
Efficient Worker Selection Through History-based
Learning in Crowdsourcing

Tarek Awwad∗†, Nadia Bennani∗, Konstantin Ziegler†, Veronika Sonigo‡, Lionel Brunie∗, Harald Kosch†
∗University of Lyon, CNRS, INSA Lyon, LIRIS - France

†University of Passau, Department of Distributed and Multimedia Information Systems - Germany
‡FEMTO-ST Institute - CNRS - Université Bourgogne Franche-Comté - France

[first.last]@{∗insa-lyon.fr, †uni-passau.de ‡univ-fcomte.fr}

Abstract—Crowdsourcing has emerged as a promising ap-
proach for obtaining services and data in a short time and at a
reasonable budget. However, the quality of the output provided
by the crowd is not guaranteed, and must be controlled. This
quality control usually relies on worker screening or contribution
reviewing at the cost of additional time and budget overheads. In
this paper, we propose to reduce these overheads by leveraging
the system history. We describe an offline learning algorithm
that groups tasks from history into homogeneous clusters and
learns for each cluster the worker features that optimize the
contribution quality. These features are then used by the online
targeting algorithm to select reliable workers for each incoming
task. The proposed method is compared to the state of the art
selection methods using real world datasets. Results show that
we achieve comparable, and in some cases better, output quality
for a smaller budget and shorter time.

Index Terms—Crowdsourcing; Task clustering; Cost reduc-
tion; Offline learning; Worker selection.

I. INTRODUCTION

A. Crowdsourcing

Crowdsourcing is an emergent technique which consists in

harnessing the skills of the crowd in order to resolve problems

that cannot be resolved by algorithms within satisfactory

precision and in a reasonable time and budget [1]. Typically,

a crowdsourcing system is composed of three main entities:

the requester who is the task owner, the platform and the

workers (a.k.a. the crowd). In practice, complex problems

are subdivided by requesters into small Human Intelligence

Tasks (HITs) which, in turn, are assigned through a web-

based platform1 2, to the connected workers who contribute in

exchange of a monetary reward. Contributions from different

workers are then aggregated to infer the solution to the initial

problem. Crowdsourcing tasks can range from basic multiple

choice questions to semantic labeling and artifact creation.

B. Quality issues in Crowdsourcing

The crowd that produces the data in crowdsourcing is

constituted of workers characterized by various demographical

(age, gender. . .), educational (level and domain of study,. . .)

and interest-related features. This guarantees a rich and di-

versified output of the process. However, being generated by

anonymous actors, crowdsourced data are of un-guaranteed

quality. Their correctness indeed depends on the reliability of

1 www.mturk.com 2 www.crowdflower.com

the workers i.e., both, their ability to give the correct answer

and their trustworthiness. Therefore, there is a tremendous

need for verifying the quality of crowdsourced data. This

is however a very challenging goal, notably because the

reliability of a contributor is not the same over the various

tasks she participates in.

Previous works [2] have shown that increasing the number

of collected contributions per task improves the quality of the

final output. Testing the workers before their participation or

reviewing their contributions afterward [3] helps also increase

the quality of the crowdsourced data. However, these methods

require more assignments and thus, they suffer from additional

budget and time overheads, which limits the efficiency of the

crowdsourcing process especially in large scale applications

such as learning-dataset labeling and time-sensitive applica-

tions like event- and rescue-related information collection. The

main question we address in this work is: how to control the

quality of the data, while minimizing the budget and time

overheads and being agnostic from complementary knowledge

such as gold standard and trust information about workers.

C. Contributions and paper organization

In this paper, we describe a novel approach to provide qual-

ity control (QC) in crowdsourcing campaigns while reducing

the budget and the time overheads. Our contributions are as

follows:

1) We propose an offline learning method which infers the

worker features that optimizes workers’ performance for

each task type. These features are used at runtime to

select, for an incoming task, the most reliable workers

within the connected crowd. (Section IV)

2) We evaluate our method using real world datasets col-

lected on CrowdFlower. Results show that: (a) for a

given budget our method achieves a better output quality

(up to 6% of improvement) compared to the state-of-

the-art profile-based selection method and (b) to achieve

the same quality, our method considerably reduces the

needed time and budget. (Section V)

This article is structured as follows: in section II we describe

and formalize the worker selection problem. In section III,

we describe the state-of-the-art. In section IV we detail our

approach. Our experiments are presented in section V. We

finish by concluding the article and discussing the future work.

1

II. SETUP AND PROBLEM FORMALIZATION

In this section, the annotations related to tasks and workers

are detailed and the worker-selection problem is formalized.
a) Tasks: A crowdsourcing task has two main states:

completed and running. A completed task is a task for which

all needed contributions have been gathered and no more

contributions can be submitted. A running task is a submitted

task that still needs more contributions. Every task can be

characterized by a feature vector. All the possible task features

constitute the task feature set of size q which we call TF .

An instance of TF is Ft =< F
(1)
t , ..., F

(q)
t >. It denotes

the feature vector of a task t. We consider, for simplicity,

in the remainder of this paper Multiple Choice Question

(MCQ) tasks3. A MCQ task has a set of |L| options denoted

L = {o1, ..., oL}, and one correct answer r ∈ L.
b) Workers: Similarly to a task, we consider that each

worker w is characterized by a profile Pw =< P
(1)
w , ..., P

(p)
w >

where the features of Pw are parts of a worker feature set

WF of size p. A worker profile can have three types: (i)

a declarative profile built using information provided by the

user, (ii) a derived profile computed from the user interaction

in the system and (iii) a hybrid profile which combines both

types of data. In our terminology we consider the first type

hence, Pw denotes the declarative profile of w.
c) System history: Commercial crowdsourcing platforms

store all data related to completed tasks, to workers as well as

to their relative contributions. In this paper, we refer to these

stored data as the system history. The sets of workers and of

completed tasks in the system’s history C are denoted W and

T respectively. C is a (|W | × |T |)-matrix of strings where

|W | and |T | are the number of workers and completed tasks

respectively. One coefficient Cwt of C refers to the answer

given by a worker w for a task t. An empty string at Cwt

means that the worker w did not contribute in the task t. A

line Cw with only empty strings designates a worker who has

never contributed to any task.

Beside its history, a system has a runtime configuration that

consists of an incoming task τ and the set W ′ ⊆W of workers

who are connected to the platform when the task is submitted.
d) The worker selection problem: Using the aforemen-

tioned setup terminology we can formalize the worker selec-

tion problem as follows:

Input : System history C, an incoming task τ /∈ T and the

connected crowd W ′.

Output : The subset of workers in W ′ with the highest

estimated accuracies for τ .

III. STATE OF THE ART

Many methods have been proposed to perform QC in

crowdsourcing. Most works have focused on optimizing the

contribution aggregation process. Early works used majority

voting (MV) to infer the correct answer of a given task.

Furthermore, giving different weights to the different votes

3 Since it is possible to compute the accuracy of a worker in any achieved
task, the proposed approach is independent from the task type. Thus this
simplification does not affect the generality of the approach

improves the quality of the MV aggregation. In [4], authors

leverage different “accuracy features” such as graded and

binary accuracy computed using the majority vote or expert

labels to explicitly weight the contributions of each worker in

a relevance-rating task. Other widely used techniques [3][5][6]

rely on probabilistic data completion methods like the ex-

pectation maximization algorithm (EM) [7][8] to implicitly

weigh the contributions and infer the correct answers. In these

cases, the weights and the correct answers are simultaneously

inferred by maximizing a likelihood model. The accuracy of

the inference process depends on the campaign elements to

be modeled (the worker, the task or both) and the parameters

used to model them. Li et al. [5] use the worker accuracy

and inaccuracy as weights for correct and wrong answers

(respectively). In [6], a Generative model of Labels, Abilities,

and Difficulties (GLAD) is proposed; it uses both the worker

ability and the task difficulty as weights for the contributions

in the aggregation process. In [9], the worker’s reliability

score is estimated using her participation behavior e.g., time

for completing a task, number of clicks,. . . (tracked in the

platform interface using software plug-ins). This method,

called fingerprinting, can eliminate spammy contributions but

cannot assess the real quality of the contributions.

Optimizing the aggregation process is indeed an effective

way for increasing the quality of the final output. However, it is

not optimal since the quality of the results and the convergence

of the method are sensitive to the initialization process and

mainly to the amount of input data. Some methods propose

to add more knowledge to this process using multiple stage

crowdsourcing such as the produce/review workflow described

in [3]. Adding a review stage increases the confidence of the

aggregation process, however, it increases the time and the

budget (since the reviewers are paid) needed to complete the

campaign. Commercial crowdsourcing platforms control the

input of the aggregation algorithm by screening the workers

before allowing them to solve the actual tasks. Once they pass

the screening, their contributions are no more controlled and

hence, they have no obligation to submit accurate responses.

To tackle this limitation, platforms like CrowdFlower, use

a gold-based quality assurance [10] which consists in con-

tinuously measuring the accuracy of the worker using test

tasks randomly injected in the workflow. A high error rate

causes the rejection of the worker from the current campaign.

Programmatic gold [11] is an extension of the gold-based

QC where test tasks with incorrect answers are also used to

train the workers against common errors. On one hand, those

methods require a manual picking of test tasks which is not

scalable. On the other hand, workers are paid for test tasks

which is not optimal.

Another way to control the input of the aggregation process

is by allowing only reliable workers to participate in the

crowdsourcing campaign. Li et al. [5] propose a selection

method which falls in this category. They describe an algo-

rithm that finds, for each incoming task set, a group of most

reliable workers. This is done by assigning, during the so

called probing stage, a part of the tasks to the whole crowd

2

in order to sample it and identify the reliable group for the

remaining part. By targeting a specific group, one reduces the

number of assignments and, as a result, decreases the budget.

However because of the probing phase, the budget reduction

is not optimal and the task completion time is increased.

The method we propose in this paper belongs to this last

category. It remedies to the aforementioned limitation by using

knowledge about workers inferred from the system history.

IV. OUR APPROACH

A. Overview

Extract task features Apply discovery algorithm

Cluster tasks

Worker feature weights <β>
i

A. Offline learning

Task set [T]

Feature vector

1

2

3

Task clusters [Cl]

DB

Workers [W] with profiles History matrix C (W x T)

Foreach Cl
i

Store (Cl
i
, <β>

i
) to DB

4

Foreach

Extract task features

Incoming task t

B. Crowdsourcing

matches a cluster Cl
k

True

Conditional crowd sampling

False

Fetch (Cl
k
, <β>

k
) from DB

Feature vectors

1

2

3

Select workers

Crowd [W'] with profiles

Foreach

5

Estimate worker accuracy

4

Fig. 1: An overview of our system showing two phases: A.

the offline learning phase and B. The crowdsourcing phase.

Existing QC approaches are not optimal (in terms of time

and budget needed to complete the task) as they deal with

the particularity of each task in an extreme manner. Some

ignore it and consider that all tasks are similar from a worker

perspective which reduces the performance of the QC. Others

consider each task to be unique which increases the budget and

the time of completion. However, in practice tasks are not all

similar, yet they share similar traits. Furthermore, a worker

usually shows a stable performance in completing similar

tasks. On the other hand, similar workers (that is, workers

with similar profiles) tend to show similar performances when

dealing with the same task. Our work aims at demonstrating

how the QC process can take advantage of these facts.

We propose to use the system history to learn the correlation

between the workers declarative profiles and the task types.

This allows the indirect match between workers and tasks,

which optimizes the task assignment process. Besides, using

declarative profiles instead of derived ones helps eliminate any

probing process. Optimizing the assignment and eliminating

the probing phase (e.g. screening, sampling . . .) reduces the

time and the budget while achieving a high crowdsourcing

quality.

The general workflow of the method is depicted in figure

1 and can be summarized as follows: in the offline learning

phase (A), a feature vector is extracted for each task in the

history (step A.1), then tasks are clustered based on these

vectors (step A.2). For each cluster, the vector of worker

features that maximizes the contribution quality is determined

(step A.3) and stored (step A.4). In the crowdsourcing phase

(B), the features of the incoming task are extracted (step B.1)

and used to match the task to one of the existing types (step

B.2). The feature vector associated to the found type during

the learning phase is fetched (step B.3) and used to estimate

the workers’ accuracies for the current task (step B.4). Workers

with higher accuracy are then selected to contribute to the task.

Our system is fully automatic. Indeed, crowdsourcing sys-

tems are highly dynamic in terms of tasks and workers arrivals

and departures, which prevents the possibility of manually

performing the task grouping or the selection process [12].

To deal with the cold start problem, we rely on the declar-

ative profile - provided upon registration - to find and target

the reliable workers.

B. Offline learning

1) Task clustering: A straightforward way of grouping the

tasks into different types is to cluster them w.r.t. all of their

features (e.g. length, language, reward . . .) at once. Since this

paper focuses on showing the impact of the offline learning

on the overheads reduction, the clustering process and the task

features are not detailed in this paper.

2) Discovery algorithm: The clustering process yields a

set of task clusters, each of them defining a task type. The

set of all clusters is denoted Cl. The next step is to infer

the worker profile that maximizes the workers’ performance

for each type. For this purpose, an algorithm inspired by the

discovery algorithm described in [5] is used. It consists of

two steps. First, the workers’ performance is computed in

each task cluster. Second, a linear regression model is used

to find the most significant worker features for this cluster.

These features form the so called perfect profile for this task

type. In contrast with the work proposed by Li et. al where

the discovery algorithm is performed on every incoming task

online, we apply it by cluster i.e., by task type and offline.

Following are the details of both steps.

a) Performance inference: Estimating the performance

of each worker can be achieved through multiple ways. In

fact, since the offline learning deals with tasks that have been

already completed, we can assume that the correct answers

have been estimated upon the aggregation process. This correct

answer is used to compute the worker’s performance of which

a straightforward representation is the worker’s accuracy for

the current task cluster. That is, her accuracy for all the tasks

she completed in this cluster. Given a cluster cl and a worker

3

w, this accuracy, noted αw, is equal to the ratio of correct

answers given by w to the tasks in cl as shown in 1.

αcl
w =

1

Nw

∑

t∈cl

I(Cwt = rt) (1)

C is the system history, rt is the correct answer of t and:

Nw =
∑

t∈cl

I(Cwt 6= ∅) and I(X) =

{

1 if X
0 else (2)

Worker accuracies are used as targets in our learning model.

Other effect model such as logit can also be used. However,

since the goal here is to compare the overhead gain rather than

the quality gain, the used model is not important as long as it

is similar for the compared methods (Section V).

b) Beta vector inference: The second step of the discov-

ery algorithm consists in determining the worker features that

maximizes the workers’ performance in a given task cluster.

We use the linear regression model described in [5] and shown

in equation 3. Let w be a worker, Pw her profile, αcl
w her

accuracy in a cluster cl and ǫ a Gaussian noise with mean 0:

αcl
w ∼ β0 + β1P

(1)
w + ...+ βpP

(p)
w + ǫ, for all w ∈W (3)

Fitting the model of equation 3 yields the estimated values

β̂i of the feature weights βi. Those weights reflect the relative

importance of each profile feature in maximizing the worker

performance. The set of weights computed for a given cluster

cl form the Beta-vector of cl and is denoted β̂cl. The discovery

algorithm is applied on every task cluster apart (See function

learn() in algorithm (1)). Hence, the overall output of the

offline learning phase is a set A of (cluster, Beta vector)

couples. A is expressed as shown in equation 4.

A = {(cl, < β̂cl >), for all cl ∈ Cl}

where < β̂cl >=< β̂0, β̂1, ..., β̂p >cl

(4)

C. Online crowdsourcing

The online crowdsourcing phase is depicted in figure 1.B.

For a given incoming task, selecting the reliable workers is

done by extracting the features of the task, matching it to an

existing type and selecting the top connected workers in terms

of their estimated accuracy in completing the task using the

model of equation 3, the profiles of the workers and the learned

associations A for the matched type. Algorithm (2) details the

targeting process. In this algorithm, λ is a selection rate that

determines the portion of workers that should be selected. This

parameter reflects the requester’s needs in terms of budget and

quality. Note that if matching the task to an existing cluster is

not possible, an online sampling-based learning is launched.

V. EVALUATION

In this section, we describe the datasets, the experiments and

the results of the system evaluation. Our method is compared

with Li et. al’s method since, to the best of our knowledge, it

is the most robust method of QC that does not require manual

interaction from the requester (like for gold-based [10] and

programmatic gold-based QC [11]) while being independent

Algorithm 1: The learning functions

data : System history C, worker set W , task cluster cl

1 Function learn(cl ∈ Cl) :

2 Wcl ← {w ∈W | ∃t ∈ cl, Cwt 6= ∅}
3 foreach w in Wcl do

4 αcl
w ← computeAccuracy(C,w, cl) // equation 1

5 αcl.add(αw)

6 < β̂cl >← fit(αcl,Wcl) // equation 3

7 return (cl, < β̂cl >)

Algorithm 2: Targeting Algorithm

data : Incoming task τ , connected workers W ′, learned

associations A, selection rate λ, cluster list Cl

1 Function target(τ , W ′, A, λ ∈ [0, 1]) :

2 Fτ ← extractFeatures(τ)
3 clτ ← argmin(distanc(Cl, Fτ))

4 < β̂clτ >← {< β̂ > |(< β̂ >, cl) ∈ A and cl = clτ}
5 foreach w in W ′ do

6 α̂w ← dotProduct(w.P,< β̂clτ >)
7 W ′

Sorted ←W ′.sortBy(α̂)
8 for i in 0→ round(|W ′| × λ) do

9 Ws[i]←W ′

Sorted[i]

10 return [Ws]

from the used aggregation method (in contrast to aggregation

optimization approaches [6]) and resilient to the cold start

problem.

A. Evaluation metrics

Reducing the overhead of the quality control is the main

goal of the method described in this paper IV-A. In this

paragraph, we describe the metrics that we use to assess the

ability of our method to achieve this goal.

1) Quality metrics: In crowdsourcing, the contributions are

often aggregated and not used individually. Equation 5 is

used to compute the quality obtained using an aggregation

technique Agg. The accuracy of a group G of workers for a set

S of tasks using Agg is equal to the ratio of correctly guessed

answers over all guessed answers. Equivalent measures have

been used in other works such as [5][13] and [14].

AccAS
Agg(G) =

1

|S|

∑

t∈S

I(Agg(CGt) = rt) (5)

2) Overhead measurement: As detailed earlier, the budget

and the time overheads, noted OHbudget and OHtime, are

directly related to the number of additional assignments made

to serve only the QC process e.g. the probing assignments.

A straightforward method for computing the time and the

budget overheads resulting from those contributions is to

multiply their number by the time-per-assignment-per-worker

TA and the reward-per-assignment-per-worker RA respec-

tively. Equation 6 computes the overhead drop between two

different QC methods i and j. Assume that Assignmenti

4

Dataset Knowledge Disambiguation
Type 3-option MCQ 3-option MCQ
Tasks/workers/contributions 60 / 140 / 8400 60 / 100 / 6000
Avg. worker accuracy 61.3% 39.1%
Avg. agreement* per task 61.8% 52.8%
EM/MV accuracy (All) 81.3% / 80% 45% / 43.3%

* Percentage of votes for the most selected option for a given task

TABLE I: Statistics of our datasets.

and Assignmentj are the total number of assignments for the

method i and j respectively. RA is a task dependent parameter,

thus, it is similar for both methods when applied on the same

task. TA, on the other hand, is a more complex parameter.

It depends indeed on the task itself but also on the workers

(number, preferences, ...) and on the other tasks (number,

rewards, ...) available in the platform at a given moment. For

a fixed reward it is possible to assume that TA is the same

for 2 identical tasks when crowdsourced simultaneously.

OHtime = TA× (Assignmenti −Assignmentj)

OHbudget = RA× (Assignmenti −Assignmentj)
(6)

B. Datasets

In order to assess the performance of the proposed method,

we built two datasets with different task types. We submitted

those tasks to the CrowdFlower platform and collected con-

tributions without test questions (See gold-based assurance in

sectionIII) in order to have a real representation of the crowd.

Knowledge related tasks: The first dataset consists of

knowledge related questions distributed evenly over three

different knowledge domains: sport, botany and technology.

Disambiguation tasks: The second data set consists of

tasks such that the worker is given a sentence with a high-

lighted keyword then is asked to pick among 3 Wikipedia

links the one that refers to the keyword in the context of the

sentence. Tasks are related to either sport or technology.

Beside the task completion, workers who participated to

the campaign were asked to answer ten questions related to

their profiles. Table I summarizes statistics which describe the

proposed datasets.

C. Experiment and results

Knowledge Disambiguation
Method AUC* Avg. Acc** AUC* Avg. Acc**

Our 0.242 80.6% 0.153 51.6%

Li et. al 0.241 80.4% 0.145 47,8%
Random 0.231 78% 0.133 44%

TABLE II: Accuracy of EM on knowledge and disambiguation

datasets for different selection technique.

We realized three experiments to evaluate the impact of

the offline learning on the output quality (experiment I)

and the overheads (experiments II and III). Since tasks are

homogeneous per dataset, the history is not clustered in the

experiments. It is considered to form only one cluster to which

the incoming tasks matches every time. This does not impact

the ability of evaluating the benefit of the offline learning.

Experiment I: The first experiment aims at evaluating the

impact of the offline learning on the quality of the output. We

randomly sampled 40 tasks to constitute the system history

denoted traina used to train our model. The remaining set of

20 tasks forms the incoming task set. It is denoted target.
To train Li et. al’s algorithm, a set trainb of 10 tasks

was sampled from target. We ran the training and targeting

process multiple times and for different task splits. In each run

the same percentage λ of workers is selected by both methods

and by a random selection process for reference. For each

selection method we computed the accuracy AccAtarget
MV (Gλ)

and AccAtarget
EM (Gλ) where Gλ is the set of selected workers

and 0.05 < λ < 0.35. The results of multiple runs are averaged

and the areas under the EM accuracy curves are shown in table

II along with the average EM accuracy for different values of

λ. Results show that our history based learning yields better

final accuracy for EM than Li et al’s method. This is because

the learning step is performed on a larger amount of tasks

which allows a better estimation of the workers’ accuracy and

thus a better fitting of eq.3. This is particularly clear for low

agreement tasks i.e. difficult tasks. Results for MV are similar;

they are not shown in this article due to space limitation.

Experiment II: The second experiment aims at evaluating

the impact of the offline learning on the overhead. We used

the same setup as in Experiment I and we computed the

time and budget overhead gain. For the knowledge dataset, we

paid 0.4$ per worker for solving all of the tasks i.e., RA =
0.0067$/assignment. Moreover, experimental measurements

showed that TA = 17 sec/assignment. Using equation 6 and

the measured values of TA and RA, we compute the overhead

difference between our method and Li et. al’s method and the

ratio of this difference over the total budget and time of the

campaign. Figure 2a shows the overhead gain we made by

eliminating the probing stage for 0.05 < λ < 0.35.

The overhead gain that we achieve is optimal for lower

selection rates (e.g. 90% for λ = 0.05) and decreases when

the selection rate increases (50% for λ = 0.35). That is

because the overhead gain relies mainly on removing the

probing assignments. When the number of those assignments

is important w.r.t. the targeted assignments i.e., for lower

values of λ, the gain is high. When the number of targeted

assignments grows, the relative cost of probing assignments

(w.r.t. the whole campaign cost) is reduced.

Experiment III: The third experiment aims at evaluating

the output accuracy that we can achieve for a fixed budget. We

compared this accuracy with the accuracy achieved by Li et.

al for the similar budget. We start by computing the number

of assignments made during a given campaign. Let W ′ be the

set of connected workers and T ′ the set of incoming tasks.

For Li et. al’s method : Let θ and γ be respectively the

percentage splits of crowd and tasks used in the learning.

Let λli be the selection rate determining the number of

targeted workers. The number of assignments χ made during

a campaign is the sum of probing and targeting assignments:

χ = θ × |W ′| × γ × |T ′|+ λli × |W
′| × (1− γ)× |T ′| (7)

5

0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

100

OH Cost ($) OH Time (hours) OH / total

λ

O
H

O
H

 /
 t

o
ta

l
(%

)
(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0

0.05

0.1

0.15

0.2

0.25

0.3

Selection rate (Li et. al) Our method Li et. al

γ

T
a
rg

e
ti
n

g
 a

c
c
u

ra
c
y

S
e

le
c
ti
o

n
 r

a
te

(b)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0

0.05

0.1

0.15

0.2

0.25

0.3

Selection rate (Li et. al) Our method Li et. al

γ

T
a
rg

e
ti
n

g
 a

c
c
u

ra
c
y

S
e

le
c
ti
o

n
 r

a
te

(c)

Fig. 2: (a) Overhead gain (Exp-II). EM accuracy for θ = 0.4 and a fixed budget: (b) λ = 0.15 and (c) λ = 0.25 (Exp-III).

For our method : Let λ be the selection rate. The number

of assignments ϕ made during a campaign is given by:

ϕ = λ× |W ′| × |T ′| (8)

For a similar budget, the maximum number of assignments

that can be done by both methods is identical. Hence :

χ = ϕ⇔ θ × γ + λli × (1− γ) = λ (9)

We consider a first case where both methods select the same

number of workers. In this case, λ = λli = θ (Eq. 9). For

θ ∈ [0, 0.35], the crowd size used for learning is too small

([0, 49] workers) and profile observations are not enough to fit

a consistent model (eq 3). Hence, the accuracy of Li’s selection

is similar to the random selection’s accuracy regardless the

number of tasks used for learning.

In the second case we consider that λ and λli are not

necessarily equal. We choose θ = 0.4 to provide a sufficient

number of workers for the probing stage. Figure 2b shows the

results for 0.05 < γ < 0.5 and a fixed budget determined

by λ = 0.15. When a larger split of the tasks is used in the

probing stage, a smaller number of workers can be targeted.

For γ = 0.3 the whole budget is spent on probing the crowd.

Hence, it is not possible to select workers. For γ < 0.3, the

quality of the learning grows until the number of targeted

workers becomes very low (for γ > 0.2, λli < 0.06 i.e., less

than 7 workers are selected) and thus, the aggregation quality

drops to 71%. Our method has an average accuracy of 82%.

Figure 2c shows the results for λ = 0.25. For this budget

our method is as good as Li’s method for 0.15 ≤ γ ≤ 0.4, it

has an average accuracy of 81%. Li et. al’s accuracy is low

for γ < 0.15 because 3 tasks are not enough to probe the

crowd and for γ > 0.45 because of the low selection rates.

Being independent from any probing stage, our method uses

the whole budget to target workers.

VI. CONCLUSION

In this paper we proposed an efficient profile-based worker

selection method for crowdsourcing that aims at reducing

the time and the budget overheads by substituting the online

probing stage found in the state-of-the-art approaches by

an offline learning process that learns the profile features

which optimizes the worker’s performance for each type of

tasks. Results show that overheads are reduced for different

aggregation techniques while at least maintaining their overall

inference quality. We are currently building a larger dataset in

order to study the impact of different task clustering techniques

on the learning process. Besides, we are designing a new

task feature taxonomy that optimizes the discovery of the

correlation between the worker profiles and the task types.

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1–4, 2006.

[2] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez,
L. Bogoni, and L. Moy, “Supervised learning from multiple experts:
Whom to trust when everyone lies a bit,” in ICML, NY, USA, 2009, pp.
889–896.

[3] Y. Baba and H. Kashima, “Statistical quality estimation for general
crowdsourcing tasks,” in ACM SIGKDD, NY, USA, 2013, pp. 554–562.

[4] H. J. Jung and M. Lease, “Improving consensus accuracy via z-score
and weighted voting.” in Human Computation, 2011.

[5] H. Li, B. Zhao, and A. Fuxman, “The wisdom of minority: Discovering
and targeting the right group of workers for crowdsourcing,” in WWW,
NY, USA, 2014, pp. 165–176.

[6] J. Whitehill, T. fan Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo,
“Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise,” in NIPS, 2009, pp. 2035–2043.

[7] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of
observer error-rates using the em algorithm,” Journal of the Royal

Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. pp.
20–28, 1979.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal

statistical society. Series B (methodological), pp. 1–38, 1977.
[9] J. M. Rzeszotarski and A. Kittur, “Instrumenting the crowd: Using

implicit behavioral measures to predict task performance,” in UIST, NY,
USA, 2011, pp. 13–22.

[10] J. Le, A. Edmonds, V. Hester, and L. Biewald, “Ensuring quality
in crowdsourced search relevance evaluation: The effects of training
question distribution,” in 2010 workshop on crowdsourcing for search

evaluation, 2010, pp. 21–26.
[11] D. Oleson, A. Sorokin, G. P. Laughlin, V. Hester, J. Le, and L. Biewald,

“Programmatic gold: Targeted and scalable quality assurance in crowd-
sourcing.” Human computation, vol. 11, no. 11, 2011.

[12] D. Geiger and M. Schader, “Personalized task recommendation in
crowdsourcing information systems current state of the art,” Decision

Support Systems, vol. 65, pp. 3 – 16, 2014.
[13] K. Mo, E. Zhong, and Q. Yang, “Cross-task crowdsourcing,” in

SIGKDD, NY, USA, 2013, pp. 677–685.
[14] Q. V. H. Nguyen, T. T. Nguyen, N. T. Lam, and K. Aberer, “Batc:

a benchmark for aggregation techniques in crowdsourcing,” in ACM

SIGIR, 2013, pp. 1079–1080.

6

