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Abstract—A central issue in program verification is the
generation of verification conditions (VCs): proof obligations
which, if successfully discharged, guarantee the correctness of
a program vis-à-vis a given specification. While the basic theory
of program verification has been around since the 1960s, the
late 1990s saw the advent of practical tools for the verification
of realistic programs, and research in this area has been very
active since then. Automated theorem provers have contributed
decisively to these developments.

This paper establishes a basis for the generation of verifi-
cation conditions combining forward and backward reasoning,
for programs consisting of mutually-recursive procedures an-
notated with contracts and loop invariants. We introduce also
a visual technique to verify a program, in an interactive way,
using Verification Graphs (VG), where a VG is a Control Flow
Graph (CFG) whose edges are labeled with contracts (pre-
and postconditions). This technique intends to help a software
engineer to find statements that are not valid with respect to
the program’s specification.

I. INTRODUCTION

The importance of Formal Software Verification in the
safety-critical domain cannot be overstated. Rather than
repeating exhausted arguments in favor of the adoption of
rigorous principles in the validation of code, it suffices to
cite the recommendations contained in industry norms such
as ISO/IEC-15408 (known as Common Criteria, for security-
sensitive applications), CENELEC EN 50128 (in the railway
domain), or DO-178C (in the aerospace domain), which
recommend or even enforce the adoption of such principles
in the development of critical applications. The DO-178C
standard emphasizes the crucial role of formal methods in
the area of safety critical systems. This does not however
imply a diminished importance of testing, which is and will
continue to be a paramount method for verifying if the
software does what it is expected to do and, does not do
what it is expected not to do.

Verification activities are essential to achieve the required
level of confidence expected in critical software, but they
are becoming increasingly costly as they require the devel-
opment and maintenance of a large body of tests on larger
and more complex applications. Formal program verification
offers a way to reduce these costs while providing stronger
guarantees than testing.

The goal of the tools known as Verification Condition
Generators (VCGens) is precisely to ensure that a software

satisfies its formal specification. A specification provides an
abstract and rigorous representation of the program meaning
or goal; it says what the program is supposed to do, rather
than how to do it. A VCGen reads a piece of code together
with a specification and computes a set of verification
conditions (VCs) that are then sent to a theorem prover.
If all the verification conditions of a program are correct,
then the program is said to be correct. This approach can of
course be used to establish the correctness of the code with
respect to the contracts embedded in it.

There are two well-established methods for producing sets
of verification conditions, based respectively on backward
propagation (BWP) and forward propagation (FWP) of
assertions. Verifying the behavior of programs is of course in
general an undecidable problem, and as such automation is
necessarily limited. Typical tools require the user to provide
additional information, in particular loop invariants, and one
could be tempted to think that if appropriate annotations are
provided, then generating and proving verification conditions
will be straightforward. It would however be wrong to think
that the method used for generating VCs is not important,
for the following reasons:

• The choice of employing BWP or FWP of assertions is
not indifferent. Program verification tools typically re-
sort to the former, since the latter introduces existential
quantifiers in the generated VCs. The use of forward
propagation has however been gaining momentum in a
series of recent papers (see below).

• There are serious efficiency issues involved: a naive
algorithm can produce verification conditions of ex-
ponential size on the length of the program, thus
compromising any hope of automating the verification
process [1]. Fortunately, it is now well understood how
to prevent this explosion. It has also been understood
that splitting VCs into smaller formulas may help the
performance of theorem provers [2].

• The above issues have to do with the “quality” of the
sets of VCs generated, with impact on the feasibility
of the automated proofs. Other aspects have to do with
being able to identify the particular execution paths
that cause them. A method for producing VCs that
facilitates this is advisable for debugging applications.



• Finally, let us recall that a failed verification may be due
not only to an incorrect program, but also possibly to
inadequate annotations (the user may have provided an
‘invariant’ annotation that is not in fact an invariant).
Complementing the automated verification techniques
with interactive features can help the users find the
appropriate annotations.

Contributions of this paper: The main goal of the
present paper is to investigate how forward propagation
and backward propagation methods can be combined to
generate verification conditions (for the sake of space, all
the propositions, lemmas and their proofs are ommitted but
can be found in [3]).

In particular, the properties of labeled CFGs (CFGs
whose edges have labels corresponding to assertions prop-
agated from the specification of a given block) are studied
in the context of contract-annotated procedures. It is shown
how these graphs can be used for generating verification
conditions in a way that:

1) combines forward propagation of preconditions and
backward propagation of postconditions, thus bringing
together the advantages of forward and backward
reasoning;

2) allows for a closer relation with error paths;
3) can be implemented either based on pre-defined strate-

gies or interactively (user-guided VC generation);
4) lends itself to visualization applications.

Structure of the paper: Section II introduces our
setting; Section III introduces the definition of Labeled
Control Flow Graph; Section IV introduces the definition
of Verification Graph and how to use it in interactive
verification; Section V introduces GamaSlicer and explains
how interactive verification works in practice; Section VI
describes a number of applications of our approach; and
Section VII closes the paper.

II. SETTING

The general framework to which we adhere in this paper
is the verification of programs based on their contracts.
The Design by Contract (DbC) approach to software de-
velopment [4] facilitates modular verification and certified
code reuse. The contract of a component (or procedure, or
method) can be regarded as a form of enriched software
documentation that specifies the behaviour of that compo-
nent. The development and broad adoption of annotation
languages for the most popular programming languages
reinforces the importance of using DbC principles in the
development of programs. These include for instance the
Java Modeling Language (JML) [5]; Spec# [6], a formal
language for C# contracts; and the SPARK [7] subset of
Ada.

The Language Syntax: To illustrate the ideas presented
in the following sections we use a simple programming
language. Its syntax is defined in Figure 2, in two levels
(x and p range over sets of variables and procedure names
respectively). First we form blocks (or sequences) of com-
mands, which correspond to programs of a standard While
programming language. These include skip, assignment,
conditionals, loops, and a procedure call command. Each
loop is additionally annotated with an assertion, interpreted
as a loop invariant. The language of assertions extends
boolean expressions with implication and first-order quan-
tification. Procedures can then be defined, consisting of
a block of code annotated with two assertions that form
the procedure’s specification, or contract. A program is
a non-empty sequence of (mutually recursive) procedure
definitions.

Verification Conditions: In practice, working program
verification systems require users to provide the invariants
as annotations in the code, and then employ a backward
propagation strategy to construct derivations. In fact, these
derivations do not even need to be explicitly constructed:
an algorithm can be used that takes as input a piece of
annotated code together with a specification, and produces a
set of first-order proof obligations ensuring that a derivation
exists. Such an algorithm is usually known as a verification
conditions generator (VCGen).

A VCGen for the annotated programs of Figure 2 is
defined in Figure 1. In brief, the function wprec calculates
the weakest precondition of a block, except in the case of
loops, for which it simply returns the annotated invariant
(hopefully an approximation of the weakest precondition,
which would be given as a least-fixpoint solution to a
recursive equation). Note that it may well be the case that
this annotation is not in fact an invariant; even if it is an
invariant, it is possible that it is not sufficiently strong to
allow Q as a postcondition of the loop; on the other hand, the
annotation does not need to be the weakest of all sufficiently
strong invariants, and often is not.

The function wvc collects, for every loop in the block,
additional conditions required to establish that the annotation
is indeed an invariant, and that it is sufficiently strong for
the loop to attain the desired postcondition. An additional
verification condition is added to the set VCGw(P, S, Q),
stating that the precondition P must be stronger than the
assertion propagated backward from Q through the block
S.

We remark that this set of VCs is constructed following a
strategy that propagates the postcondition Q backwards; the
function wvc collects the side conditions of an implicit Hoare
logic tree. When considering a block of the form C ; S, the
corresponding Hoare logic rule dictates that two derivations
should be recursively considered for C and S. The strategy
first considers the rightmost branch corresponding to the
block S with the given postcondition Q, and then the



VERIFICATION CONDITIONS OF A BLOCK:

BACKWARD PROPAGATION:

VCGw
(P, S, Q) = {P → wprec(S,Q)} ∪ wvc(S,Q)

wprec(skip, Q) = Q

wprec(x := e,Q) = Q[e/x]

wprec(if b then St else Sf , Q) = (b→ wprec(St, Q)) ∧ (¬ b→ wprec(Sf , Q))

wprec(while b do {I}S,Q) = I

wprec(call p, Q) = ∀ xf . (∀ yf .pre(p)[yf/y]→ post(p)[yf/y, xf/x])→ Q[xf/x]

wprec(C;S,Q) = wprec(C,wprec(S,Q))

wvc(skip, Q) = ∅
wvc(x := e,Q) = ∅

wvc(if b then St else Sf , Q) = wvc(St, Q) ∪ wvc(Sf , Q)

wvc(while b do {I}S,Q) = {I ∧ b→ wprec(S, I), I ∧ ¬b→ Q} ∪ wvc(S, I)

wvc(C;S,Q) = wvc(C,wprec(S,Q)) ∪ wvc(S,Q)

FORWARD PROPAGATION:

VCGs
(P, S, Q) = svc(S,Q) ∪ {spost(S, P )→ Q}

spost(skip, P ) = P

spost(x := e, P ) = ∃ v. P [v/x] ∧ x = e[v/x]

spost(if b then St else Sf , P ) = spost(St, P ∧ b) ∨ spost(Sf , P ∧ ¬ b)
spost(while b do {I}S, P ) = I ∧ ¬ b

spost(call p, P ) = ∃ xf . P [xf/x] ∧ (∀ yf .pre(p)[yf/y, xf/x]→ post(p)[yf/y])

spost(C;S, P ) = spost(S, spost(C,P ))

svc(skip, P ) = ∅
svc(x := e, P ) = ∅

svc(if b then St else Sf , P ) = svc(St, P ∧ b) ∪ svc(Sf , P ∧ ¬ b)
svc(while b do {I}S, P ) = {P → I, spost(S, I ∧ b)→ I} ∪ svc(S, I ∧ b)

svc(call p, P ) = ∅
svc(C;S, P ) = svc(C,P ) ∪ svc(S, spost(C,P ))

y is a sequence of the auxiliary variables of p, x is a sequence of the program variables occurring in body(p)
xf and yf are sequences of fresh variables, t[e/x]denotes the parallel substitution t[e1/x1, . . . , en/xn]

wpreck(S,Q) = wprec(Ck ; . . . ; Cn, Q) spost0(S, P ) = P

wprecn+1
(S,Q) = Q spostk(S, P ) = spost(C1 ; . . . ; Ck, P )

wvck(S,Q) = wvc(Ck ; . . . ; Cn, Q) svc0(S, P ) = ∅

wvcn+1
(S,Q) = ∅ svck(S, P ) = svc(C1 ; . . . ; Ck, P )

VERIFICATION CONDITIONS OF A PROGRAM:
Verif(Π) =

⋃
p∈P(Π)

VCGw
(pre(p), body(p), post(p))

or

Verif(Π) =
⋃

p∈P(Π)

VCGs
(pre(p), body(p), post(p))

Figure 1. Generation of Verification Conditions



Assert 3 A ::= b | true | false | A ∧ A | A ∨ A | ¬A | A→ A | ∀ x.A | ∃ x.A

Comm 3 C ::= skip | x := e | if b then S else S | while b do {A, ev}S | call p

Block 3 S ::= C | C ; S

Proc 3 Φ ::= pre A post A proc p = S

Prog 3 Π ::= Φ | Π Φ

Figure 2. Programming language syntax

branch corresponding to C, with postcondition wprec(S,Q).
Thus the function wprec guides the strategy by selecting an
intermediate assertion propagated backwards from Q.

A similar reasoning is used to a VCGen that employees
a forward propagation strategy and it is also shown in
Figure 1.

III. LABELED CONTROL FLOW GRAPHS

This section introduces the notion of control flow graph
annotated with pairs of assertions and properties of these
Labeled Control Flow Graphs (LCFG) are studied. It will be
explained how they can be used as a basis for the interactive
generation of verification conditions.

Definition 1 (Labeled Control Flow Graph): Given a
program S, precondition P and postcondition Q such
that S = C1 ; . . . ; Cn, the labeled control flow graph
LCFG(S, P,Q) of S with respect to (P,Q) is a labeled
directed acyclic graph (DAG) whose edge labels are pairs
of logical assertions on program states. To each command
C in the program S we associate an input node IN (C) and
an ouput node OUT (C).

The graph is constructed as follows:

1) Each command Ci in S will be represented by one (in
the case of skip and assignment commands) or two
nodes (for conditional and loop commands):

• If Ci is skip or an assignment command, there
is a new node Ci in the graph.
We set IN (Ci) = OUT (Ci) = Ci.

• If Ci = if b then St else Sf , there are two new
nodes if (b) and fi in the graph.
We set IN (Ci) = if(b) and OUT (Ci) = fi .

• If Ci = while b do {I}S or Ci =
while b do {I, ev}S, there is two new nodes
do(b) and od in the graph.
We set IN (Ci) = do(b) and OUT (Ci) = od .

2) Let LCFG(S, P,Q) also contain two additional nodes
START and END .

3) Let LCFG(S, P,Q) contain an edge
(OUT (Ci), IN (Ci+1)) for i ∈ {1, . . . , n − 1},
and two additional edges (START , IN (C1)) and
(OUT (Cn),END). The labels of these edges are set

as follows:

lb (START , IN (C1)) = (spost0(S, P ),wprec1(S,Q))

= (P,wprec1(S,Q));

lb (OUT (Ci), IN (Ci+1)) = (sposti(S, P ),wpreci+1(S,Q));

lb (OUT (Cn),END) = (spostn(S, P ),wprecn+1(S,Q))

= (spostn(S, P ), Q).

4) For i ∈ {1, . . . , n}, if Ci = if b then St else Sf , we
recursively construct the graphs

LCFG(St, b ∧ sposti−1(S, P ),wpreci+1(S,Q))

and

LCFG(Sf , ¬ b ∧ sposti−1(S, P ),wpreci+1(S,Q))

These graphs are grafted into the present graph by
removing their START nodes and setting the origin
of the dangling edges to be in both cases the node
IN (Ci), and similarly removing their END nodes
and setting the destination of the dangling edges to
be the node OUT (Ci).

5) For i ∈ {1, . . . , n}, if Ci = while b do {I}S, we
recursively construct the graph

LCFG(S, I ∧ b, I)

or

LCFG(S, I ∧ b ∧ ev = x0, I ∧ ev < x0)

if a loop variant is present, i.e. Ci =
while b do {I, ev}S (x0 is a fresh variable).
This graph is grafted into the present graph by re-
moving its START node and setting the origin of the
dangling edge to be the node IN (Ci), and similarly
removing its END node and setting the destination of
the dangling edge to be the node OUT (Ci).

Clearly every subprogram Ŝ of S is represented by a
subgraph of LCFG(S, P,Q) delimited by a pair of nodes
START / END , if /fi , or do/od . The basic intuition of
labeled CFGs is that for every pair of consecutive com-
mands Ĉi, Ĉi+1 in Ŝ, there exists an edge (Ĉi, Ĉi+1)
in LCFG(S, P,Q) whose label consists of the strongest
postcondition of the prefix of Ŝ ending with Ĉi, and the
weakest precondition of the suffix of Ŝ beginning with



Ĉi+1, with respect to the local specification (P̂ , Q̂) of Ŝ
propagated from (P,Q).

If loops are annotated with variants, this is taken into
account when constructing the subgraph corresponding to
the loop’s body (point 5 of the definition). So we now have
that |= VCGwt (P, S,Q) implies |= φ → ψ for every label
(φ, ψ) in the graph.

IV. VERIFICATION GRAPHS

In this section the notion of Verification Graph and its
properties are studied. In particular, it is shown how the
LCFG previously introduced can be used for interactive
verification.

Definition 2 (Verification Graph): Let Π be a program
and p ∈ P(Π) a procedure of Π. Then the verification graph
of p, VG(p), is the graph
LCFG(body(p),pre(p),post(p)). A formula φ → ψ
such that (φ, ψ) is the label of an edge in the verification
graph of p will be called an edge condition of p. EC(p)
will denote the set of Edge Conditions of procedure p.

Naturally, we may also speak of the set of verification
graphs of a program Π, which is the set of verification graphs
of all its procedures.

After defining the concept of Verification Graph, it is
possible to prove the following lemmas [3]:

Lemma 1: Let S be a block of commands and P , Q
assertions.

Then VCGw(P, S, Q) ⊆ EC(LCFG(S, P,Q)).
This lemma implies that the verification graph of a proce-

dure contains a set of verification conditions for it (generated
using weakest preconditions exclusively).

What is obtained is a control flow graph annotated with
assertions (the edge conditions) from which different sets
can be picked whose validity is sufficient to guarantee the
correctness of the procedure. Each particular set corresponds
to one particular verification strategy, mixing the use of
strongest postconditions and weakest preconditions. The
reason why there are different choices is that many edge
conditions in the same graph are equivalent.

Every block of code in a procedure is represented as a
set of paths in its verification graph (a single path if the
block contains no branching), and the label of each edge in
the path consists of the strongest postcondition of a prefix
and the weakest precondition of a suffix of the block, with
respect to its local specification. Now it is easy to see that
in the case of atomic commands, the labels of adjacent
edges correspond to equivalent assertions, and in the case
of conditional commands it is the conjunction of labels of
the branching edges that is equivalent to the adjacent edge.

In a block not containing loops and conditionals, it is
equivalent to check the validity of any edge condition in the
block’s path in the verification graph. If the block contains
conditionals, it is indifferent to verify (i) an edge condition in
the path before the conditional, or (ii) two edge conditions,

one for each branch path, or (iii) an edge condition in the
path after the conditional.

One way to formalize this is to assign a status to each
edge. Colors green and black will be used for this. The
idea is that the edges whose conditions are known to be valid
(because they have been checked with a prover) are set to
green, and we let this “checked” status propagate along the
edges of the verification graph. If all edges become green
then the procedure has been successfully verified.

Definition 3 (Edge Color in a Verification Graph):
Given a procedure p let E be the set of edges of its
verification graph and consider a subset A ⊆ EC(p) of its
edge conditions. The function colorA : E → {black,green}
is defined as follows, where we write

O
(φ,ψ)→ D

for the edge with source O, destination D, and label (φ, ψ)
(the label may be omitted when not relevant).

• If φ→ ψ ∈ A, then colourA(O
(φ,ψ)→ D) = green

• If O corresponds to an atomic command and
colourA(N → O) = green for some node N , then
colourA(O → D) = green

• If D corresponds to an atomic command and
colourA(D → N) = green for some node N , then
colourA(O → D) = green

• If O is an “if ” node and colourA(N → O) = green
for some node N , then colourA(O → D) = green
(note there are two such D for each node)

• If D is an “if ” node and colourA(D → N1) = green
and colourA(D → N2) = green for some nodes N1,
N2 (N1 6= N2), then colourA(O → D) = green

• If O is an “fi” node and colourA(N1 → O) = green
and colourA(N2 → O) = green for some nodes N1,
N2 (N1 6= N2), then colourA(O → D) = green

• If D is an “fi” node and colourA(D → N) = green
for some node N , then colourA(O → D) = green
(note there are two such O for each node)

• Otherwise colourA(O → D) = black

The green color propagates freely through atomic com-
mand nodes in either direction. In branching nodes, it
propagates from outside the conditional command into both
branches; in the reverse direction, it will only propagate
outwards when both branch edges are green.

A third color red could be additionally considered, for
edges whose conditions have been proved to be invalid. For
interactive verification, this would have the advantage of
identifying the segments of the code where problems exist.
red would also propagate freely across atomic command
nodes; it would not propagate into conditional branches
(since only one branch is known to have an invalid VC),
but it would propagate outwards from any conditional branch
(without requiring the other branch to also be red).



While loops have not yet been discussed. Each loop is
represented by a pair of nodes do, od , and a path or set
of paths from the former to the latter, corresponding to the
loop’s body. In do and od nodes there exists no equivalence
between the edge conditions of the incoming and outgoing
edges. Consider the subgraph

A
(φ1,ψ1)→ do

(φ2,ψ2)→ . . .
(φ3,ψ3)→ od

(φ4,ψ4)→ B

Then φ1 → ψ1 is the loop initialization VC, φ2 →
ψ2, . . . , φ3 → ψ3 are invariant preservation VCs, and
φ4 → ψ4 is the VC ensuring that the postcondition is granted
by the invariant. Unlike the case of atomic command or
branching nodes, in the presence of do / od nodes it is
necessary to establish independently the validity of these
VCs. In terms of coloring, these nodes block the propagation
of the green color.

A consequence of this is that in the presence of an
arbitrary path A

(φ1,ψ1)→ B → . . . → C
(φ2,ψ2)→ D if the

path contains no loop nodes, then φ1 → ψ1 ≡ φ2 → ψ2,
otherwise the equivalence does not hold: each loop intro-
duces the need to prove three independent VCs.

V. INTERACTIVE VERIFICATION USING GAMASLICER

To illustrate that all the concepts introduced in this
paper work in practice we developed GamaSlicer [8].
GamaSlicer includes both traditional and interactive verifica-
tion functionality and also a highly parameterizable semantic
slicer [9] for Java programs annotated in JML [10].

Since the underlying logic of slicing algorithms as well
as the VCGen is first-order logic, the tool outputs proof
obligations written in the SMT-Lib (Satisfiability Modulo
Theories library) language. It was chosen SMT-Lib since it
is nowadays the language employed by most provers used in
program verification, including, among many others, Z3 [11]
and Alt-Ergo [12].

To understand how interactive verification works, consider
the fragment of a program used to calculate the income taxes
in the United Kingdom1 (method TaxesCalculation in
Listing 1). Consider as precondition P = age ≥ 18 and as
postcondition Q = personal > 5750. A careful observation
of the method allows one to detect problems, as in some
circumstances the result value of personal can in fact be
less than 5750. If one decides to check whether the program
is correct or not using a standard VCGen algorithm like
the one presented in Figure 1, the result is a single VC,
too big and complex to be understandable (the resulting
verification condition is shown in Figure 3). It could be
hard to understand what is causing the incorrectness of the
program just by looking at the VC and the output of the
prover.

1The complete source code of this program can be found in [13] and has
been used as a benchmark test for slicing algorithms based on assertions.

� �
1 i f ( age >= 75) then
2 p e r s o n a l := 5980
3 e l s e
4 i f ( age >= 65) then
5 p e r s o n a l := 5720
6 e l s e
7 p e r s o n a l := 4335
8

9 i f ( ( age >= 65) and ( income > 1 6 8 0 0 ) ) then
10 t := p e r s o n a l − ( ( income − 1 6 8 0 0 ) / 2 )
11 e l s e
12 i f ( t > 4335) then
13 p e r s o n a l := t + 2000
14 e l s e
15 p e r s o n a l := 4335� �

Listing 1. Program TaxesCalculation

The software engineer responsible for finding the bugs
would start by visualizing the entire verification graph for
the program under consideration and then would select a
part of the graph to start checking it. Zooming-in on the
subgraph correspondent to the second conditional statement
in the method, suppose that the user select the last edge
inside the then branch. The edge condition sent to the prover
is:

∃v0 : age ≥ 65 && income > 16800 && t > 4335
&& personal == t+ 2000→ personal > 5750

which the prover identifies as being valid.2 Thus, the edges
inside the branch and the assignment statement are shown in
green and the if /fi nodes remain black (Figure 4), according
to the coloring rules in Definition 3. This means that the
statements inside the then branch are not the cause of failure.
If we now pick the last edge inside the else branch, the
following condition is sent to the prover:

∃v0 : age ≥ 65 && income > 16800 && t > 4335
&& personal 6= t+ 2000→ personal > 5750

The result returned by the prover is now that the condition
is not valid. Thus, the edges inside the branch, the assign-
ment node, and the if /fi nodes all become red (Figure 5). At
this step, we learn that the statement in this path is causing
the procedure to be incorrect.

In fact this is not the only problem in this procedure.
Repeating this process for the inner conditional inside the
first one, we can observe that the statement personal = 5720
is also preventing the program from being correct.

In order to assist the software engineer, during the interac-
tive verification of a program, several features are available
in order to make this process more intuitive and user friendly.
Once an edge is chosen (by clicking on it), the condition

2In fact it is the negation of this formula that is sent to the SMT solver,
which returns unsat, meaning that the original formula is valid.



((age ≥ 18)→ (((age ≥ 75)→ ((((age ≥ 65) ∧ (income > 16800))→ ((((5980− ((income− 16800)/2)) > 4335)→ (((5980−
((income− 16800)/2)) + 2000) > 5750)) ∧ ((!((5980− ((income− 16800)/2)) > 4335))→ (4335 > 5750)))) ∧ ((!((age ≥ 65)

∧ (income > 16800)))→ true))) ∧ ((!(age ≥ 75))→ (((age ≥ 65)→ ((((age ≥ 65) ∧ (income > 16800))→ ((((5720−
((income− 16800)/2)) > 4335)→ (((5720− ((income− 16800)/2)) + 2000) > 5750)) ∧ ((!((5720− ((income− 16800)/2)) > 4335))

→ (4335 > 5750)))) ∧ ((!((age ≥ 65) ∧ (income > 16800)))→ true))) ∧ ((!(age ≥ 65))→ ((((age ≥ 65) ∧ (income > 16800))

→ ((((4335− ((income− 16800)/2)) > 4335)→ (((4335− ((income− 16800)/2)) + 2000) > 5750)) ∧ ((!((4335− ((income− 16800)/2))

> 4335))→ (4335 > 5750)))) ∧ ((!((age ≥ 65) ∧ (income > 16800)))→ true)))))))

Figure 3. Verification condition for the TaxesCalculation program

sent to the prover is shown in a Verification list, at the
bottom of the window (Figures 4 and 5). The user is free
to expand/collapse this list. When clicking on a list item,
the edges/nodes related with the condition are momentarily
highlighted. Also, in order to keep track of the edge condi-
tions previously considered, complementing the Verification
list, an history of images (also expandable/collapsable) is
shown on the right (Figures 4 and 5). Once the selected
condition has been processed, and according to the result
returned by the prover, the current edge is colored: red if
the prover returned false, green in case of true and yellow
when the returned value is unknown.

Nodes in the graph will also be displayed in color, as
follows: a node is shown in green if all its incoming and
outgoing edges are green; it is shown in red if at least one of
its incoming and outgoing edges is red; it is shown in black
otherwise (i.e. no red edges and at least one black edge).
For instance when an if node is shown in green, this means
that the edge condition of the incoming edge is valid, i.e.
the precondition of the corresponding conditional statement
poses no problems.

In the traditional approach, to understand which state-
ments are leading to the incorrectness the software engineer
must debug the program manually. However, this is not
the desirable way. Although the considered program in this
section is of small size, when dealing with larger programs
this process becomes hard, boring and error prone. An
interactive verification may help us to find the statements
that prevent the program from being correct.

VI. APPLICATIONS

Intermediate Conditions: A feature that can increase
even more the advantages of interactivity is the possibility
to check conditions inserted at arbitrary points of the ver-
ification graph. An intermediate assertion must hold at the
point where it is inserted, and provides information that can
be used subsequently. Introducing assertions in a verification
graph can be a great help when automation fails; they act as
lemmas that are easy to prove but may then allow for more
difficult VCs to be discharged automatically.

Automatic Error Path Discovery: An alternative ap-
proach to generating verification conditions is based on
symbolic execution [14]. For programs in single-assignment

form, symbolic execution is very closely related to strongest
postcondition calculations. But a defining characteristic of
symbolic execution is that it generates one formula for each
execution path of the program.

Symbolic execution VCs with respect to a specification
(P,Q) can be generated in a straightforward manner for
single-assignment programs without loops: it suffices to
traverse the CFG from START to END , constructing a
conjunctive formula as follows: let P initially be the given
precondition. For each node with label x := e crossed,
let P become P ∧ x = e; for each node with label if(b)
crossed towards the then (resp. else) branch, let P become
P ∧ b (resp. P ∧ ¬ b). When END is reached, generate the
verification condition P → Q. Repeat until all paths have
been traversed (using a depth-first strategy).

Of course, this method may generate an exponential
number of VCs on the length of the block (as many as
there are execution paths). But it does have one significant
positive aspect, which is the fact that there exists a direct
association between VCs and error traces: if one of the above
conditions were shown to be invalid, it would immediately
be known which execution path of the program produced an
error; moreover, the number of erroneous paths would also
be known.

State of the art VCGens solve this problem by instru-
menting the VCs with additional labels and reading back
the counter-examples generated by the automatic provers,
which can then be mapped to execution traces. Verification
graphs offer an alternative solution to this problem, which
can be used with any prover, even when counter-examples
are not available. Recall that the validity of the condition
of an edge e implies that there is no error in any of the
execution paths containing e; if the condition is invalid this
means that at least one of the execution paths containing
e is erroneous. Thus it is straightforward to conceive an
algorithm for identifying error traces.

The algorithm identifies error paths by performing a
depth-first traversal of the verification graph and invoking an
external proof tool. Whenever a branching node with label
if(b) is met, the algorithm first follows the then branch, and
will later follow the else branch. For each branch explored,
the condition of the first edge is checked. If it is valid, the



traversal backtracks, since no execution path containing the
edge produces errors. If not, the traversal is continued in
order to identify the error paths containing the present edge.
An error path is found when END is reached (or when no
more if nodes can be met from the current node to END).

Note that even though the number of execution paths
is exponential, this technique is feasible if the number of
error paths is small, since each condition checked as valid
will reduce by half the number of paths left to explore. In
particular, if a single error path exists, finding it requires
checking a linear number of conditions on the length of the
block.

Verification Condition Splitting: For the case of VCs
based on weakest preconditions, it has been shown [2]
that splitting VCs (i.e. having a bigger number of smaller
conditions) can in certain circumstances lead to substantial
improvements with respect to the performance of an SMT
solver, and also with respect to the quality of the error mes-
sages produced when verification fails. The authors reach the
conclusion that some splitting may dramatically improve the
running time of the prover (bringing it to reasonable values
when it was initially unfeasible), but too much splitting may
have a negative effect.

Verification graphs offer a method for identifying split
versions of a procedure’s VCs, when forward propagation
and backward propagation are combined, which is com-
patible with the optimizations allowed by passive / single-
assignment programs. In particular the dynamic splitting
strategy suggested in [2] prescribes that one should first try
to prove a single VC for the entire block. The prover is
given a time-out limit, after which the VC should be split
and the two resulting VCs sent to the prover (again with a
time-out limit), and so on. This can be readily formulated as
a forward or a backward splitting strategy on the verification
graph: one starts with the edge condition of the edge with
origin START , or of the edge with destination END , and
follows the branching structure of the CFG in the forward
or backward direction.

But the graph would also allow one to identify the points
of the program where the level of splitting is maximal.

VII. CONCLUSION

In this paper, we propose an alternative approach to
the traditional verification of programs based on labeled
control flow graphs. The proposed technique is then to
show the whole or a single part of the LCFG to help the
software engineer, in a interactive way, to exclude the correct
statements and focus on the wrong ones in order to fix the
existing bugs.

Graph-based generation of VCs has already been used
in the context of the verification of reactive systems: Manna
and colleagues introduced the notion of temporal verification
diagram [15] to represent a proof that a system enjoys a
given property, expressed as a temporal logic formula. The

idea is that such a diagram, whose edges are labelled by
sets of transitions, corresponds to an approximation of the
computations of a transition system. A set of (first order)
verification conditions is produced from the diagram such
that, if all VCs are valid, the system is guaranteed to satisfy
the property under consideration.

Although this approach could seem inefficient due to the
propagation of both precondition and postcondition along the
edges, it is not computationally costly when compared with
the cost of automatic proof, and although verification graphs
contain redundancy (since many equivalent edge conditions
may be present), this is not reflected in the proof process
itself, as a precise criterion can be used to select sets of
conditions not containing redundancy. We can optimize the
construction of verification graphs to reduce redundancy: for
a given verification strategy based on graphs, assertions can
be propagated lazily. For instance, with a forward propa-
gation strategy, the spost labeling needs not be propagated
at all since only the first edge condition in each path is
required. With a user-directed strategy, in which the user
manually selects the edges in the graph whose conditions
will be checked (for instance with the help of a visual front-
end), the propagation can be directed by the user’s selection
on demand. The result is that only one of the labelings is
calculated for each edge, with the exception of edges whose
conditions will be checked.

This interactive approach is thus useful when a program
is incorrect and we want to detect which part of the program
is causing such problems. Using this approach, step-by-step
the software engineer will identify the statements that are
violating a given contract. The software engineer can change
iteratively the contracts and perform again the same steps
until he gets a fully verified program (all nodes in graph
colored in green).

As future work, we intend to automatize the discovery of
the error paths. This way, the work of Software Engineers
will be even more reduced. A possible way to do this, would
be to start by the more internal edges in a given program
and color the graph according to the rules presented in
Definition 3.
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Figure 4. Verifying the Edge Conditions of Verif. Graph for TaxesCalculation program (1)

Figure 5. Verifying the Edge Conditions of Verif. Graph for TaxesCalculation program (2)


