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Abstract—In recent years, mobility models have been recon-
sidered based on findings by analyzing some big datasets collected
by GPS sensors, cellphone call records, and Geotagging. To un-
derstand the fundamental statistical properties of the frequency
of serendipitous human encounters, we conducted experiments
to collect long-term data on human contact using short-range
wireless communication devices which many people frequently
carry in daily life. By analyzing the data we showed that the
majority of human encounters occur once-in-an-experimental-
period: they are Ichi-go Ichi-e. We also found that the remaining
more frequent encounters obey a power-law distribution: they
are scale-free. To theoretically find the origin of these properties,
we introduced as a minimal human mobility model, Homesick
Lévy walk, where the walker stochastically selects moving long
distances as well as Ĺevy walk or returning back home. Using
numerical simulations and a simple mean-field theory, we offer a
theoretical explanation for the properties to validate themobility
model. The proposed model is helpful for evaluating long-term
performance of routing protocols in delay tolerant networks
and mobile opportunistic networks better since some utility-
based protocols select nodes with frequent encounters for message
transfer.

Keywords—Mobility models, Contact frequency, Ichi-go Ichi-e,
Power law, and Delay Tolerant Networks.

I. I NTRODUCTION

In recent years, many kinds of human-carried mobile
devices, such as smartphones and tablets, that enable many
high-tech sensors and wireless communications have been
increasingly pervasive throughout the world. Because mostof
the people in the world usually carry these devices in their
lives, their activity logs, such as places where they visit and
persons who they are connected with, can be easily recorded
using GPS, cellphone call, and Geotagging. We are living in
the era of Big data: by analyzing collections of data on people’s
activity, big companies can take advantage of success in their
businesses. Also, academic researchers can investigate human
activities and social behaviours in more details than ever.For
example, some recent studies based on the analysis of Big
data of human mobility patterns have revealed that human
behavior is easily predictable because human mobility is biased
in general [1], [2]. This result shows that human mobility is
far from random, but is ordered.

In parallel with the understanding of human mobility
patterns, recently, many researchers become actively engaged
in studies on mobility models, and many mobility models have
been proposed [3], [4]. Traditional mobility models, such as
Random Walk (RW), (truncated) Lévy Walk (LW), Random
WayPoint (RWP), are simple and basic: they can easily be used
for numerical simulations in general purposes, but they arefar
from real human mobility patterns. Therefore, newly proposed
models have become more realistic and complicated : They
includes more parameters to explain many statistical properties
on human mobility patterns and social effects, thus they
resultingly consume more memory space as simulation time
progresses, such as SLAW [5]. The more a model explains,
however, the harder it gets to use for the simulations with a
large number of walkers in general.

These mobility models are often used for evaluating per-
formance of routing protocols in Delay Tolerant Networks
(DTNs) [19] and Mobile Opportunistic Networks (MON) [6],
[7]. To evaluate the performance in systems with a large
number of mobile nodes, we need to select a balanced mobility
model properly. Because the above routing protocols are often
contact-based ones, the model doesn’t necessarily preserve
real mobility patterns, but it must have real contact patterns.
In the context of information communication networks, many
researchers frequently mention statistical properties oninter-
contact time (or inter-meeting time) to select the model. But,
we would argue in this paper that statistical properties on
contact frequencyis also an important factor to properly select
the mobility model.

By the way, there is a famous Japanese proverb closely
related with the frequency of human contacts which is called
Ichi-go Ichi-e. This proverb is literally translated as “One
chance in a lifetime” or more specifically as “Treasure every
encounter, for it will never recur.” This phrase is closely
associated with the history of the tea ceremony of Japan.Sen
no rikyū (1522-1591), the famous tea master during the age of
the provincial wars, originally taught this proverb to his pupils
in the spirit of good service. Later, at the end of the Edo
Period,Ii Naosuke(1815-1860), an accomplished practitioner
of the Japanese tea ceremony, rediscovered and reconsidered
this lesson as it is known today.
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We know from experience that to meet with someone
(or something) is sometimes very precious, and we might
wonder about how often we have once-in-a-lifetime meetings
in our daily lives or whether there is any statistical law that
governs our meetings with people (or things). To the best
of our knowledge, no scientific study has answered these
questions because of the difficulty of collecting long-termdata
concerning human contact. However, given the recent advances
in mobile wireless communication technologies, studies onthe
statistical physics of serendipitous human encounters cannow
be undertaken.

Our research group collected data concerning daily human
contact using Bluetooth and Wi-Fi wireless communication
technologies. Today, billions of electronic devices equipped
with Bluetooth and Wi-Fi are used throughout the world. Most
of these devices are light and mobile, including mobile PCs and
phones, PDAs, tablets, and portable game machines. Therefore,
they tend to be carried at almost all times. In addition, the
communication range of Bluetooth and Wi-Fi is usually on
the order of several meters, which is nearly the same as
the range that humans can see when observing those around
them. Thus, by scanning and logging nearby Bluetooth and
Wi-Fi devices, we can collect reasonably well-sampled data
concerning human encounters. In this case, here,encounter
should be defined as a state that other humans having the
device happen to come close within several dozen of meters at
a maximum distance of its communicable range. In our exper-
iment, we used PDAs and smartphones to continuously scan
once every twenty seconds and to record pairs of time stamps
and MAC addresses of detected devices, which indicated when
a participant of the experiment encountered other people. A
sample data logging software that our group uses is available
as an open-access application for Android OS [8]. To calculate
the contact frequency, we need to give a threshold valueθm
where two consecutive device detections whose interval time
is less than the threshold value are within the same encounter.
In this research, we giveθm = 1[hour] as a choice, but we
also have checked that varying the choice of the threshold
from some minutes to some hours is not sensitive for the
whole contact frequency. After conducting our experiment,we
obtainedLong data(rather than a recent buzzwordBig data)
whose experimental period is between a minimum of several
months and a maximum of more than two years. (See Table I
and II). A dozen of people (university teachers, students, and
company workers) participated and in total more than 50,000
different devices are detected in the experiment.

In this paper, by analyzing the collected experimental
data, we exhibit two basic statistical properties of human
contact frequency in the long data of human serendipitous
encounters: (1) the property of Ichi-go Ichi-e, under which
most human encounters occur once-in-a-experimental-period,
and (2) the scale-free property of the remaining more frequent
meetings. We can find that these properties clearly emerge
for each individual when analyzing the Long Data. Inversely,
it is difficult to observe these properties by analyzing short-
term data even if they are categorized into the Big Data. To
theoretically explain the origin of these statistical properties
observed in the experiment, we furthermore propose “Home-
sick Lévy Walk” as a simple mobility model. This is a minimal
stochastic model of human mobility that traces whether the
walker stochastically selects moving long distances as well as

the Lévy walk [9], or returning back home as a minimum
social effect. In order to validate the mobility model, we offer
a theoretical explanation for the properties of human contact
using numerical simulations and a simple mean-field theory,
which is the main contribution of the paper.

The rest of the paper is organized as follows. In Section II,
we show the experimental results of analyzing collected data
with Bluetooth and Wi-Fi opportunistic communications. In
Section III, we propose a minimal stochastic model of human
mobility patterns as a way to simultaneously explain both the
two basic statistical properties. In Section IV, we perform
numerical simulations to show that the minimal model can ex-
plain these properties. Section V demonstrates a simple mean-
field theory to explain the emergence of these properties. We
summarize our work, discuss future directions, and comment
on an application of the model to performance evaluation of
routing protocols in Delay Tolerant Networks in Sections VI
and VII.

II. EXPERIMENTAL RESULTS

First, we defineR(t) as the ratio of one-time meetings
to all meetings until timet. The ratio of Ichi-go Ichi-e
(once-in-a-lifetime meetings) to all encounters can also be
denoted asR(t) at t = T where T is the end of life.
Some typical time variations inR(t) during the experiment
are shown in Fig. 1. Although the initial patterns ofR(t) vary
strongly from one individual to the next, all of them stabilize
as time progresses. Therefore, we may roughly assume that
each of the time variations inR(t) converges to some fixed
point around the ratioR(T ). Under this assumption, we may
consider the time-averaged ratio over the experimental period
denoted as〈R〉t to be approximately equivalent to the ratio
R(T ). We present the time-averaged ratio using Bluetooth,
〈Rbt〉t, and Wi-Fi, 〈Rwf 〉t, in Tables I and II, respectively.
Averaged over all participants, the percentages of Ichi-goIchi-
e meetings using Bluetooth and Wi-Fi are approximately 80-
90%, meaning that the majority of human encounters occur
once-in-an-experimental-period.

We also considered the complementary cumulative dis-
tribution function (CCDF) for human contact frequency. As
illustrated in Fig. 2, the CCDF clearly follows a power-law
distribution,

F (X ≥ x) ≡ F̄ (x) ∼ x−k, (1)

where k is a scaling exponent. Note that this power law is
satisfied only for the remaining 10-20% of encounters, those
that occur more than once for each individual. In other words,
a large gap exists betweenx = 1 and x ≥ 2 in F̄ (x).
The estimated scaling exponents of Bluetooth,kbt, and Wi-
Fi, kwf , which were determined using the experimental data,
are summarized in Tables I and II, respectively. For almost all
the participants, the estimated scaling exponents are lower than
two. Because of this, the variance of the CCDF tends to diverge
during a long experimental period. This divergence indicates
that the number of encounters that the participants meet with
people in their experimental periods has no characteristicscale.
In other words, meetings inherently exhibit extreme inequality,
making it difficult to predict how many opportunities are left
to encounter someone (or something).
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Fig. 1. Time variations in the ratioR(t) for individual participants using
(a) Bluetooth and (b) Wi-Fi (line with points) and their time-averaged ratios
〈R〉t over the experimental time (solid line). In the legends, those of four
participants (E, C, B, and A in Tables I and II) are described.

TABLE I. T HE TIME-AVERAGED RATIO OF ICHI-GO ICHI-E 〈Rbf 〉t
AND THE SCALING EXPONENTkbf FOR HUMAN CONTACT FREQUENCY

OBTAINED FROM THE BLUETOOTH DATA FOR THE TEN PARTICIPANTS.

Participant ID Experimental period 〈Rbt〉t kbt

A 2009/03/13-2011/05/31 0.89 ± 0.02 1.63
B 2009/04/28-2010/12/16 0.87 ± 0.01 1.34
C 2010/06/10-2011/08/09 0.90 ± 0.01 1.42
D 2010/09/01-2011/08/08 0.87 ± 0.01 1.25
E 2010/09/30-2011/08/10 0.92 ± 0.01 1.32
F 2010/10/18-2011/02/22 0.93 ± 0.01 1.24
G 2010/10/19-2011/03/09 0.93 ± 0.01 1.29
H 2010/10/21-2011/01/27 0.89 ± 0.01 1.39
I 2010/10/21-2011/02/03 0.87 ± 0.02 1.17
J 2010/11/10-2011/03/31 0.84 ± 0.03 2.23

III. H OMESICK L ÉVY WALK

Next, we propose a minimal stochastic model of human
mobility patterns as a way to simultaneously explain both the
Ichi-go Ichi-e and scale-free properties of human encounters.
A number of researchers have recently reported that human
mobility traces statistically exhibit the Lévy walk (LW) [10]–
[13]. A Lévy walker ind-dimensional space determines his or
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Fig. 2. CCDF for human contact frequencȳF (x) using (a) Bluetooth and
(b) Wi-Fi (dots). Least squares fitting (LSF) of each CCDF (solid line). In
the legends, those of four participants (E, C, B, and A in Tables I and II) are
described.

TABLE II. T HE TIME-AVERAGED ICHI-GO ICHI-E RATIO 〈Rwf 〉t AND

THE SCALING EXPONENTkwf FOR HUMAN CONTACT FREQUENCY

OBTAINED FROM THE WI -FI DATA FOR THE TEN PARTICIPANTS.

Participant ID Experimental period 〈Rwf 〉t kwf

A 2009/09/03-2011/05/31 0.72 ± 0.01 1.30
B 2009/09/01-2010/12/17 0.65 ± 0.02 1.27
C 2010/06/10-2011/08/09 0.77 ± 0.02 1.19
D 2010/09/01-2011/08/08 0.87 ± 0.01 1.25
E 2010/09/30-2011/08/10 0.81 ± 0.02 1.28
F 2010/10/18-2011/02/22 0.80 ± 0.03 0.94
G 2010/10/19-2011/03/09 0.82 ± 0.01 0.90
H 2010/10/21-2011/01/27 0.73 ± 0.02 1.40
I 2010/10/21-2011/02/03 0.73 ± 0.01 1.42
J 2010/11/10-2011/03/31 0.63 ± 0.01 1.42

her destination; the travel distance from the present location
l is governed by an independently and identically distributed
power-law distribution,

p(l) ∼ l−(1+β), (2)

where 0 < β ≤ 2 is the Lévy index. The direction from
the present location to the next destination location is usually



Fig. 3. Typical sample traces for Lévy walk (LW) and homesick Lévy walk
(HLW). The initial position of each walker is indicated by the grey circle,
which is assumed to be the hub of activity (or home) in the HLW scenario.

determined by the uniform distribution. This feature has been
found to be common to the mobility of humans and animals
in two-dimensional space [14]–[17].

However, the scale-free property of walk lengths is insuf-
ficient to explain the statistical properties of human contact
frequency. We numerically confirmed that the CCDF of contact
frequency for Lévy walkers in bounded two-dimensional space
generally decays exponentially at the tail. Let us considerwhat
is lacking in the ordinary Lévy walk scenario. A Lévy walker
easily travels long distances, but has difficulty returningto his
or her original position (refer to Fig. 3). In real life, however,
each participant typically frequents his or her own hub of
social activity (or his or her own home). This reality strongly
determines most of the topology of human mobility traces.
Taking into consideration the role of the hub, we propose an
extended version of the Lévy walk named the “Homesick Lévy
Walk (HLW).” In this model, after arriving at the destination
determined by the power-law walk length in Eq. (2), there
exists a certain fixed probabilityα that the Lévy walker will
becomehomesickand return home; otherwise, according to
probability (1− α), the walker will determine his or her next
destination using Eq. (2) and continue travelling. By definition,
HLW with a homesick probability ofα = 0 reduces to LW. For
the sake of convenience, we define the initial position of HLW
as home. The detailed procedure to move two-dimensional
HLW is shown in Motion Control 1. The difference between
the sample traces associated with the (simple) Lévy walk and
the homesick Lévy walk is illustrated in Fig. 3.

In the name of this model, we use the wordwalk but not
flight. In general,walk means that a walker moves with a finite
velocity to the destination, butflight means that a walker jump
instantly to the destination, which is the difference between
these words. Because we also consider serendipitous encoun-
ters on the way to the destination, we introduce homesick Lévy
walk here. But, Homesick Lévy Flight (HLF) can be defined
by a similar way with changing from walk to flight in the
model.

IV. N UMERICAL SIMULATIONS

We performed numerical simulations forN homesick
Lévy walkers in a bounded two-dimensional space. Initially,
N = 1000 walkers were uniformly distributed within a
1726[m]×1726[m] squared region. The number of the walkers
N does not change in the simulations. The density of the walk-

Motion Control 1 : (Two-dimensional) Homesick Lévy Walk
Require: Initial position: Hub of activity (or home)xhome

(The current positionxnow = xhome), Initial state: State ==
Stop; the homesick probabilityα; the scaling exponent of
the CCDF of contact frequencyβ
while TRUE (The walker is alive.)do

if State == Stop then
State == Move
if Probability:α then

Destination == Hub of activity (xdest = xhome)
else

New destinationxdest = xnow + l × (cos θ, sin θ),
wherel is determined by Eq. (2) and the angleθ
is given by the uniform distribution on[0, 2π).

end if
end if
Start moving to the destinationxnow ← xnow + ∆l×
(cos θ, sin θ), where∆l is the distance that the walker
moves in a single step.
if xnow == xhome or xdest then

State == Stop
(The walker may wait for a while.)

end if
end while

ers was determined based on the average population density
of Japan, approximately336[km−2], because all of the study
participants live mainly in Japan. The distance between the
present position and the next destination described using the
polar coordinatel = (r cos θ, r sin θ) is randomly generated
from the probability distribution function,p(l) ≡ p(r)p(θ),
where

p(r) =
βrβm
r2+β

(r > rm), p(θ) =
1

2π
(0 ≤ θ < 2π),

(3)
and the minimum travelling distancerm = 1[m]. These
equations are derived from Eq. (2) to satisfy the normalization
condition

∫∞

rm
p(l)dl = 1. We assumed that for each time-step,

all of the walkers move with a constant speedv = 1[m/s], and
a small number of walkers meet together if they are within a
fixed communication radiusc = 1[m]. We also assumed that
after a walker arrive at a destination, the walker waits a single
time-step to determine the next destination.

Next, we considered the effects of the homesick property
and long-distance travelling on the time-averaged Ichi-goIchi-
e ratio 〈R〉t and the scaling exponent of the CCDF of the
contact frequencyk, varying α and β. The typical time
evolution ofR(t) is illustrated in Fig. 4 (a). As observed in
Fig. 1, eachR(t) tends to converge as time progresses. The
time-averaged ratio〈R〉t, calculated by averagingR(t) over
the simulation time, is also plotted for the ranges0 ≤ α < 1
and 0 ≤ β ≤ 1 in Fig. 4 (b). We numerically confirmed
that 〈R〉t tends to decrease with increases inα andβ. Also,
we observe that by roughly tuning parametersα and β to
sufficiently small values, we obtain a value of more than 80%
for 〈R〉t and the numerical results becomes consistent with the
experimental ones.

In Fig. 5(a), we also present some typical CCDFs for con-
tact frequency based on the numerical results. We can clearly
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Fig. 4. (a) The typical time evolution ofR(t) in the Lévy walk (α = 0) and
the homesick Lévy walk (α > 0) determined using numerical simulations for
N = 103, T = 2.0 × 104[s], α = 0, 0.1, 0.2, 0.3, 0.4, andβ = 0.1 (lines
with dots). The time-averaged Ichi-go Ichi-e ratios〈R〉t are also included
(solid line). (b) Relationship between〈R〉t and α and β over the ranges
0 ≤ α < 1 and0 ≤ β ≤ 1.

see that the CCDF created using HLW forα > 0 obeys a
power-law distribution, whereas that created using LW (α = 0)
decays exponentially at the tail, as we mentioned before. This
exponential decay forα = 0 was observed for the entire
range,0 ≤ β ≤ 1. The results indicate that the homesickness
component of HLW is essential to the scale-free property of
contact frequencies. We also consider the relationship between
the scaling exponentk for contact frequency and forα andβ
calculated using least-squares fitting. As observed in Fig.5(b),
k has a weak decreasing trend with increasingα and β for
0 < α < 1 and 0 ≤ β ≤ 1. The most important point is that
the value ofk matches the experimental values ofkbt andkwf

in Tables I and II when we keepα (> 0) andβ small, as shown
in Fig. 5(b). As a result, we numerically demonstrate that the
HLW stochastic model can explain human contact frequency.

It should be emphasized that the contact frequencies of
Homesick Random Walk (HRW) and Homesick Random Way-
Point (HRWP) seem to be different from that of HLW as shown
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Fig. 5. (a) Typical CCDFs for contact frequency valuesF̄ (x) employing
LW and HLW in numerical simulations whereN = 103, T = 105[s], and
α = 0, 0.1, 0.2, 0.3, 0.4, β = 0 (dots) with least squares fitting (LSF) for the
CCDFs (solid line). (b) Relationship between the estimatedscaling exponent
k from the CCDFs for contact frequency andα and β for 0 < α < 1 and
0 ≤ β ≤ 1.

in Figs. 6 and 7, thus tail’s fatness of these distribution isless
than that of the power-law distribution.

V. M EAN-FIELD THEORY

Finally, we use a simple mean-field theory of HLW to
explain the emergence of these phenomena. We focus on
one walker whose home is fixed at the origin of the two-
dimensional space, whereas the other walkers are assumed
to be spatially fixed and uniformly distributed in the space.
We also define the mean-free pathλ as the averaged moving
distance that one traverses before encountering the next walker.
Because the walker continues to repeatedly travel around and
return home, the spatial existence probability of the focused
walker tends to increase as the distance from home decreases.
With this viewpoint in mind, we assume that the contact
frequency for this walker and others depends only on the
distance from homer′ and that the walker meets the same
walker at the same distance. Taking into consideration all of
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the above definitions and assumptions, we envision a scenario
in which the walker encounters a new walker whenever he
walks away from the concentric rings of widthλ whose centre
is his home. This image of meetings with walkers is used to
separate the space into many ring-shaped concentric zones in
which the walker in question meets others, as shown in Fig. 8.
We call this theconcentric zone hypothesis.

In Fig. 9(a), we present numerical results for the CCDF of
the walker’s frequency of contact with others with respect to
his distance from home and the location at which he encounters
those other individuals,̄H . We observe that the function̄H
generally obeys a power-law distribution forα > 0, especially
for the lower range ofr,

H̄(r′ ≥ r) ∼ r−β̃ , (4)

where β̃ is the power index. The cut-off of the power law
at the tail arises from the effect of spatial boundedness. For

Fig. 8. Schematic illustration of the concentric zone hypothesis.

α = 0, however,H̄ is more likely to behave like a uniform
distribution than it is to behave like a power law. Therefore,
the spatial existence probabilitȳH appears to be qualitatively
different for HLW and LW.

In Fig. 9 (b), we showed the numerical results indicating
how the power index̃β behaves given changes inα andβ. We
can see that a proportional relationship betweenβ̃ andβ,

β̃ ≃ cβ + d, (5)

is approximately satisfied for smallα and 0 ≤ β ≤ 1. The
proportionality coefficientc(α) in Eq. (5), which seems to
have a particular value whenα is fixed, tends to gradually
decrease with increasingα. These values ofc(α) for α =
0.1, 0.2, 0.3, 0.4, 0.5 varies around one.

Applying the power-law distribution of̄H to the concentric
zone hypothesis allows us to calculate the contact frequency
of the walker in thej-th concentric ring zone, denoted asxj .
For this purpose, we useh(r) ≡ −dH̄(r′ ≥ r)/dr as follows:

xj ≈

∫ (j+1)λ

jλ

h(r)rdr ∼

∫ (j+1)λ

jλ

r−(1+β̃)rdr

≃ λ2j/(jλ)1+β̃ ∝ j−β̃ . (6)

This equation directly indicates that the rank distribution of the
contact frequencies also obeys a power-law distribution whose
power index isβ̃. Whenβ remains within its small range0 ≤
β < (1 − d)/c, the power index of the rank distributioñβ
becomes less than one by Eq. (5). In this case, therefore, the
tail of the rank distribution is generally so wide that the number
of low-ranked walkers is divergent, which provides a simple
explanation of why the majority of human encounters is Ichi-
go Ichi-e.

We also consider the relationship between the rank distribu-
tion and the CCDF for contact frequency. It is well-known that
if a rank distribution obeys a power law, then its frequency also
becomes a power law. Thus, for the rank distributionxj , we
can obtain the scale-free human contact frequency. In this case,
it is also known that an inverse relationship exists betweenk
and β̃:

k = 1/β̃ ≃ 1/(cβ + d). (7)

We checked whether this inverse relation is numerically sup-
ported in Fig. 10. We can see that Eq. (7) roughly explains
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Fig. 9. (a) A typical spatial existence probability distribution H̄(r′ ≥ r)
for HLWs whereN = 103, T = 105[s], α = 0, 0.1, 0.2, 0.3, 0.4, and
β = 0.2 (dots). The power index̃β is also shown using the least-square fits
for the distribution (solid line). (b) The relationship between the parameters
α = 0.1, 0.2, 0.3, 0.4, 0.5 and0 ≤ β ≤ 1 and the estimated power index̃β
(line with dots) and their least-square fits (line).

the trend betweenk and β̃. Substituting controlled values of
0 ≤ β < (1 − d)/c into Eq. (7) yields values ofk (> 1) that
are consistent with the experimental presented in Tables I and
II.

VI. CONCLUSION

In summary, we investigated the general statistical prop-
erties of serendipitous human encounters in daily life using
portable wireless communication devices. We experimentally
determined that we can universally apply the following statisti-
cal principles to human contact frequencies among individuals:

1) The majority of human encounters occur once during
one’s experimental period and this feature seems to
continue during one’s lifetime (the property of Ichi-
go Ichi-e)

2) The remaining, more frequent encounters obey the
power-law distribution in terms of contact frequency
and its variance diverges (the scale-free property)
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Fig. 10. Relation betweenk and β̃ for α = 0.1, 0.2, 0.3, 0.4, 0.5 and
0 ≤ β ≤ 1 (dots) and the exact inverse relationship in Eq. (7) (solid line).

Because this long tail principle of human contact frequency
is universal, it is difficult to predict how many times we will
have additional opportunities to meet with people over long
periods of time. This further validates the principle of Ichi-go
Ichi-e, which teaches us to “treasure every encounter.”

To facilitate a fundamental theoretical understanding of
these principles, we introduced a novel stochastic model of
human mobility traces called the “homesick Lévy walk.” We
used numerical simulations to demonstrate that this model can
successfully explain both of the principles. Furthermore,using
simple mean-field theory, we determined that the origin of the
principles arises from the following two opposing mechanisms
that inherently underlie human mobility patterns:

1) Long-distance travelling (0 ≤ β < (1−d)/c in HLW)
2) Homesickness (α > 0 in HLW)

Although we have proposed this model in [22], [23] for eval-
uation our proposed routing method, the origin of the above
properties is first explained in this paper. Balancing the two
mechanisms leads the statistical principles of human contact
frequency to emerge. Note that according to violating the first
mechanism, “Homesick Random Walk (HRW)” whose walk
length to the next destination is determined by a distribution
with a finite variance does not have the scale-free property of
contact frequency, which we have also checked numerically.

It should be noted that we have introducedhome as
a minimum social effect. Because homesick Lévy walkers
periodically return to their home, they tend to stay longer
around their homes. Therefore, they meet with each other more
frequently as the distance between their homes is closer, which
naturally includes social relations between the walkers.

VII. D ISCUSSIONS

In this paper, we focused on contact frequency forhumans.
However, that ofanimalsmight also obey the same principles
because the above two mechanisms are common to animals
and humans: animals usually have nests that are similar to our
homes, and they also travel to distant feeding sites.



For future works, it is also important to consider effects of
non-uniformity of population density. In the simulations,we
used the average population density of Japan, but the density
of people highly varies by the size of city where they live.
Effects of the density on contact frequency, inter-contacttime,
and contact duration is an interesting task to investigate.

Recently, Songet al. has proposed “preferential return” to
explain spatial visitation properties of human mobility patterns
using their individual mobility model [18]. Our homesick
Lévy walk model seems to be similar to their model, but
there are some differences: Since they consider thevisitation
frequency of locations, their model needs multiple locations
where one can return preferentially byflight. Since we consider
the contact frequency between humans, on the other hand,
our model does not necessarily assume multiple locations,
but only one hub location where one can return with a fixed
probability by walk. By experiment, we empirically know
that the serendipitous human contacts occur on the way to
destination more frequently rather than duration of visit at
destination. Therefore, theoretical results given by their model
does not cover statistical properties of the majority of human
contacts. To understand the relation between these models is
left for future work.

We think our mobility model is useful for performance
evaluation of routing protocols in Delay Tolerant Networks
(DTN) [19] since some protocols selects routing paths with
frequent encounters in utility-based routing protocols, such
as PRoPHET [20], MAXPROP [21], and so on. We also
have proposed our algorithm for routing in DTN and have
shown some results regarding the comparison between LW
and HLW [22], [23], which indicates that the arrival rate of
transferred messages tends to be much lower as increasing
the homesick probabilityα. It is also important to take into
consideration the effect of Ichi-go Ichi-e since the large number
of human encounters is rare. Therefore, the majority of human
encounters usually doesn’t contribute to the performance of the
utility-based routing, but they only consume much memory in
vain for memorizing the history of encounters with many nodes
that will never be encountered again. After understanding the
properties of the frequency of human contact well, the routing
protocols for message transfer could be improved.
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