 3 Test case t4: 20, 2
Test case t5: −1, 1

Fig. 2(a) shows the execution traces of the five test cases
over version v1 of P that uses version s1 of S as the hotel
price enquiry service. Test case t1 results in the successful
booking of a single room. Test cases t2 to t5 results in
unsuccessful bookings. The price validation process rejects t2
and t3. Since the minimum room price by HotelQueryService

is $40, the HotelInformation resulting from t4 and t5 both
include a “no vacancy” notice, the input price, and a default
number of persons (set at 99). Thus, although both t4 and t5
passes the price validation process, no room can be booked
using the low price of t4, while the price “−1” of t5 will trigger
a fault.

Suppose a software engineer Jim decides to make the
following changes to the precondition at node A4 of version
v1 of P in Fig. 1. He attempts to allow customers to select any
room that can accommodate the requested number of persons.
However, he wrongly changes the precondition in the XPath
by changing “and” to “or”. Although he intends to provide
customers with more choices, the change does not support his
intention (because the process is designed to immediately
proceed to book rooms, rather than allowing customers to
specify their preferences). This results in a fault as indicated
in version v2 of P in Fig. 1. Fig. 2(b) shows the traces of
version v2 of P using version s1 of S, whereas Fig. 2(c)
shows the traces of v2 of P using s2 of S.

Note that only the execution trace of t3 is different among
Fig. 2(a)─(c). The test case t3 aims to book a family room;
however, owing to the modification, a single room is booked.
This test case can detect a regression fault. Moreover,
suppose that t1 and t2 are failed test case on s2 due to the
incorrect implementation of s2; whereas they are both passed
test cases in Fig. 2(b).

In Fig. 2(d), we present a test case permutation generated
by the existing addtl-workflow-branch test case prioritization
technique, which is a traditional strategy adopted from addtl-
statement coverage from [6][19]. The test suite detects a
failure by the second test case (t3). Suppose, further, that s1

If RoomPrice ≤ Price

No

RoomPrice = XQ(HotelInformation,
//room[@price≤’Price’ and
@persons = ‘Num’]/price)

Yes
Input:
RoomPrice
Output:
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Input: Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

HotelPriceService

Version v1 of P

A binding statement to an
external service S

HotelPriceService

If RoomPrice ≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ or
@persons ≥ ‘Num’]/price)

Yes
Input:
RoomPrice
Output:
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Input: Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

This is
the fault

Version v2 of P

Version s2

Binding-1 Binding-2

Note 2: s2 can be either a newer version
of s1 or a service independent to s1.
(Uncontrollable by developer of P)

v1 changes
to v2

(controlled
by the

developer
of P)

HotelPriceService
Version s1

Correct
change

Located Service 1

Located service 2

Note 1: A binding kept in a regression test case
may be invalid when the test case is re-run.

Figure 1. Brief example illustrating dynamic regression testing for dynamic SOA programs.

4

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7A6

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(a) Traces of test cases on v1 of P using s1 (b) Traces of test cases on v2 of P using s1

Passed Passed Failed Passed Passed

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(c) Traces of test cases on v2 of P using s2

Failed Failed Failed Passed Passed

A1

A2

A3

A4

A5

A6

Trace(t1) Trace(t1, t3) Trace(t1, t3, t5) Trace(t4) Trace(t4, t2)

A8

A7

A1

A2

A3

A4

A5

A6
A8

A7

A1

A2

A3

A4

A5

A6

A8

A7

Coverage
reset

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A8

A7

(d) Applying addtl-workflow-branch coverage to test version v2 of P using version s1 (see Scenario 1 of Fig. 3)

(Note: The coverage information of each test case is from its previous round of execution.)

Trace(t1) Trace(t1, t3)

A1

A2

A3

A4

A5

A6
A8

A7

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A8

A7

Dynamic changes

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A6
A8

A7

A1

A2

A3

A4

A5

A8

A7

Coverage
reset

Fix the coverage
Check the consistency
of coverage

A6

v1  v2
s1  s2

Trace(t1, t3, t2) Trace(t1, t3, t2, t5) Trace(t4) Trace(t1)

(e) Applying Strategy 1 when v1v2 and s1s2 during a round of regression test (see Scenario 2 of Fig. 3)

(Note: The coverage information of each test case is from its latest execution.)

Figure 2. Brief example illustrating the preemptive regression testing of service-based applications.

5

v1

s1

t1 t3, t2, t5, t4, t1t1, t3, t5, t4, t2

External Service

SOA Program v2

s1

v1

s1

v2

s2
Trace(v1, s1, T) = TR1 Trace(v1, s1, v2, s1, T) = TR2

Trace(v1, s1, v2, s2, T) = TR3

t1, t3, t5, t4, t2

Scenario 1 Scenario 2
Scenario 1: SOA program P changes from v1 to v2 using s1

Scenario 2: Dynamic changes (v1v2, s1s2) during a round of regression test

Seq.: Seq.: Seq.:

Initial Setting

Figure 3. Two scenarios of test case execution sequences.

evolves to s2 during the execution of the entire test suite. This
test suite can detect failures by the first (t1), the second (t3),
and the fifth (t2) test cases. However, if s1 evolves to s2 after
the execution of t1 (as in scenario 2 of Fig. 3), at least one
failure cannot be detected.

We further examine the scenarios in Figs. 2 and 3 care-
fully, and observe at least three problems:
• The final binding configuration of the application includes

version s2. If the binding to s1 is replaced by that of s2 after
some of the test cases have been executed (as in scenario 2
of Fig. 3), not all prioritized test cases will be executed on
this configuration, defying the objective of test case prior-
itization to reorder test cases but not to discard any test case.

• To rerun the test suite, since the workflow coverage has
been modified, a traditional prioritization algorithm can
only be rerun after completing the entire previous execution
of the prioritized regression test suite, which can be non-
responsive to the change in binding.

• Should we suspend the execution of a test suite during re-
prioritization?

Our PRT Technique. We now illustrate one technique
that uses Strategy 1 (to be presented in Section III) to address
the above problems due to dynamic changes after the execu-
tion of the first test case.

We observe from Fig. 2(e) that, although t3 is targeted for
covering A6, it actually covers A7 and A8. PRT Strategy 1 is to
select test cases from the ordered test suite to assure the
correctness of A6 immediately. In Fig. 2(e), we illustrate that
the strategy selects t2 as a replacement according to the given
priority, and discovers a failure. Then, it continues with the
execution of every remaining prioritized test case after t2.
After executing the remaining test cases in the prioritized test
suite, the technique finds that t1 and t3 are executed before the
latest invocation of Strategy 1. Therefore, the technique
reruns these two test cases (based on the same test case
priority for the sake of simplicity) and discovers another fail-
ure when executing t1. During the realization of Strategy 1,
there is no need to suspend test case executions.

III. PREEMPTIVE REGRESSION TESTING

This section presents our Preemptive Regression Testing
(PRT) approach and formulates three strategies for PRT.

A. Preliminaries

A web-based application is divided into two parts. The
first part is a web service under test, denoted by P. We
assume that P adopts a dynamic service-oriented architec-
ture that can bind a service invocation point to different web
services during the course of execution. Similar to a lot of
regression testing research [8][11][17][18][19], our
objective is to safeguard P from faulty modification of its
implementation of the internal computation and dynamic
service binding configurations. Testers may test P in a
laboratory to collect the coverage data.

The second part is a set of services outside the service
under test P. P needs to bind to and communicate with them
in order to compute its functions properly. We call them
external services of P. In other words, in our setting,
executing a test case over a given version u of P may
involve the invocation of external services and obtaining
their results.

In general, a web service P has no control over the
evolution of external services, the availability of each
external service, and the network conditions. It is unrealistic
to assume that external services remain unchanged during
any round of execution of a regression test suite in the real-
world situation.

B. PRT

The idea of PRT is intuitive. Whenever a late-change is
detected by service P, PRT preempts the currently executed
regression test suite, searches for a subset of the regression
test suite as a fix, runs the fix, and then resumes the execution
of the regression test suite from the preemption point. PRT
also continues to execute the remaining part of the prioritize
test suite (possibly marking the test cases in the fix as
executed) until all test cases have been executed without any
preemption among them.

There are many aspects that a PRT technique can use:
A late-change can be detected at the URL level or from the

message header of some service message. However, if they
fail to provide clues, testers may still need techniques to help
them assure the web services under test. An approximate
condition is that such a late-change will lead to a change in
the implementation of the external service with respect to the
service under test. The behavior of the new implementation
may alter the execution flow of the service under test. Such
change in execution flow can be viewed as a rough indicator
for late-changes. Based on this insight, we formulate three
PRT strategies to be presented in the next subsection.

A preemption can immediately occur or put in a priority
queue and handled similar to how an operating system
handles software interrupts. A search for fix can be expanded
to the generation of new test cases. Alternatively, it may
source test cases that are not originally in the regression test
suite. The execution of a fix and the marking of test cases that
serve as fixes can also be handled similarly to how a
preemption can be handled. The execution of the whole test
suite can continue as the stopping criterion can be further
modified, such as considering all preemption points rather
than merely the last one, or none of them.

6

C. Our Coverage-Based PRT Strategies

In this section, we present three PRT strategies.

Strategy 1 (Fix). Suppose a test case t misses at least one
coverage item that it has covered in its last execution. Let F
be the set of missed coverage items of t. This strategy selects
a sequence U of test cases in T such that the last execution of
all the test cases in U can minimally cover all the missed
coverage items in F. Moreover, this strategy records the
coverage items achieved by each newly selected test case in
U with respect to F.

Because the coverage achieved by many not-yet-executed
test cases in T in their corresponding last executions may
cover some item in F, Strategy 1 adopts the following
criterion to construct U and run these test cases.

For every missed coverage item in F, Strategy 1 chooses
and executes one test case among the not-yet-executed test
cases in T in a round-robin fashion (starting from the position
of t in T) in descending order of the number of items covered
by each test case.

In addition, executing such a replacement test case may
discover additional coverage items that have been missed as
well. In this case, Strategy 1 will suspend its current round,
invoke a new round of Strategy 1, wait for this newly invoked
round to complete, remove from F of the current round those
coverage items already covered by the recursively invoked
rounds of Strategy 1, and then resume the execution of the
current round of Strategy 1.

Strategy 2 (Reschedule). If a test case covers new item(s)
that have not been covered in its last execution, the strategy
records the additional coverage items achieved by the test
case, and reprioritizes the not-yet-executed test cases
according to the additional item coverage technique (see
addtl-statement coverage in [6] for details).

Strategy 3 (Fix and Reschedule). This strategy is a
hybrid of Strategies 1 and 2. If a test case does not cover
some item(s) it has covered in its last execution, Strategy 3
first invokes Strategy 1. After the completion of Strategy 1, if
there are any additional coverage items that have not been
covered in the last execution of the test cases executed by
Strategy 1, it will invoke Strategy 2.

Compared with existing strategies, our strategies require
additional storage so that we can mark the end of each
iteration of a strategy. In the implementation, we use an
integer array (of the same length as the size of the test suite),
which is sufficient to support the marking, and hence the
incurred space requirement is light.

Determining the workflow coverage after the execution of
every test case will cause additional overhead. However, the
computation of workflow coverage changes can be done by
comparing the current test trace with the previous one, which
is fast. The runtime slowdown factor on the workflow process
can be small because a workflow process tends to be small
and the major delay appears to be the time needed to wait for
the results from external services.

Intuitively, Strategy 1 only requires fixing the coverage,
while Strategy 2 requires reprioritization of the not-yet-

executed test cases. Therefore, Strategy 2 involves more
slowdown overhead than Strategy 1. When the number of test
cases per iteration increases (where the term “iteration” has
the same meaning as that in addtl-statement coverage), the
reprioritization definitely takes more time to complete.
However, the procedure does not need to be conducted on the
whole test suite. Therefore, the reprioritization only depends
on the number of test cases executed in each iteration,
regardless of the size of the whole regression test suite.

Although our strategies require computation and storage
costs, such costs are less than those of retesting all the test
cases in a test suite, which involves invoking external services,
arranging resources, and even human interactions.

D. Implementation

This section describes the application of our strategies to
build three test case prioritization techniques (listed as M1−
M3 in Table 1).

1) Our PRT Techniques
We apply our three strategies to the existing additional-

branch technique [19] (also known as addtl-workflow-branch
coverage in [17]) to build three new evolution-aware
techniques (M1─M3 in Table 1). Each new technique has a
stopping criterion: For a web service P and a regression test
suite T for P, the technique will stop applying test cases to P
if every test case in T results in no further change in the
workflow coverage of P.

TABLE 1. CATEGORIES OF TEST CASE PRIORITIZATION TECHNIQUES

Name Reference

Addtl-Workflow-Branch-Fix M1

Addtl-Workflow-Branch-Reschedule M2

Addtl-Workflow-Branch-FixReschedule M3

M1 (Addtl-Workflow-Branch-Fix). This technique
consists of two phases. Phase 1: preparation. It first updates
the workflow branches covered by individual test cases to be
the same as the addtl-workflow-branch coverage [17] to gen-
erate a sequence of test cases. Phase 2: runtime adjustment.
Right after the execution of a test case, it runs Strategy 1 and
then continues to apply the given sequence of prioritized test
cases in a round-robin fashion until the entire test suite has
been executed and no test case changes its achieved coverage
between the current execution and the last execution.

M2 (Addtl-Workflow-Branch-Reschedule). This tech-
nique consists of two phases: Phase 1: preparation. This
phase is the same as Phase 1 of M1. Phase 2: runtime
adjustment. It is the same as Phase 2 of M1, except that it
runs Strategy 2 rather than Strategy 1.

M1 only deals with test cases that miss to cover some
items that have been covered in the last executions of the test
cases, whereas M2 only deals with test cases that cover more
items than those covered in the last executions of the test
cases. The following technique strikes a balance between M1
and M2 by using Strategy 3.

7

M3 (Addtl-Workflow-Branch-FixReschedule). This
technique also consists of two phases. Phase 1: preparation.
This phase is the same as Phase 1 of M1. Phase 2: runtime
adjustment. It is the same as Phase 2 of M1, except that it
runs Strategy 3 instead of Strategy 1.

In some regression testing techniques (such as [10]), new
test cases need to be introduced into the original test suite to
check the revised code. Such consideration is not in the scope
of the present paper. However, it is not difficult to adapt our
PRT approach to use the new test cases. Here is one possible
solution: We first categorize the new test cases into a few new
iterations. After executing the test cases of an existing
iteration, we will then execute the new iterations.

IV. EVALUATION

This section evaluates our PRT techniques.

A. Experimental Setup
We chose a set of eight subject programs to evaluate our

strategies, as listed in Table 2. They were representative
service-based applications developed in WS-BPEL. This set
of applications was also used in previous empirical studies
reported in [14][17].

We generated 100 test suites for each application. The
statistics of these test suites are shown in Table 3. It presents
the maximum, average, and minimum numbers of test suites
for each benchmark application.

TABLE 2. SUBJECT PROGRAMS AND THEIR DESCRIPTIVE STATISTICS

Su
bj

ec
t

R
ef

Subject
Description

M
od

if
ie

d
V

er
si

on
s

E
le

m
en

ts

L
O

C

X
P

at
hs

X
R

G

B
ra

nc
he

s

W
SD

L

E
le

m
en

ts

U
se

d
V

er
si

on
s

A atm 8 94 180 3 12 12 5
B buybook 7 153 532 3 16 14 5
C dslservice 8 50 123 3 16 20 5
D gymlocker 7 23 52 2 8 8 5
E loanapproval 8 41 102 2 8 12 7
F marketplace 6 31 68 2 10 10 4
G purchase 7 41 125 2 8 10 4
H triphandling 9 94 170 6 36 20 8

Total 60 527 1352 23 114 106 43

TABLE 3. STATISTICS OF TEST SUITE SIZES

Subject
Size A B C D E F G H Mean

Maximum 146 93 128 151 197 189 113 108 140.6
Average 95 43 56 80 155 103 82 80 86.8
Minimum 29 12 16 19 50 30 19 27 25.3

Strictly following the methodology in [6], we generated

60 modified versions [17], as shown in Table 2. The fault in
any modified version could be detected by some test case in
every test suite. We discarded any modified version if more
than 20 percent of the test cases could detect the failures in
that version. All the 43 remaining versions were used in the

empirical study.
We obtained the implementation tool of Mei et al. [17],

configured it, and used it for test case generation, test suite
construction, and fault seeding in our empirical study.

We revisit the procedure here: First, it randomly gener-
ated test cases based on the WSDL specifications, XPath
queries, and workflow logics of the original application
(rather than the modified versions). For each application,
1000 test cases were generated to form a test pool. The tool
then added a test case to a constructing test suite (initially
empty) only if the test case can increase the coverage
achieved by the test suite over the workflow branches, XRG
branches, or WSDL elements. This construction process is
also adopted in [6][19]. We successfully generated 100 test
suites for each application.

To simulate scenarios in a real dynamic service environ-
ment, our setting is that web service modifications, external
service evolutions, and test case prioritization and selection
may occur concurrently during any round of execution of a
test suite. For ease of reference, each of them is called a
change. We define a change window to refer to the time
interval between two changes. For ease of comparison, we
directly use the number of test case executions to represent
the time spent. We set the change windows to x * |T|, where x
= 0.2, 0.4, 0.6, and 0.8, and |T| is the size of the test suite T.
(We note that when x = 1.0, the entire test suite will be
completely executed before any evolution occurs. In this case,
our initialized techniques will degenerate to traditional
techniques.) For each test suite T, we randomly chose among
the modified versions and generated a sequence of versions to
simulate a sequence of changes. We set each sequence to
consist of 50 changes.

Since all the test case execution results of the applications
can be determined, we can figure out whether a fault has been
revealed by a test case through comparing the test result of
the modified version with that of the original program. Our
tool automatically performed the comparisons.

B. Measurement Metrics

A fault in a service composition is only detected when the
faulty service composition is being dynamically bound and a
test case that can reveal the fault is successfully scheduled by
a technique to execute over the faulty service composition.
Once the service composition has evolved, the test case may
only detect a fault due to another service composition rather
than this one.

The first effectiveness measure that we will use is,
therefore, the number of test cases successfully scheduled by
a technique such that each test case detects a failure from a
service composition. For ease of reference, we simply refer
this metric to as the number of fault-revealing test cases.
Using this metric allows us to measure the precision of a
scheduling technique. A higher metric value indicates a
higher precision.

Many existing test case prioritization experiments use
the Average Percentage of Faults Detected (APFD) [6],
which only takes into account the first test case that can
detect a fault, regardless of the actual round of regression
test that the test case is executed. As we have illustrated in

8

Section I, service compositions may evolve. The ability of
an algorithm to schedule a test case to detect the presence of
faults in one version inadequately represents the ability to
schedule the same test case to detect such presence in
another version of the same composition.

We also measure the number of test cases that a
technique needs to reschedule. We refer to this metric to as
the number of reordered test cases. Note that, in practice,
reordering test cases is not merely giving a new index to
every test case. Rather, any change in a test schedule means
that testers need to make new arrangements for resources,
internal (human) users, and service partners accordingly.
Reducing the number of reordered test cases is crucial.

C. Data Analysis

This section analyzes the results of the empirical study.

1) Analysis on Precision
Table 4 presents the mean results of the total number of

fault-revealing test cases produced by each technique for the
eight subjects within each change window. The cells that
indicate noticeable advantages over benchmark techniques
are typeset in bold.

First, we find that as the size of a change window
increases from 0.2 * |T| to 0.8 * |T|, the effectiveness (in
terms of precision) of our techniques generally increase.
This finding is consistent with the expectation on our
strategies: As a size of a change window increases, the
probability of detecting a change in workflow coverage
achieved by at least one test case will, on average, increase.
Every such detection will trigger our rescheduling strategy
(which is the core difference between our dynamic strategy
and traditional static counterparts) to find and apply test
cases to verify the service composition within the corre-
sponding change window period.

Second, we observe the M2 is less effective than M1 and
M3. The result may indicate that Strategy 1 can be more
effective than Strategy 2.

Finally, the difference between M1 and M3 is small. The
result indicates that adding Strategy 2 on top of Strategy 1
has no noticeable effect.

TABLE 4. PRECISION COMPARISON

Technique
Change Window between Test Cases
0.2*|T| 0.4*|T| 0.6*|T| 0.8*|T|

M1 105.4 213.5 324.1 434.9
M2 103.0 207.3 314.4 419.3
M3 105.6 212.9 324.3 435.8

2) Analysis on Efficiency
Since the test cases used in each technique are the same

throughout the empirical study, in order to compare the effi-
ciency, we study the number of reordered test cases incurred
by each technique.

Random ordering simply selects a test case from the
whole test suite randomly, and hence there is no additional
reordering cost. Table 5 shows the results of M1 to M3, in
which we normalize each result by the mean number of
reordered test cases achieved by disabling any strategy

(which essentially renders M1–M3 into the same technique,
referred to as Disabled in the rest of this paper) when the
change window is 0.2 * |T|. We have typeset in bold those
cells that correspond to fewer reordering test cases than those
of Disabled.

TABLE 5. EFFICIENCY COMPARISON

Technique
Change Window between Test Cases

0.2*|T| 0.4*|T| 0.6*|T| 0.8*|T|
Disabled 1.000 2.000 3.000 4.000

M1 0.950 1.417 1.775 2.105
M2 0.137 0.174 0.216 0.251
M3 1.238 1.916 2.477 2.980

Table 5 shows that M1−M3 significantly reorder fewer
test cases than Disabled in almost all the cells. The only
exception is M3 when the change window size is 0.2 * |T|.
The result shows that, in general, our strategies are more
lightweight than Disabled. Overall speaking, they save
around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window
increases, M1−M3 reorder increasingly smaller ratios of test
cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient.
From Table 4, on average, it only incurs 9.0% of the total
number of test cases needed to be reordered by Disabled.
This saving is significant.

3) Hypothesis Testing
We apply hypothesis testing to the raw data for Table 4 to

identify the differences among different techniques. We only
show the hypothesis testing results for the change window of
0.8*|T| in Table 6. The results of 0.2*|T|, 0.4*|T|, and 0.6*|T|
are similar. We omit then owing to page limit. The hypothesis
testing results for the change windows of other sizes are
similar and consistent with the results in Table 6.

TABLE 6. STUDENT’S t-TEST RESULTS FOR COMPARISON
(USING THE CHANGE WINDOW OF 0.8 * |T|)

 Our Techniques

M1 M2 M3

Disabled 0.03 0.20 0.02

Student’s t-test assesses whether the means of two groups

are statistically different from each other. If the significance is
less than 0.05, the difference is statistically significant. We
summarize the results in Table 6. The cells that indicate
significant differences from benchmark techniques are type-
set in bold.

Table 6 shows that M1 and M3 are statistically different
from Disabled. However, we cannot find significant differ-
ences between M2 and Disabled. Rejecting the null hypothe-
sis only indicates that the means of the two groups are
statistically different from each other. We further examine
Table 4 to determine which technique is better.

In short, Table 4 and the hypothesis testing result indicate
that the fix strategy can be more effective than the reschedule
strategy. At the same time, Table 5 shows that M2 is more
efficient. Our empirical analysis concludes that a clear

9

tradeoff between effectiveness and efficiency exists in at least
a class of dynamic test case scheduling strategies (represented
by our strategies) that supports service regression testing in
the open environment. Furthermore, M1−M3 are more
lightweight than Disabled.

4) Threats to Validity
This section discusses the threats to validity of the

experiment.
Construct validity relates to the metrics used to evaluate

the effectiveness of test case prioritization techniques. In the
experiment, we propose two metrics to evaluate our tech-
niques from the perspective of continuous regression testing.
Using other metrics may give different results. We have
explained the rationales of the two metrics. A risk of the
current experiment is that it has not measured the APFD
values of the techniques under study. We have explained that
the faults in various versions of external services are to
simulate problematic requests and responses from the
environment of the web service under test. Such faults in the
simulated artifacts cannot be meaningfully located by the
testers of the web service under test. Hence, we do not
proceed to measure APFD.

Threats to internal validity are the influences that can
affect the dependency of the experimental variables in-
volved. During the execution of a test case, the contexts
(such as database status) of individual services involved in a
service composition may affect the outcome and give
nondeterministic results. In the experiment, we follow [13]
to use a tool to reset the contexts to the same values every
time before rerunning any test case. This approach is also
advocated by agile software development. Another threat in
our experiment is the scheduler used in determining the
evolution sequence. The use of another scheduler may affect
the results. To reduce bias, we use a random scheduler to
generate of such schedules. However, the random scheduler
may produce quite many diverse schedules. To address this
threat, we have used a fairly large number of test suites (100
test suites per subject) in each of the four change window
setting. As indicated by Table 3, the average number of test
cases per test suite is about 88. We believe that we have
collected a sufficiently large pool of data to measure the
central tendency in terms of precision and efficiency.

External validity refers to whether the experiment can be
generalized. The current subject programs are not large,
even though they have been used in [14][17]. The use of
service-based applications with other binding characteristics
may produce different results. We only use four change
windows in the empirical study. The interpolation and
extrapolation of the data points to change windows of other
sizes may not be applicable. Our subjects are based on WS-
BPEL, and the results of other types of artifacts are still
unclear. We have only used three particular instances of
PRT techniques. The results thus obtained should be inter-
preted with care before evaluating PRT in general. Our
experiment has not compared with other techniques except
“Disabled”, which is basically the traditional additional test
case prioritization strategy. Comparisons with other stra-
tegies as baselines can help make PRT more mature.

V. RELATED WORK

This section reviews other work related to our proposal.
The project most relevant to this proposal is the work in

Mei et al. [17]. It proposed to prioritize test cases based on
the workflow coverage achieved by a test suite over a
preceding version of a modified application. It built its
techniques on top of the earlier data flow testing work [14],
which aims to reveal the potential integration of messages and
code through XML Schemas and XPaths. Like classical test
case prioritization techniques [18][19], the techniques in Mei
et al. [17] are unaware of any evolution of external services
and do not reschedule test cases that have not been executed
to assure a modified application in the potential presence of
newer versions of external services.

Many existing techniques for unit and integration testing
of service-oriented programs have been proposed. Bartolini
et al. [3] discussed potential ways to apply data flow testing
to service composition. They also proposed a framework to
facilitate the collection of coverage summaries of test
executions of service-oriented programs. Mei et al. modeled
the combination of XPath and WSDL as an XRG, and
developed data flow testing techniques to verify services
that manipulates XML messages [14] and services that
interact through XML messages [15].

Hou et al. [8] also observed the need to test service-
oriented applications that invoke external services. They
added invocation quotas to constrain the number of requests
for specific web services, and then developed techniques to
prioritize test cases to maximize the test requirement cover-
age under such quota constraints. They have not observed
that an external service may evolve during a round of
regression test of the modified application. Ruth and Tu [20]
and Chen et al. [5] conducted impact analysis on web services.
They aimed to identify revised fragments of code in a service
by comparing the flow graph of the new version with that of
the previous version. Chen et al. [5] also prioritize test cases
based on the weights thus identified. Mei et al. [16] also
propose an interface-based test case prioritization technique.
However, they have not considered the evolution of external
services in the course of testing.

Li et al. [12] studied the generation of control-flow test
cases for the unit testing of BPEL programs. Fu et al. [7]
considered the role of XPath when studying the formal
verification of web services. They translated services into
Promela, and translated an XPath into a Promela procedural
routine using self-proposed variables and code to simulate
XPath operations in the web service environment. Chan et al.
[4] proposed to use metamorphic testing to alleviate the test
oracle issues for stateless web services. Zhai et al. [25]
further used the dynamic features of service selection to
reduce the service invocation cost. Zhu and Zhang [26] pro-
posed a framework that integrates different test components
wrapped as a web service to realize testing techniques using
service-oriented approaches.

Finally, we review related regression testing techniques.
Leung and White [10] pointed out that simply rerunning all
existing test cases in a regression test suite is far from ideal.
Many existing techniques for regression test selection (such

10

as [18]) and test case prioritization (such as [19]) selected test
cases that are related to the modified edges of the control flow
graphs of the revised applications. Kim and Porter [9]
proposed to use the history information of different program
versions to prioritize test cases. Our techniques are aware of
the potential changes in the environment of the application
under test and can select the same test case multiple times
before every test case in the test suite has been selected.

VI. CONCLUSION

A service using the dynamic service-oriented architec-
ture can bind to different external services and communicate
with the latter dynamically at run time. The testing of such a
service should address adaptability characteristics. We call
such a dynamical change in binding as a late-change. Many
existing techniques on regression testing are unaware of such
dynamic evolution of binding with respect to the service
under test.

Preemptive Regression Testing (PRT) is a new approach
proposed in this paper. It detects late-changes during the
execution of a regression test suite, preempts the execution,
selects test cases from a regression test suite as fixes, runs the
fixes, and then resumes the suspended execution of the
regression test suite. It repeats the process until no test exe-
cution preemption between any two test cases of the whole
test suite occurs. To demonstrate PRT, we have formulated
three strategies that detect the changes in workflow coverage
achieved by the regression test suite over the modified web
service. We have also reported an empirical study. The results
have shown that our techniques are more efficient, and
demonstrated a clear tradeoff between effectiveness and
efficiency among the PRT strategies.

It will be interesting to explore PRT further by formulating
other strategies with higher fault-detection effectiveness and
lower slowdown overheads. It will also be interesting to
investigate how to make PRT scalable and develop a frame-
work for developing different PRT techniques.

ACKNOWLEDGMENT

This research is supported in part by the General
Research Fund of the Research Grant Council of Hong
Kong (project nos. 111410 and 717811), and a basic
research funding of Beihang University (project no. YWF-
12-LXGY-008).

REFERENCES
[1] alphaWorks Technology: BPEL Repository. IBM, 2006. Available

at http://www.ibm.com/developerworks/webservices/library/ws-
awbpelrepos/.

[2] C. Bartolini, A. Bertolino, S. G. Elbaum, and E. Marchetti. Whitening
SOA testing. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC 2009/FSE-17), pages 161–170. ACM, New York, NY, 2009.

[3] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis. Data flow-
based validation of web services compositions: perspectives and
examples. In Architecting Dependable Systems V, volume 5135 of
Lecture Notes in Computer Science, pages 298–325. Springer, Berlin,
Germany, 2008.

[4] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. Towards a meta-
morphic testing methodology for service-oriented software applica-

tions. In The 1st International Conference on Services Engineering
(SEIW 2005), Proceedings of the 5th International Conference on
Quality Software (QSIC 2005), IEEE Computer Society, Los Alami-
tos, CA, 470–476, 2005.

[5] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu. Test case prioritization
for web service regression testing. In Proceedings of the 5th IEEE
International Symposium on Service Oriented System Engineering
(SOSE 2010), pages 173–178. IEEE Computer Society, Los Alamitos,
CA, 2010.

[6] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE Transactions on
Software Engineering, 28 (2): 159–182, 2002.

[7] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web
services. In Proceedings of the 13th International Conference on
World Wide Web (WWW 2004), pages 621–630. ACM, New York,
NY, 2004.

[8] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun. Quota-constrained test-
case prioritization for regression testing of service-centric systems. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 2008), pages 257–266. IEEE Computer Society,
Los Alamitos, CA, 2008.

[9] J.-M. Kim and A. Porter. A history-based test prioritization technique
for regression testing in resource constrained environments. In
Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pages 119–129. ACM, New York, NY, 2002.

[10] H. K. N. Leung and L. J. White. Insights into regression testing. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 1989), pages 60–69. IEEE Computer Society,
Los Alamitos, CA, 1989.

[11] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on Software
Engineering, 33 (4): 225–237, 2007.

[12] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang. BPEL4WS unit testing:
framework and implementation. In Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS 2005), pages 103–110.
IEEE Computer Society, Los Alamitos, CA, 2005.

[13] L. Mei. A context-aware orchestrating and choreographic test frame-
work for service-oriented applications. In Doctoral Symposium, Pro-
ceedings of the 31st International Conference on Software Engineer-
ing (ICSE 2009), pages 371–374. IEEE Computer Society, Los
Alamitos, CA, 2009.

[14] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-
oriented workflow applications. In Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE 2008), pages 371–
380. ACM, New York, NY, 2008.

[15] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service
choreography. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC 2009/FSE-17), pages 151–160. ACM, New York, NY, 2009.

[16] L. Mei, W. K. Chan, T. H. Tse, and R. G. Merkel. XML-manipulating
test case prioritization for XML-manipulating services. Journal of
Systems and Software, 84 (4): 603–619, 2011.

[17] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse. Test case prioritization
for regression testing of service-oriented business applications. In
Proceedings of the 18th International Conference on World Wide
Web (WWW 2009), pages 901–910. ACM, New York, NY, 2009.

[18] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22 (8): 529–
551, 1996.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing
test cases for regression testing. IEEE Transactions on Software
Engineering, 27 (10): 929–948, 2001.

[20] M. E. Ruth and S. Tu. Towards automating regression test selection
for web services. In Proceedings of the 16th International Conference
on World Wide Web (WWW 2007), pages 1265–1266. ACM, New
York, NY, 2007.

11

[21] Web Services Business Process Execution Language Version 2.0:
Primer. Organization for the Advancement of Structured Information
Standards (OASIS), 2007. Available at http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf.

[22] Web Services Choreography Description Language Version 1.0.
World Wide Web Consortium, Cambridge, MA, 2005. Available at
http://www.w3.org/TR/ws-cdl-10.

[23] Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language. World Wide Web Consortium, Cambridge, MA, 2007.
Available at http://www.w3.org/TR/ wsdl20/.

[24] XML Path Language (XPath) 2.0: W3C Recommendation. World
Wide Web Consortium, Cambridge, MA, 2007. Available at
http://www.w3.org/TR/xpath20/.

[25] K. Zhai, B. Jiang, W. K. Chan, and T. H. Tse. Taking advantage of
service selection: a study on the testing of location-based web
services through test case prioritization. In Proceedings of the IEEE
International Conference on Web Services (ICWS 2010), pages 211–
218. IEEE Computer Society, Los Alamitos, CA, 2010.

[26] H. Zhu and Y. Zhang. Collaborative testing of web services. IEEE
Transactions on Services Computing, 5 (1): 116–130, 2012.

