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Abstract—In recent years, mobility models have been recon-
sidered based on findings by analyzing some big datasets @ated
by GPS sensors, cellphone call records, and Geotagging. Ta-u
derstand the fundamental statistical properties of the frejuency
of serendipitous human encounters, we conducted experimen
to collect long-term data on human contact using short-rang
wireless communication devices which many people frequelyt
carry in daily life. By analyzing the data we showed that the
majority of human encounters occur once-in-an-experimerdl-
period: they are Ichi-go Ichi-e. We also found that the remaning
more frequent encounters obey a power-law distribution: ttey
are scale-free. To theoretically find the origin of these prperties,
we introduced as a minimal human mobility model, Homesick
Levy walk, where the walker stochastically selects moving Iy
distances as well as vy walk or returning back home. Using
numerical simulations and a simple mean-field theory, we offr a
theoretical explanation for the properties to validate themobility
model. The proposed model is helpful for evaluating long-tem
performance of routing protocols in delay tolerant networks
and mobile opportunistic networks better since some utiliy-
based protocols select nodes with frequent encounters foressage
transfer.

Keywords—Mobility models, Contact frequency, |chi-go I chi-g,
Power law, and Delay Tolerant Networks.

I. INTRODUCTION

In parallel with the understanding of human mobility
patterns, recently, many researchers become activelygedga
in studies on mobility models, and many mobility models have
been proposed [3]/[4]. Traditional mobility models, such a
Random Walk (RW), (truncated) Lévy Walk (LW), Random
WayPoint (RWP), are simple and basic: they can easily be used
for numerical simulations in general purposes, but theyfare
from real human mobility patterns. Therefore, newly pragbs
models have become more realistic and complicated : They
includes more parameters to explain many statistical ptigse
on human mobility patterns and social effects, thus they
resultingly consume more memory space as simulation time
progresses, such as SLAW| [5]. The more a model explains,
however, the harder it gets to use for the simulations with a
large number of walkers in general.

These mobility models are often used for evaluating per-
formance of routing protocols in Delay Tolerant Networks
(DTNs) [19] and Mobile Opportunistic Networks (MON)![6],
[7]. To evaluate the performance in systems with a large
number of mobile nodes, we need to select a balanced mobility
model properly. Because the above routing protocols asnoft
contact-based ones, the model doesn’'t necessarily peeserv
real mobility patterns, but it must have real contact pater
In the context of information communication networks, many
researchers frequently mention statistical propertiesneer-

In recent years, many kinds of human-carried mobilecontact time (or inter-meeting time) to select the modelt, Bu
devices, such as smartphones and tablets, that enable magg would argue in this paper that statistical properties on
high-tech sensors and wireless communications have be&wntact frequencis also an important factor to properly select
increasingly pervasive throughout the world. Because rabst the mobility model.
the people in the world usually carry these devices in their

lives, their activity logs, such as places where they viei a

By the way, there is a famous Japanese proverb closely

persons who they are connected with, can be easily recordedlated with the frequency of human contacts which is called
using GPS, cellphone call, and Geotagging. We are living ifchi-go Ichi-e This proverb is literally translated as “One

the era of Big data: by analyzing collections of data on pe'spl

chance in a lifetime” or more specifically as “Treasure every

activity, big companies can take advantage of success in theencounter, for it will never recur.” This phrase is closely
businesses. Also, academic researchers can investigai@nhu associated with the history of the tea ceremony of JaSen.

activities and social behaviours in more details than dver.

no rikyu (1522-1591), the famous tea master during the age of

example, some recent studies based on the analysis of Bthe provincial wars, originally taught this proverb to hispis
data of human mobility patterns have revealed that humam the spirit of good service. Later, at the end of the Edo

behavior is easily predictable because human mobilityasdsd

Period,li Naosuke(1815-1860), an accomplished practitioner

in general[1], [2]. This result shows that human mobility is of the Japanese tea ceremony, rediscovered and recorsidere

far from random, but is ordered.

this lesson as it is known today.
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We know from experience that to meet with someonethe Lévy walk [9], or returning back home as a minimum
(or something) is sometimes very precious, and we mighsocial effect. In order to validate the mobility model, wéeof
wonder about how often we have once-in-a-lifetime meetings theoretical explanation for the properties of human adnta
in our daily lives or whether there is any statistical lawttha using numerical simulations and a simple mean-field theory,
governs our meetings with people (or things). To the bestvhich is the main contribution of the paper.
of our knowledge, no scientific study has answered these ) i
questions because of the difficulty of collecting long-tatata The rest of the paper is organized as follows. In Sedfibn I,

concerning human contact. However, given the recent agganc W€ Show the experimental results of analyzing collected dat
in mobile wireless communication technologies, studiethen with Bluetooth and Wi-Fi opportunistic communications. In

statistical physics of serendipitous human encountersioan ~ SectionlIll, we propose a minimal stochastic model of human
be undertaken. mobility patterns as a way to simultaneously explain both th

two basic statistical properties. In Sectibnl IV, we perform
Our research group collected data concerning daily humaRumerical simulations to show that the minimal model can ex-
contact using Bluetooth and Wi-Fi wireless communicationp|ain these properties. Sectioh V demonstrates a simpla-mea
technologies. Today, billions of electronic devices egetb field theory to explain the emergence of these properties. We
with Bluetooth and Wi-Fi are used throughout the world. Mostsummarize our work, discuss future directions, and comment
of these devices are light and mobile, including mobile P@ a on an application of the model to performance evaluation of

phones, PDAs, tablets, and portable game machines. Thereforouting protocols in Delay Tolerant Networks in Secti¢n$ VI
they tend to be carried at almost all times. In addition, theand[VT].

communication range of Bluetooth and Wi-Fi is usually on

the order of several meters, which is nearly the same as

the range that humans can see when observing those around 1. EXPERIMENTAL RESULTS
them. Thus, by scanning and logging nearby Bluetooth and _. . . . :
Wi-Fi devices, we can collect reasonably well-sampled data Fi'st. we defineR(t) as the ratio of one-time meetings
concerning human encounters. In this case, henepunter (© all meetings until time¢. The ratio of Ichi-go Ichi-e
should be defined as a state that other humans having tifgnce-in-a-lifetime meetings) to all encounters can also b
device happen to come close within several dozen of meters gnoted "’.‘SR(LL.) att = T where I is the end Of. life.

a maximum distance of its communicable range. In our exper>0Me typical time variations i(t) during the experiment
iment, we used PDAs and smartphones to continuously sca€ Shown in Fid.JL. Although the initial patterns Bft) vary
once every twenty seconds and to record pairs of time stampqgror.lgly from one individual to the next, all of them stats

and MAC addresses of detected devices, which indicated whei® time progresses. Therefore, we may roughly assume that
a participant of the experiment encountered other people. &&ch of the time variations if(t) converges to some fixed
sample data logging software that our group uses is availabPoINt around t_he ratick(T). Under this assumption, we may

as an open-access application for Android OS [8]. To cafeula consider the time-averaged ratio over the_ expenmentad)qbe_r
the contact frequency, we need to give a threshold vajye denoted ask), to be approximately equivalent to the ratio
where two consecutive device detections whose interva timR(T)' We present the tlmg-averaged ratio using quetooth,
is less than the threshold value are within the same encountéftv¢)¢» and Wi-Fi, (R, s);, in Tablesll and_ll, respectively.

In this research, we givé,, = 1[houf as a choice, but we ~Veraged over all participants, the percentages of Ichiebo

also have checked that varying the choice of the threshol meetings using BIuetooth.ar_]d WI-Fi are approximately 80-
from some minutes to some hours is not sensitive for the’0%, meaning that the majority of human encounters occur

whole contact frequency. After conducting our experimergt, ~©NC€-in-an-experimental-period.
obtainedLong data(rather than a recent buzzwoBig datg We also considered the complementary cumulative dis-

whose experimental period is between a minimum of severglijtion function (CCDF) for human contact frequency. As
months and a maximum of more than two years. (See Tablejfjysirated in Fig.[2, the CCDF clearly follows a power-law
and[l). A dozen of people (university teachers, students, a jistribution

company workers) participated and in total more than 50,000

— —k
different devices are detected in the experiment. F(X>x)=F(z) ~ a7, (1)

In this paper, by analyzing the collected experimentawhere k is a scaling exponent. Note that this power law is
data, we exhibit two basic statistical properties of humarsatisfied only for the remaining 10-20% of encounters, those
contact frequency in the long data of human serendipitouthat occur more than once for each individual. In other words
encounters: (1) the property of Ichi-go Ichi-e, under whicha large gap exists between = 1 andz > 2 in F(x).
most human encounters occur once-in-a-experimentabgberi The estimated scaling exponents of Bluetodth, and Wi-
and (2) the scale-free property of the remaining more fratiue Fi, k.5, which were determined using the experimental data,
meetings. We can find that these properties clearly emergare summarized in Tabl€s | ahdl Il, respectively. For almbst a
for each individual when analyzing the Long Data. Inverselythe participants, the estimated scaling exponents are lihae
it is difficult to observe these properties by analyzing shor two. Because of this, the variance of the CCDF tends to déverg
term data even if they are categorized into the Big Data. Taluring a long experimental period. This divergence indisat
theoretically explain the origin of these statistical pedfes that the number of encounters that the participants meét wit
observed in the experiment, we furthermore propose “Homepeople in their experimental periods has no charactesstte.
sick Lévy Walk” as a simple mobility model. This is a minimal In other words, meetings inherently exhibit extreme inditya
stochastic model of human mobility that traces whether thenaking it difficult to predict how many opportunities aretlef
walker stochastically selects moving long distances as agel to encounter someone (or something).
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Fig. 1. Time variations in the ratid?(¢) for individual participants using  Fig. 2. CCDF for human contact frequenéy(z) using (a) Bluetooth and
(a) Bluetooth and (b) Wi-Fi (line with points) and their tirageraged ratios  (b) Wi-Fi (dots). Least squares fitting (LSF) of each CCDFli¢stine). In
(R): over the experimental time (solid line). In the legends,sthof four the legends, those of four participants (E, C, B, and A in &salland Il) are

participants (E, C, B, and A in Tables | and Il) are described. described.
TABLE . THE TIME-AVERAGED RATIO OF |CHI-GO I CHI-E (Ry s )¢ TABLE IL. T HE TIME-AVERAGED ICHI-GO ICHI-E RATIO (R, ¢ )+ AND
AND THE SCALING EXPONENTK; s FOR HUMAN CONTACT FREQUENCY THE SCALING EXPONENTK,, y FOR HUMAN CONTACT FREQUENCY
OBTAINED FROM THE BLUETOOTH DATA FOR THE TEN PARTICIPANTS OBTAINED FROM THE WI-FI DATA FOR THE TEN PARTICIPANTS
Participant ID | Experimental period (Roi): Foe Participant ID |  Experimental period (Ruwgs)t Euwy

A 2009/03/13-2011/05/31]| 0.89 £ 0.02 | 1.63 A 2009/09/03-2011/05/31]| 0.72 £ 0.01 | 1.30

B 2009/04/28-2010/12/16| 0.87 + 0.01 | 1.34 B 2009/09/01-2010/12/17|| 0.65 4+ 0.02 | 1.27

c 2010/06/10-2011/08/09| 0.90 4 0.01 | 1.42 c 2010/06/10-2011/08/09| 0.77 +0.02 | 1.19

D 2010/09/01-2011/08/08| 0.87 + 0.01 1.25 D 2010/09/01-2011/08/08| 0.87 + 0.01 1.25

E 2010/09/30-2011/08/10|| 0.92 + 0.01 1.32 E 2010/09/30-2011/08/10/| 0.81 + 0.02 1.28

F 2010/10/18-2011/02/22|| 0.93 + 0.01 | 1.24 F 2010/10/18-2011/02/22|| 0.80 4+ 0.03 | 0.94

G 2010/10/19-2011/03/09| 0.93 4 0.01 | 1.29 G 2010/10/19-2011/03/09| 0.82 4+ 0.01 | 0.90

H 2010/10/21-2011/01/27|| 0.89 + 0.01 1.39 H 2010/10/21-2011/01/27|| 0.73 + 0.02 1.40

| 2010/10/21-2011/02/03| 0.87 + 0.02 | 1.17 | 2010/10/21-2011/02/03/| 0.73 + 0.01 1.42

J 2010/11/10-2011/03/31| 0.84 +0.03 | 2.23 J 2010/11/10-2011/03/31f| 0.63 + 0.01 1.42

I1l. HoMESICK LEVY WALK her destination; the travel distance from the present iocat

! is governed by an independently and identically distridute

Next, we propose a minimal stochastic model of humarbower—law distribution

mobility patterns as a way to simultaneously explain both th
Ichi-go Ichi-e and scale-free properties of human encaante p(l) ~ 18, 2)
A number of researchers have recently reported that human

mobility traces statistically exhibit the Lévy walk (LWL0]- where0 < 8 < 2 is the Lévy index. The direction from
[13]. A Lévy walker ind-dimensional space determines his orthe present location to the next destination location isaligu



Motion Control 1 : (Two-dimensional) Homesick Lévy Walk

Require: Initial position: Hub of activity (or home)ome
(The current position,,.., = Znome), Initial state: State ==
Stop; the homesick probability; the scaling exponent of
the CCDF of contact frequengy
while TRUE (The walker is alive.jlo

if State == Stopthen
State == Move

LW HLW if Probability:« then
Destination == Hub of activity £jcs: = Zhome)
else
Fig. 3. Typical sample traces for Levy walk (LW) and homksiévy walk New destinationtges: = Znow + I x (cosé, sinf),
(HLW). The initial position of each walker is indicated byettgrey circle, wherel is determined by Egq[12) and the angle
which is assumed to be the hub of activity (or home) in the Hla&nsrio. is given by the uniform distribution Oﬁ), 271-)_
end if
_ . o . end if
determined by the uniform distribution. This feature hasrbe Start moving to the destination,ow ¢ Tnow + AlX
found to be common to the mobility of humans and animals (059, sin6), where Al is the distance that the walker
in two-dimensional spacé [L4]-[17]. moves in a single step.
However, the scale-free property of walk lengths is insuf-  if Znow == Zhome OF Zdest then
ficient to explain the statistical properties of human conta State == Stop , ,
frequency. We numerically confirmed that the CCDF of contact (The walker may wait for a while.)
frequency for Lévy walkers in bounded two-dimensionalspa en?jn\?vrﬁle

generally decays exponentially at the tail. Let us consideat
is lacking in the ordinary Lévy walk scenario. A Lévy watke
easily travels long distances, but has difficulty returriimdpis
or her original position (refer to Fid@] 3). In real life, hover,  €rs was determined based on the average population density
each participant typically frequents his or her own hub ofof Japan, approximately36[km~>], because all of the study
social activity (or his or her own home). This reality stryng participants live mainly in Japan. The distance between the
determines most of the topology of human mobility tracespresent position and the next destination described usieg t
Taking into consideration the role of the hub, we propose arpolar coordinatd = (rcos®,rsin6) is randomly generated
extended version of the Lévy walk named the “Homesick Lévyfrom the probability distribution functionp(l) = p(r)p(6),

Walk (HLW).” In this model, after arriving at the destinatio Where

determined by the power-law walk length in E@Ql (2), there Brf 1

exists a certain fixed probability that the Lévy walker will p(r) = 21[’;3 (r>rm), pl)=— (0<6<2m),
becomehomesickand return home; otherwise, according to " 2 (3)
probability (1 — «), the walker will determine his or her next and the minimum travelling distance,, = 1jm]. These

destination using EqL{2) and continue travelling. By déifini,  equations are derived from EqJ (2) to satisfy the normdbzat
HLW with a homesick probability o = 0 reduces to LW. For  cqndition [*° p(/)dl = 1. We assumed that for each time-step,
the sake of convenience, we define the initial position of HLWaj" of the walkers move with a constant speed- 1[m/d, and

as home. The detailed procedure to move two-dimensional sma|l number of walkers meet together if they are within a
HLW is shown in Motion ControlL. The difference between fiya communication radius = 1[m]. We also assumed that

the sample traces associated with the (simple) Levy watk anagier 5 walker arrive at a destination, the walker waits glsin
the homesick Lévy walk is illustrated in Figl 3. time-step to determine the next destination.

In the name of this model, we use the wawdlk but not
flight. In generalwalk means that a walker moves with a finite
velocity to the destination, bdlight means that a walker jump o' atio [R); and the scaling exponent of the CCDF of the
instantly to the destination, which i; the diﬁere_npe betwe oniact frequencyk, varying o and 3. The typical time
these words. Because we als_o cons@er serendlpltous ENCOWyolution of R(¢) is illustrated in Fig[# (a). As observed in
ters on the way to the destination, we introduce homesisjLé i 1 eachR(t) tends to converge as time progresses. The
walk here. But, Homesick Lévy Flight (HLF) can be defined jme_averaged ratigR);, calculated by averaging(t) over
by a similar way with changing from walk to flight in the e simulation time, is also plotted for the ranges: a < 1
model. and0 < 8 < 1 in Fig.[@ (b). We numerically confirmed

that (R), tends to decrease with increasesairand 3. Also,
IV. NUMERICAL SIMULATIONS we observe that by roughly tuning parametersand 5 to
sufficiently small values, we obtain a value of more than 80%
for (R); and the numerical results becomes consistent with the
experimental ones.

Next, we considered the effects of the homesick property
and long-distance travelling on the time-averaged Ichietd

We performed numerical simulations fav homesick
Lévy walkers in a bounded two-dimensional space. Initjall
N = 1000 walkers were uniformly distributed within a
1726[m| x 1726]m]| squared region. The number of the walkers  In Fig.[5(a), we also present some typical CCDFs for con-
N does not change in the simulations. The density of the walktact frequency based on the numerical results. We can yglearl
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Fig. 4. (a) The typical time evolution d®(¢) in the Lévy walk ¢ = 0) and Fig. 5. (@) Typical CCDFs for contact frequency valuB$xz) employing
the homesick Lévy walkd, > 0) determined using numerical simulations for LW and HLW in numerical simulations wher& = 103, T = 10°[g, and
N =103, T = 2.0 x 10*[g, @ = 0,0.1,0.2,0.3,0.4, and 3 = 0.1 (lines a=0,0.1,0.2,0.3,0.4, 8 = 0 (dots) with least squares fitting (LSF) for the
with dots). The time-averaged Ichi-go Ichi-e rati¢R); are also included CCDFs (solid line). (b) Relationship between the estimatealing exponent
(solid line). (b) Relationship betweefiR): and « and 8 over the ranges k from the CCDFs for contact frequency andand 8 for 0 < a < 1 and
0<a<land0<p<1. 0<B<1.

see that the CCDF created using HLW fer> 0 Obeys a in FIgS[B anc[]7, thus tail's fa}tn(?ss Of these distributioless
power-law distribution, whereas that created using lWW=(0)  than that of the power-law distribution.

decays exponentially at the tail, as we mentioned befores Th

exponential decay forx = 0 was observed for the entire V. MEAN-FIELD THEORY

range,0 < 8 < 1. The results indicate that the homesickness ) . ]

component of HLW is essential to the scale-free property of Finally, we use a simple mean-field theory of HLW to
contact frequencies. We also consider the relationshipézat ~ €xplain the emergence of these phenomena. We focus on
the scaling exponerit for contact frequency and far and3  one walker whose home is fixed at the origin of the two-
calculated using least-squares fitting. As observed inBfig), ~ dimensional space, whereas the other walkers are assumed
k has a weak decreasing trend with increasingnd 3 for 0 be spat|a_lly fixed and uniformly distributed in the space.
0 <a<1and0 < A < 1. The most important point is that We also define the mean-free pathas the av_eraged moving
the value ofk matches the experimental valueskgf andk,, s distance that one traverses before encountering the ndésgmwa

in Tabled] and@l when we keep (> 0) and small, as shown Because the walker continues to repeatedly_ travel aroudd an
in Fig.[B(b). As a result, we numerically demonstrate that th return home, the spatial existence probability of the fecus

HLW stochastic model can explain human contact frequencyWwalker tends to increase as the distance from home decreases
With this viewpoint in mind, we assume that the contact

It should be emphasized that the contact frequencies dfequency for this walker and others depends only on the
Homesick Random Walk (HRW) and Homesick Random Way-distance from home’ and that the walker meets the same
Point (HRWP) seem to be different from that of HLW as shownwalker at the same distance. Taking into consideration fall o
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Fig. 6. Typical CCDFs for contact frequency valuB¢z) employing Rw @« = 0, however,H is more likely to behave like a uniform

and HRW in numerical simulations whe¥ = 103, T = 10°[g], anda = distribution than it is to behave like a power law. Therefore
0,0.2,0.5 (dots). the spatial existence probabilify appears to be qualitatively
different for HLW and LW.
10° In Fig.[9 (b), we showed the numerical results indicating
RWP: 0=0.0 how the power index b_ehaves giyen c_hangesg?nandﬂ. We
Ll HRWP: 0=0.2 || can see that a proportional relationship betwgeand 3,
HRWP: a=0.5 B ~cB+d, (5)
ni ] is approximately satisfied for smadt and0 < g < 1. The

b proportionality coefficientc(a) in Eq. (8), which seems to

have a particular value when is fixed, tends to gradually
10°} : decrease with increasing. These values of(«) for a =
0.1,0.2,0.3,0.4,0.5 varies around one.

CCDF

10°k ] Applying the power-law distribution off to the concentric
zone hypothesis allows us to calculate the contact frequenc
—_— of the walker in thej-th concentric ring zone, denoted ag
107 5 0! For this purpose, we use(r) = —dH (' > r)/dr as follows:
# of Contacts G+1)A G+ ~
T, ~ / h(r)rdr ~ / r~ By
Fig. 7. Typical CCDFs for contact frequency valuB$z) employing RWP Jx Jx

and HRWP in numerical simulations wheré = 103, T = 10°[g], and ~ 2703148 —f
a=0,0.2,0.5 (dots). & ~ AT/ i (6)
This equation directly indicates that the rank distribntad the
contact frequencies also obeys a power-law distributionsgh
the above definitions and assumptions, we envision a seenarpower index is5. When 3 remains within its small range <
in which the walker encounters a new walker whenever hes (1 — d)/c, the power index of the rank distributiof
walks away from the concentric rings of widthwhose centre  pecomes less than one by Efl (5). In this case, therefore, the
is his home. This image of meetings with walkers is used tqail of the rank distribution is generally so wide that themher
separate the space into many ring-shaped concentric zonesdf low-ranked walkers is divergent, which provides a simple

which the walker in question meets others, as shown in[FFig. &xplanation of why the majority of human encounters is Ichi-
We call this theconcentric zone hypothesis go Ichi-e.

In Fig.[9(a), we present numerical results for the CCDF of  We also consider the relationship between the rank distribu
the walker’s frequency of contact with others with respect t tion and the CCDF for contact frequency. It is well-knownttha
his distance from home and the location at which he encaosinteif a rank distribution obeys a power law, then its frequerispa
those other individualsH. We observe that the functioff becomes a power law. Thus, for the rank distributign we
generally obeys a power-law distribution far> 0, especially  can obtain the scale-free human contact frequency. In #sis,c
for the lower range of, it is also known that an inverse relationship exists betwieen

o, _5 and 3: ~
H(r' =r) ~r77, 4) =1/8~1/(cB+d). (7)

where 3 is the power index. The cut-off of the power law We checked whether this inverse relation is numerically- sup
at the tail arises from the effect of spatial boundedness. Fgoorted in Fig[ID. We can see that EQl (7) roughly explains
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:;1:06,b=0.37 0 < 8 < 1 (dots) and the exact inverse relationship in Ed. (7) (sotid)l
l4rma a=02
— a=1.02,b=0.36
| A Because this long tail principle of human contact frequency
" a=0.83,0=0. . . oy s e . . A
vy w04 is universal, it is difficult to predict how many times we will
5 1.0f| — 270856039 have additional opportunities to meet with people over long
| O periods of time. This further validates the principle ofitgio
g o8l }/ _ ] Ichi-e, which teaches us to “treasure every encounter.”
%/ To facilitate a fundamental theoretical understanding of
061 7 ] th incipl introduced | stochasti del of
A ese principles, we introduced a novel stochastic model o
& human mobility traces called the “homesick Lévy walk.” We
04 (b) 1 used numerical simulations to demonstrate that this maatel ¢
successfully explain both of the principles. Furthermaoising
%30 02 04 06 0.8 1.0 simple mean-field theory, we determined that the origin ef th
Levy index 5 principles arises from the following two opposing mecharss
that inherently underlie human mobility patterns:
Fig. 9. (a) A typical spatial existence probability distriion H(r' > r) 1) Long-distance travelling)(< 3 < (1—d)/cin HLW)
for HLWs where N = 103, T = 105[g], « = 0,0.1,0.2,0.3,0.4, and 2)  Homesicknessa(> 0 in HLW)

B = 0.2 (dots). The power indey@ is also shown using the least-square fits
for the distribution (solid line). (b) The relationship teten the parameters
a =0.1,0.2,0.3,0.4,0.5 and0 < 8 < 1 and the estimated power ind¢k
(line with dots) and their least-square fits (line).

Although we have proposed this model inl[22],1[23] for eval-
uation our proposed routing method, the origin of the above
properties is first explained in this paper. Balancing the tw
. mechanisms leads the statistical principles of human conta
the trend betwee and 5. Substituting controlled values of frequency to emerge. Note that according to violating ths# fir
0 < B < (1-d)/cinto Eq. [7) yields values of (> 1) that mechanism, “Homesick Random Walk (HRW)” whose walk
are consistent with the experimental presented in Tdblesl | a length to the next destination is determined by a distriuti
[ with a finite variance does not have the scale-free propdrty o
contact frequency, which we have also checked numerically.

VI ConcLusioN It should be noted that we have introducédme as

In summary, we investigated the general statistical propa minimum social effect. Because homesick Lévy walkers
erties of serendipitous human encounters in daily life gisin periodically return to their home, they tend to stay longer
portable wireless communication devices. We experimntal around their homes. Therefore, they meet with each othee mor
determined that we can universally apply the followingistat  frequently as the distance between their homes is closéchwh
cal principles to human contact frequencies among indalglu  naturally includes social relations between the walkers.

1) The majority of human encounters occur once during
one’s experimental period and this feature seems to
continue during one’s lifetime (the property of Ichi- In this paper, we focused on contact frequencytfomans
go Ichi-e) However, that ofanimalsmight also obey the same principles

2) The remaining, more frequent encounters obey thdecause the above two mechanisms are common to animals
power-law distribution in terms of contact frequency and humans: animals usually have nests that are similarrto ou
and its variance diverges (the scale-free property) homes, and they also travel to distant feeding sites.

VIlI. DISCUSSIONS



For future works, it is also important to consider effects of [7]
non-uniformity of population density. In the simulationge
used the average population density of Japan, but the gensit[8]
of people highly varies by the size of city where they live. [9]
Effects of the density on contact frequency, inter-contiacg,

and contact duration is an interesting task to investigate.  [10]

Recently, Songet al. has proposed “preferential return” to [17)
explain spatial visitation properties of human mobilityttpans
using their individual mobility model[[18]. Our homesick [12]
Lévy walk model seems to be similar to their model, but
there are some differences: Since they consideiigation
frequency of locations, their model needs multiple loaatio
where one can return preferentially fhight. Since we consider
the contact frequency between humans, on the other hand[,14]
our model does not necessarily assume multiple location 15]
but only one hub location where one can return with a fixe
probability by walk. By experiment, we empirically know [16]
that the serendipitous human contacts occur on the way to
destination more frequently rather than duration of vigit a[17]
destination. Therefore, theoretical results given byrtheidel
does not cover statistical properties of the majority of hom
contacts. To understand the relation between these mazlels (i8]
left for future work.

[13]

19

We think our mobility model is useful for performance 1ol
evaluation of routing protocols in Delay Tolerant Networks
(DTN) [19] since some protocols selects routing paths with[20]
frequent encounters in utility-based routing protocolschs
as PRoPHET[[20], MAXPROPL[21], and so on. We also
have proposed our algorithm for routing in DTN and havel?!!
shown some results regarding the comparison between LW
and HLW [22], [23], which indicates that the arrival rate of |55
transferred messages tends to be much lower as increasing
the homesick probabilityv. It is also important to take into
consideration the effect of Ichi-go Ichi-e since the largenber
of human encounters is rare. Therefore, the majority of humal23l
encounters usually doesn’t contribute to the performaifteso
utility-based routing, but they only consume much memory in
vain for memorizing the history of encounters with many reode
that will never be encountered again. After understandig t
properties of the frequency of human contact well, the rayti
protocols for message transfer could be improved.
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