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Abstract— Delegated authorization protocols have become
wide-spread to implement Web applications and services, where
some popular providers managing people identity information
and personal data allow their users to delegate third party Web
services to access their data. In this paper, we analyze the risks
related to untrusted providers not behaving correctly, and we
solve this problem by proposing the first verifiable delegated au-
thorization protocol that allows third party services to verify the
correctness of users data returned by the provider. The contribu-
tion of the paper is twofold: we show how delegated authorization
can be cryptographically enforced through authenticated data
structures protocols; we extend the standard OAuth2 protocol
by supporting efficient and verifiable delegated authorization
including database updates and privileges revocation.

Index Terms—integrity; oauth; identity; correctness; outsourc-
ing; authorization; access control; cloud

I. INTRODUCTION

In modern Internet-based services, few popular data aggre-
gator services, such as Facebook and Google, have acquired
large volumes of users data [12], [21] so that several in-
dependent third parties may provide customized services by
accessing user data stored by data aggregators. In this scenario,
data aggregators maintain users identity and authentication
information, and allow users to authorize third parties to access
to a subset of their data. Mechanisms to regulate data access
are based on delegated authorization protocols that overcome
the limitations of traditional authorization approaches. The
de-facto standard for delegated authorization in Web-based
services is OAuth version 2.0 (OAuth2) [15]. All existing
solutions for delegated authorization assume service providers
to trust correct behavior by data aggregators. For example,
service providers cannot verify that data aggregators return all
data that users intended to share (complete), nor that these
data are correct (authentic) and updated (fresh). Users and
services currently trust data aggregators to behave correctly
especially because of the reputation of these companies, but
a similar assumption is questionable and might be invalid in
future Internet user-centric architectures [4], [5] where small
size companies act as storage providers.

This paper has two main contributions. We propose the first
delegated authorization protocol that allows service providers
to verify data correctness returned by data aggregators ac-
cording to the authorization policy delegated by the users,
including data authenticity, completeness and freshness. These
guarantees are achieved by reducing delegated authorization
protocols to set operations among attributes, and leveraging

cryptographic authenticated data structure protocols special-
ized for efficient verifiable set operations. The second contri-
bution is a candidate implementation of the proposed protocol
as a backwards compatible extension to OAuth2.

The paper is organized as following. Section II describes
the delegated authorization scenario and the threat model.
Section III gives the background knowledge related to OAuth2
and authenticated data structure protocols. Section IV de-
scribes the novel verifiable delegated authorization protocol
and its implementation as an extension to OAuth2. Section V
discusses related work. Finally, Section VI concludes the
paper.

II. SYSTEM AND THREAT MODELS

We consider the user-centric model including three roles:
user, storage provider and service provider, as shown in
Figure 1. A user is an entity (e.g., a person) that generates
contents (users data). A storage provider (or data aggregator)
offers outsourced data storage and retrieval services. Users
externalize their data to these storage providers that guarantee
high availability and performance. A service provider is a
third-party that offers Web-based applications and services to
users. In such a way, service providers require access to the
portion of users data that is relevant to their services, and
that users are willing to share with them. Service providers
access users data through a delegated authorization protocol.
We assume that users have private user credentials, enabling
them to access storage and service providers.

The considered delegated authorization model is based on
attribute-based access control [14]. Each element of user data
is associated with one or more attributes that are defined by the
users. As an example, possible attributes of a digital images
storage provider may include picture, drawing, public, private,
family, friends. A user uploading a digital picture of his family
may associate it with the attributes picture and family. Users
also define access control rules for delegated authorization
specifying which data can be accessed by a service provider.
Each access control rule is a Boolean formula defined over the
available attributes. The service provider can access all and
only user data satisfying his access control rules. Following
the previous example, the user grants a service provider with
the access rule “picture and (family or public)”. When the
service provider requires user data, the storage provider sends
him all the images whose attributes satisfy the access control
formula. We highlight that this scenario supports dynamic



Fig. 1. Delegated authorization model

databases, where users execute all CRUD (create, read, update,
delete) operations [7], and change the associated attributes.
Users can also grant and revoke access control rules to their
service providers at any time.

This scenario faces many security threats regarding data
at rest, in motion and in use. Many attacks can be avoided
by using standard cyber defenses. We assume that all parties
communicate through the Internet by using standard protocols.
Similarly to OAuth2, our proposal adopts HTTPS to guarantee
security of data in motion. Moreover, we assume that the
storage and service providers have valid digital certificates
generated by trusted Certification Authorities that allow other
parties to verify their identity. Providers might also protect
data at rest using standard cryptographic techniques, such as
transparent disk or database encryption. These techniques are
orthogonal to the proposed protocol.

More interesting attacks still representing open research
issues are related to adversarial storage providers. The solution
proposed in this paper considers a threat model in which
a storage provider may: refuse access to authorized service
providers; return data not complying with the access rule of
a service provider; return only a subset of all data complying
with the access rule; return data not belonging to the user,
such as data with arbitrary modifications; return old versions
of deleted or updated users data.

III. BASE KNOWLEDGE

A. OAuth2 framework for Web applications

The OAuth2 framework covers many use cases, where the
client role is instantiated by different devices and managed
by different entities, such as a mobile device managed by
the resource owner or a Web application managed by a third
party [15], [16]. This paper focuses on OAuth2 authorization
protocols for Web-based applications.

OAuth2 enables an application to obtain limited access to
resources stored on a Web service on behalf of their owner.
The standard [15] identifies four roles: client, resource owner,
authorization server, and resource server. In the delegated
authorization model presented in Section II, clients correspond
to service provider applications and resource owners corre-
spond to users. Authorization server and resource server are
components included in the storage provider. The resource
server stores users data and distinguishes between authorized
and unauthorized access requests. The authorization server
issues bearer tokens to the service provider application after
a successful authorization.

Roles, data and main information flows of OAuth2 are
shown in Figure 2. A service provider application registers
at the storage provider to obtain valid credentials, including
a client id identifier, and to negotiate access to a set of
attributes (allowed scopes). Before accessing user data, the
service provider application starts an authorization flow to
obtain bearer tokens from the storage provider. A bearer
token is associated with the granted scopes defined by the
user as an access control rule. For Web applications, the
authorization flow used by OAuth2 is the authorization code
flow. We outline the most important messages of this protocol
in Figure 3.

A user intending to delegate access to some of his data to a
service provider application receives a Web page including a
URI that points to the storage provider authorization endpoint,
a scope field containing the required access control rule,
and the client id identifying the service provider application.
The user sends the scope and the client id to the URI.
This request is authenticated through the user credentials.
The storage provider presents a confirmation form show-
ing the scope information that the user accepts. Then, the
storage provider redirects the user to the OAuth2 callback
endpoint of the service provider application including a short-
lived authorization code and the scope. The service provider
application forwards the authorization code to the storage
provider, authenticating itself through its service credentials.
The storage provider replies with long-lived bearer tokens.
The service provider application can use these tokens to access
users data in later interactions with the storage provider.

B. Authenticated data structures framework

Authenticated Data Structures [22] enable users that dele-
gate computations to untrusted servers to verify the correctness
of the results. Informally, the data owner stores a cryptographic
data structure in the untrusted server, that is usually called the
authenticated data structure (ADS). At the same time, he is
able to distribute a small size cryptographic digest to clients
that will query his data. The ADS allows clients to verify
correctness of computation against the digest. For any query,
the server must return some proof of correct computation
based on the ADS. The client can detect whether the provider
manipulates the ADS or the proof thanks to cryptographic
security guarantees. The ADS framework formally describes
this approach through five algorithms:

• Keygen is a probabilistic algorithm executed at the begin-
ning of the protocol to produce private and public keys;

• Setup allows the data owner to initialize cryptographic
data structures;

• Update allows the data owner to update cryptographic
data structures;

• Query allows the server to produce a proof of computa-
tion for a query;

• Verify allows a public user to verify that the output
provided by the server is correct, including authenticity,
completeness and freshness.



Fig. 2. OAuth2 architecture in the user-centric scenario

Fig. 3. OAuth2 workflow for Web Applications

In this paper we consider ADS protocols that enable efficient
verifiable set operations in the memory checking model. In
this setting, the database is represented as a memory (also,
a set collection) where each cell is a set of values identified
by a unique label. The protocol allows the infrastructure to
verify the correctness of queries where results are the output
of set operations (union, intersection, disjunction) over sets
of values stored in the memory cells (also, the sets of the
set collection) identified by the labels. Our scenario requires
public verifiability, hence we only focus on protocols based
on public-key cryptography [3], [10], [18].

IV. VERIFIABLE DELEGATED AUTHORIZATION PROTOCOL

This section presents the first protocol for verifiable dele-
gated authorization. The protocol is independent of any solu-
tion for delegated authorization. Since the considered scenario
can be immediately mapped to an instance of the OAuth2
framework, without any loss of generality, we describe our
protocol as an extension to OAuth2, but it can be generalized
and applied to other protocols.

In the proposed protocol all parties maintain and exchange
additional cryptographic information and metadata. It does not
require additional trusted third-parties, roles or components.
All data are exchanged through messages and fields of the
original OAuth2 framework that are extended to support the
new security guarantees while maintaining backward compat-
ibility. The protocol can be instantiated by using any crypto-

graphic protocol that is compliant with the ADS framework. In
the current version, we describe it by referring to the proposals
for efficient verifiable set operations [3], [10], [18]. We first
describe the new data structures (Section IV-A). Then, we
present the extended protocol operations (Section IV-B) and
discuss the additional security guarantees (Section IV-C).

A. Data structures

Figure 4 describes the extended version of OAuth2 sup-
porting verifiable delegated authorization. The additional data
structures are: secret and public keys, grant attestation, re-
voke attestation, user data digest (Digest), authenticated data
structure (ADS).

Secret and public keys are cryptographic keys of a user.
The secret key is generated and maintained only by the user.
The public key is computed by the user and distributed to the
storage and service providers. They include key pairs required
by verifiable set operations and digital signatures algorithms.
Grant attestation is a digital certificate of an access rule
granted by the user to the service provider application and
signed by the storage provider. This information allows the
service provider application to demonstrate compliance to an
authorization rule granted by the user. Revoke attestation is a
digital certificate assessing that a user revoked an access rule
previously granted to a service provider application. Digest
is a small-sized cryptographic material representing the state
of the user data. The user updates this information each time



Fig. 4. Architecture for verifiable delegated authorization

he updates his data. Moreover, the service provider application
uses this information to verify freshness of the results returned
by the storage provider. Authenticated data structure is a
cryptographic data structure associated with the user data that
support efficient cryptographic algorithms for verifiable set
operations. Each user maintains his own ADS and the storage
provider stores an ADS for each user. The size of the ADS
is asymptotically logarithmic with respect to the cardinality
of the set of labels that define the access control rules, and
constant with respect to the amount of data stored by the
storage server (see [3], [18] for details).

B. Protocol operations
The proposed protocol defines five operations: registration,

verifiable authorization flow, user data operations, revocation,
and verifiable application operations. We use the notation
described in Section III to refer to the ADS framework
algorithms: setup, update, query and verify.

Registration is a one-time interaction between parties to
setup the system before running the protocols. We distinguish
between (a) users and (b) service providers registrations. (a) A
user registers at the storage and service providers. He obtains
user credentials and sends his public key to the providers.
The user gets the allowed attributes by the storage provider
and runs the setup routine to initialize the ADS, using the
attributes as the labels of the authenticated set collection.
Moreover, he sends the initial ADS to the storage provider
and the initial Digest to the service provider application. (b) A
service provider registers an application at the storage provider
to obtain service credentials, including the OAuth2 client id,
and to negotiate the portions of the users data he needs to
access (the allowed scopes).

User data operations include all CRUD and privilege mod-
ification operations allowing a user to manage his data. When
the user updates his data, he runs the update routine to produce
cryptographic material that allows the storage provider to
efficiently modify its ADS. Each new element of data inserted
in the storage service is also inserted in the authenticated
set collection for all the attributes associated with it. As an
example, if the user stores an image with attributes picture and
family, he inserts the image at locations picture and family of
the authenticated set collection. Similarly, to remove data the

user updates the authenticated set collection by removing it
from all locations corresponding to the associated attributes.
The user can also add or remove attributes from the data by
adding and removing it just from the locations associated to the
added or removed attributes. These operations do not modify
the space requirements of ADS because, as mentioned above,
the size of the ADS is constant with regard to the amount of
records stored in each set of the set collection.

The verifiable authorization flow allows a service provider
application to obtain bearer tokens to access user data on
the storage provider. We design the protocol as a variant of
the authorization code flow of OAuth2 (see Figure 3). The
protocol goal is to let the storage provider and the service
provider application agree on an access control rule that is
granted by the user. They exchange a grant attestation that
proves the agreement and protects both sides against each
other’s false claims. We describe this protocol by referring
to Figure 5. As in the original OAuth2, a user wishing to use
some functions on a service provider application receives a
Web page including the URI of the storage provider OAuth2
authorization endpoint, a scope field with the required access
control rule, and the client id identifying the service provider
application. Moreover, it receives the state field including a
nonce that identifies this flow and the signature of the service
provider computed over the nonce and the value of scope.
The user follows the URI transmitting the scope, the client id,
the response type and the state values to the storage provider.
This request is also authenticated by using the user credentials.
The storage provider presents a confirmation form showing the
scope information that the user accepts. After user acceptance,
the storage provider redirects the user to the OAuth2 callback
endpoint of the service provider application, including a short-
lived authorization code, along with scope. The service provi-
der application forwards the authorization code to the storage
provider, authenticating itself through its service credentials.
The storage provider replies with bearer tokens and the grant
attestation. The grant attestation certifies that the storage
provider and the service provider agreed on the access control
rule included in the scope field.

Revocation allows users to revoke an access control rule
granted to a service provider application. The user needs



Fig. 5. Verifiable authorization code for extended OAuth2

the access rule identifier, that is the nonce generated by the
service provider application and included in the state field of
the verifiable authorization flow previously used to grant the
access control rule. The user can store this value locally when
executing the flow or retrieve it from the storage provider.
To issue a revocation, the user produces a revoke attestation:
a digitally signed revocation certificate through the user key
including the nonce. The storage provider maintains a copy of
the revoke attestation to reject requests from service provider
applications that try to access users data using the revoked
access rule.

Verifiable application operations are verifiable data retrieval
operations issued by a service provider application to the
storage provider. We assume that the service provider ap-
plication previously obtained bearer tokens associated to the
access control rule authorizing it to retrieve a subset of users
data. Let us assume that the user issues a request to the
service provider application that requires access to some of
his data. Within the request, the user includes the current
version of the user Digest (e.g., within an opaque header in the
HTTP request). The service provider identifies the user data
required to satisfy the request and the related access rule. Then
it requests users data to the storage provider by submitting
the access rule and its bearer tokens. The storage provider
verifies this query by checking if a granted access control
rule exists and is still valid for the received bearer tokens. If
the access control rule is valid, the storage provider retrieves
the users data satisfying the rule. Moreover, he uses the rule
as input of the query algorithm on the ADS. The output is
a cryptographic proof demonstrating correctness of retrieved
data. The storage provider returns users data and the proof to
the service provider application, that uses the proof to run the
verify algorithm against the access control rule and the Digest.
If the verify algorithm is successful, the results returned by the
storage provider are correct.

C. Security guarantees
Let us consider two scenarios: the storage provider accepts

the query of the service provider application; the storage

provider refuses the query of the service provider declaring
that the service is not authorized.

In the first scenario, the correctness of results produced by
the storage provider relies on the security guarantees of the
ADS protocol. If the verify algorithm succeeds, the service
provider applications knows that users data returned by the
storage provider are complete, authentic and fresh. If the verify
algorithm fails, the service application provider knows that
at least one of these properties is not satisfied, hence the
storage provider did not behave correctly. Moreover, since
the proposed protocol for verifiable delegated authorization
is built on verifiable set operation primitives that are publicly
verifiable, the service provider can use the cryptographic proof
generated by the storage provider to demonstrate his incorrect
behavior to any third party.

In the second scenario, a correct service provider application
can demonstrate its rights to access the required portion
of users data by exhibiting his grant attestation. A correct
storage provider can refuse to fulfill the query only if the
access control rule that delegates data access to the service
provider application has been revoked. In this case, the storage
provider replies with the revoke attestation that is signed by
the users and verifiable by any third party. On the other
hand, an adversarial storage provider that arbitrarily refuses
to fulfill a correct query issued by an authorized service
provider application does not own the revoke attestation for the
access control rule authorizing data access. Hence, the revoke
attestation cannot be included in its response. This security
guarantee relies on the unforgeability of the digital signature
produced by the user and included in revoke attestations.

V. RELATED WORK

The literature most related to the proposed protocol regards
cryptographic schemes for access control enforcement and
verifiable computation, and architectures for securing dele-
gated authorization scenarios. Attribute-based encryption [2],
[13], [6], key distribution schemes and property-preserving
encryption [9], [11], [8] guarantee confidentiality of out-



sourced data in presence of fine-grained access control re-
quirements. Although many of these schemes guarantee also
data authenticity, they do not allow to verify correctness. As
a result, their application in the delegated authorization field
cannot guarantee completeness and freshness of results, that
are novel features of the verifiable delegated authorization
protocol proposed in this paper.

Digital signature schemes represent the standard approach
to publicly demonstrate authenticity of data, but cannot be
adopted as-is to produce proofs of correct computation. Pro-
posals exist to efficiently guarantee integrity of outsourced data
in presence of complex queries, including verifiable operations
in cloud databases [1], [20]. However, these schemes do
not fit the query model of delegated authorization scenarios
where the inputs of the computations are not known a priori.
Cryptographic schemes have been designed to enforce veri-
fiable computation on any computation [19]. However, their
computational overhead depends on the size of the operations
implemented as binary circuits, making their feasibility for
complex set operations questionable. On the other hand, we
consider specialized verifiable set operations protocols that
support efficient verification of set operations [3], [10], [18].
To the best of our knowledge, these works have never been
applied to the field of delegated authorization.

An alternative approach to improve security of data stored
in data aggregators infrastructures is proposed in [17]. This
paper adopts software and hardware data isolation strategies
within the provider’s architecture. It represents an effective
approach to improve data security against external attackers,
but it cannot guarantee users against malicious providers. The
interesting proposal in Sieve [23] protects confidentiality of
data stored by data aggregators against data breaches, enforces
end-to-end confidentiality between users and applications, but
it does not allow service providers to verify the correctness of
data returned by data aggregators. Guaranteeing confidentiality
of outsourced data is out of the scope of this paper, however
integrating similar feature with our proposal is an interesting
future work.

VI. CONCLUSIONS

This paper presents a novel protocol that guarantees ver-
ifiability of delegated authorizations. The main idea is to
extend existing architectures with cryptographic authenticated
data structures that enable efficient verifiable sets operations
protocols. By adopting this cryptographic primitive, service
provider applications can verify the correctness of all results
returned by storage services, including completeness, authen-
ticity and freshness. These security guarantees also hold in
dynamic database scenarios in which the data owner can
create, update and delete outsourced data, add or remove
attributes and issue or revoke access control rules at any time.
The protocol is described through a prototype implementation
extending OAuth2 that is the de-facto standard for delegated
authorization in Web services. In future work we aim to
extend this research to guarantee even data confidentiality,

and to implement a campaign of performance evaluation under
realistic workloads.
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