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A WIRELESS EARLY PREDICTION SYSTEM OF 

CARDIAC ARREST THROUGH IoT 

 

 

by Yosuf Amr ElSaadany   

 

 

 

 

The increase in popularity for wearable technologies has opened the door for an Internet of 

Things (IoT) solution to healthcare.  One of the most prevalent healthcare problems today 

is the poor survival rate of out-of-hospital sudden cardiac arrests.  The objective of this 

study is to present a multisensory system using IoT that can collect physical activity heart 

rates and body temperatures.  For this study, we implemented an embedded sensory system 

with a Low Energy Bluetooth communication module to discreetly collect 

electrocardiogram and body temperature data using a smartphone in a common 

environment.  This study introduces the use of signal processing and machine learning 

techniques for sensor data analytics for sudden cardiac arrest and or heart attack prediction. 
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Chapter 1 

 

Introduction 

 
 

Health issues are of utmost importance to human beings. The widespread use of new 

technologies is paving the way for advanced healthcare systems. Much progress has been made in 

the medical sciences but, additionally, computing and communication technologies are creating a 

variety of services that are much closer to actual patients.The availability of wearable devices helps 

patients monitor and control their health metrics. For instance, a patient can be made aware of the 

up-to the minute status of his or her condition because of the development and deployment of such 

devices. Additionally, information can be available to the treating physician or other healthcare 

provider, which can help to deliver prompt treatment for a condition or even save the life of the 

user. 

1.1 Background 

Connected health is becoming a major application of newly developing technologies. The 

concept of connected health care systems and smart medical devices have enormous potential for 

companies and for the well-being of people in general. As such, we investigated new technologies 

that can enable the creation, enhancement, and expansion of connected health systems with the 

objective of developing a system that can help certain type of patients obtain better awareness 

about their health status through early medical warning signs. 

Before going deeper into the core of the main discussion, we must first shed some light on 

the technologies that can be used in developing connected health systems. According to ITU-T 

Global Standards, IoT is a global infrastructure for the information society, enabling advanced 

services by interconnecting (physical and virtual) “things” based on existing and evolving 

interoperable information and communication technologies [1]. 
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The goal of the IoT is to enable things to be connected anytime, anyplace, with anything 

and anyone ideally using any path/network and any service [3]. This goal requires more 

development in many areas including communications and applications.  Many research and 

development entities are involved in development activities. Cisco defines the Internet of 

Everything (IoE) as connectivity of people, data, things, and processes in networks of connections 

[3]; in other words, IoE is a network of computers and devices of all types and sizes, all 

communicating and sharing information. Cisco [4] also predicts there will be 50 billion devices 

connected to the Internet by 2020. IoT can be described as a network of networks. 

  A special dedicated IEEE standard is under development for the architectural framework of 

the IoT, namely, IEEE P2413 [5]. This standard defines IoT as a system of interconnected people 

and physical objects along with Information and Communication Technology (ICT) to build, 

operate, and manage the physical world via smart networking, pervasive data collection, predictive 

analytics, and optimization [6]. The IoT standard provides a reference model, defines architectural 

building blocks, and affords development mechanisms for the relevant systems. 

  As the Internet continues to grow, one of the key enablers is the IPv6 [7] global deployment 

which supports the ubiquitous addressing of any communicating “smart thing”. It will provide 

access to billions of smart things allowing new models of IoT interconnection and integration. 

However, as a result of network expansion, more requirements will be added to network functions, 

network management, and network composition. IPv6 must enable the interconnection of 

heterogeneous IoT components together with heterogeneous applications. 6LoWPAN [8] is an 

optimized version of IPv6 for Low Power Wireless Personal Area Networks. It is basically IPv6 

implemented on resource constrained IoT devices. 

  There are many research areas related to IoT and these are mainly in the areas of networking 

communication, networking applications, networking security, as well as others. IoT security is one 

of the main research topics as there is a need to provide security for the growing number of 

connected devices. For example, there is a need to ensure that IoT devices are only providing 

information to authorized entities [9]. IoT hardware development has many related research issues 

as new devices are introduced and many of them are small and have limited battery life. Moreover, 

the IoT sensor devices must be integrated into the Internet using communication protocols. These 

protocols must consider the low energy of the sensor battery especially when sensors are deployed 

in remote locations. 
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  There are many protocols developed and more to be developed that consider the use of Low 

Energy (LE) for IoT devices. For example, an efficient service announcement and discovery 

protocol in IP-based ubiquitous sensor networks is proposed [10]. The protocol adopts a fully 

distributed approach to ensure optimal acquisition times, low energy consumption, and low 

generated overhead, with timely reaction to topology changes. The protocol is capable of realizing 

optimal acquisition times with minimal cost in terms of energy and generated overhead, making it 

suitable for mobile networks. 

  The Internet Engineering Task Force has done the major standardization work for the 

Constrained Application Protocol (CoAP) that allow seamless integration of low power devices 

into the Internet [11]. CoAP can run on most devices that support User Data Protocol and the 

network architecture that use this protocol is a hot research topic [12-16]. 

  IoT devices use different protocols (Bluetooth, Zigbee, etc.) and different networks (LANs, 

WANs). Thus, an IoT platform has three building blocks:  Things (IoT devices), Gateways (Access 

Connectivity), and backend networking, along with Cloud Computing as shown in Fig. 1. Cloud 

Computing is used as an enabling platform that supports IoT based systems to allow connecting the 

large number of devices and sensors. IoT based healthcare applications can use Cloud Computing 

platforms to facilitate sensors communication, instead of implementing separate means to have all 

the sensors communicate directly. 

1.2 Problem Description 

There is a vast amount of research relating to health applications and we have chosen this 

area as our main topic. “Health is the fundamental capability humans require to perceive, feel, and 

act effectively, and as such, it represents a primary element in the development of the individual, 

but also of the environment humans belong to. That is why it is necessary to provide adequate 

Fig. 1: IoT building blocks 
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ways and means to ensure the appropriate healthcare delivery based on parameter monitoring and 

direct providing of medical assistance.” [17] 

The increase in popularity for wearable technologies has opened the door for an IoT 

solution to healthcare. One of the most prevalent healthcare problems today is the poor survival 

rate of out-of-hospital sudden cardiac arrests [18-21]. All existing systems for predicting cardiac 

arrest in the elderly mainly consider the various available heart rate parameters. It has been proven 

that heart rate derived features can give an early indicator of sudden cardiac arrest and providing 

an early warning has the potential to save many lives [22-24]. IoT wearable devices can provide 

this warning through the use of embedded sensors. By 2050, it is estimated that more than one in 

five people will be of age 65 or over [25]. Heart disease in the elderly is a very common occurrence. 

Approximately one-third to one-half of the elderly population experiences a heart attack or cardiac 

arrest on a yearly basis [26]. In an aging society, heart attacks have huge consequences since they 

tend to cause tremendous concerns as related to weakening in quality of life and an increase in the 

cost of healthcare.  

Historically, seniors living all around the world have been known to be late adapters to the 

world of technology compared to their younger compatriots but their movement into digital life is 

continuing to expand. Today, 59% of seniors report that they go online, and 47% say they have a 

high-speed broadband connection at home. In addition, 77% of them have a phone and among that 

number, 18% are using smartphone devices [27]. With recent developments, smartphones have 

increased processing capabilities and are equipped with a number of built-in multimodal sensors, 

including accelerometers, gyroscopes, and GPS interfaces. As self-contained devices, smartphones 

present a common commodity and software environment for developing various cardiac arrest or 

heart attack detection systems. Smartphone-based heart attack detection systems can function 

almost everywhere since mobile phones are portable. Ideally, integrated sensors along with the 

ECG can automatically detect a risk of injury due to heart variability. Due to these and several 

other advancements in mobile technology, the elderly may increase their smartphone use based on 

such systems. 

Existing cardiac arrest and heart attack detection systems can only detect a risk after it has 

already occurred, following which the system sends an alert to an emergency contact. The ideal 

way to reduce the number of risks is to alert the users about their abnormal heart conditions prior 

to potential heart attacks. This may cause false alarms based on how a user’s heart behaves during 
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the day since fluctuations in our heart signals can be normal. These fluctuations can result from 

many things like sudden scares, emotional endeavors, or sudden movements like jumping, running, 

and exercising. However, having a few false alarms in this case would definitely be better than the 

alternative where heart attacks can only be detected but not predicted. Keeping in mind that the 

number of false alarms can be minimized the more the system is perfected. If abnormal ECG 

patterns can be accurately identified using automated processes, the elderly may be able to avoid 

injury from a potential Myocardial Infarction (MI). Therefore, our focus is on heart attack 

prediction rather than just detection. Though there has been much research on automatic heart 

attack detection, the area of heart attack prediction is still understudied. The need to identify all 

the possible patterns that can lead to a heart attack is very challenging. 

1.3 Research Challenges 

We aim to create a system that is unique and stands out when it comes to eHealth based 

IoT systems. In doing so we faced many research challenges that are listed below: 

1) Developing a low energy communication channel between the IoT device and the 

smartphone application 

2) Collecting, analyzing, and plotting data in real-time 

3) Predicting heart abnormalities using a system of integrated sensors 

4) Generating an alert message to a caregiver or emergency contact  

 

1.4 Our Approach 

Our goal is to create a system that solves those research challenges that have not quite been 

resolved using integrated IoT systems. Ehealth systems [28] are good examples of problems that 

can be handled using IoT devices. When successful, such systems will eliminate the need for 

patients to go to hospitals on every occasion. This becomes more important for older people who 

need special health care and monitoring throughout many hours of the day. Another concern is the 

number of deaths caused by strokes that were not timely noticed and then attended. Using ECG 

signals, along with other sensors, we can design a system that can predict heart attacks sooner. To 

accomplish this, we must study the human body’s action prior to the onset of a heart attack. Not 

only must we understand how the heart behaves, but also, we need to understand how other 

symptoms, such as body temperature, can indicate possible problems. By analyzing the data from 

the sensors, we can create an algorithm that can predict heart attacks.  
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IoT devices can be used to enable remote health monitoring and emergency notification 

systems. Health monitoring devices can range from blood pressure and heart rate monitors to 

advanced devices capable of monitoring and analyzing data. Using a number of sensors and a 

microcontroller, we can design a device capable of preventing health related disasters. In 

particular, we used several hardware components such as a pulse sensor, a temperature sensor, an 

Arduino microcontroller, and a Bluetooth chip (RN-42). This hardware kit (IoT device) basically 

senses and transmits the sensed data to a computing device for analysis.  

Furthermore, we use the relationship between an individual’s pulse rate and body 

temperature to design an algorithm that predicts heart attacks. This required a very good 

understanding of the human’s body behavior in both normal and abnormal states. The normal states 

are simpler and can be analyzed easily. For example, we all know that a normal body temperature 

ranges from 36 to 37 (degrees Celsius), so intuitively, any temperature out of that range would be 

abnormal. Similarly, a person’s heart rate in normal cases would range from 60 to 100 beats per 

minute. Any heart rate out of that scope is something that needs to be diagnosed properly and as 

soon as possible. Of course, humans have different heart rates in normal states which can vary for 

different age groups and different health conditions. Athletes tend to have lower heart rates around 

50 to 60 beats per minute in resting state, while when exercising their heart rates can go up to 150 

beats per minute or even more. People who do not normally exercise can have heart rates ranging 

from 70 to 90 beats per minute. So, it’s very important to consider the different subjects that are 

under study.  

Thus, we propose a smartphone-based heart attack prediction system that can alert users 

about their abnormal ECG patterns. Since abnormal ECG patterns can lead to a myocardial 

infarction, the system uses the identification of an abnormal heart-rate to alert the user regarding 

a potential heart attack. The proposed system is useful, not only among elderly, but also has a 

scope in identifying heart disease among children, adults, and stroke patients. Keeping track of a 

user’s body temperature is very helpful and can provide additional indications to help predict heart 

attacks. In general, prior to heart attacks, people’s body temperatures tend to go up. Even though 

there is a correlation between these entities, we do not assume that there is a direct relationship 

between them; however, this correlation gives a better chance of prediction 
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Chapter 2 

 

Motivation 

 

 
In this section, we discuss the impact of our system and the reasons that motivated us to 

pursue this area of research. We first present some information regarding health services and the 

reasons for which people need these services nowadays. Then, we describe some scenarios that 

drove us towards learning more about eHealth and IoT based systems. 

2.1 Health Services 

A key area of interest in today’s society is health services and improvements that can be 

made to them.  Engineers are continually developing and evolving technologies that are critical to 

the enhancement of health services available to the public.  One such area is remote sensing and 

monitoring, which allows doctors to get the status of their patients and inform them of critical 

conditions before they happen. This decreases the health-care cost as it frees up hospital equipment 

for the treatment of other patients who may need emergency services. 

In the USA, electronic health monitoring has been given the go-ahead by the Federal 

Communications Commission (FCC). The FCC allows the use of allotted frequencies for sensors 

to control devices wirelessly in the monitoring of health at hospitals and homes. They allocated 40 

MHz of spectrum bandwidth for Medical Body Area Network (MBAN) low-power, wide-area 

radio links at the 2360-2400 MHz band, primarily due to the saturated Wi-Fi spectrum [29]. 

The FCC forecasted the potential cost savings using MBAN as doctors can intervene before 

a patient’s condition seriously deteriorates, resulting in less time spent in the intensive care unit. 

The remote monitoring of patients can decrease infections that can be caused by hospital visits.  

Healthcare applications can be used by elderly people to monitor their statuses and by their 

family members to identify their whereabouts. The application can be connected to a wearable 

device that is equipped with location-based sensors and attached to the elderly individual. This 
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device can emit signals to alert family members about the condition of their elderly patient. 

Healthcare applications can also record important body conditions such as heart rates and body 

temperatures. The application can check and predict if the patient is going to have health problems.  

In the future, researcher are developing biodegradable materials for sensors that can be implanted 

on or in patients. The sensor chips can detect internal organ responses to new medication and guide 

the application of drugs to infected areas for better treatment. Also, new smart pills that are 

ingestible sensors, are swallowed to record various body measures. 

2.2 Scenarios 

In terms of motivation, there were many aspects that contributed to direct us to the area of 

eHealth and the use of IoT devices to enhance health care. One major trigger that made us realize 

this, is the very important fact that we are dealing with saving lives and trying to increase the 

average life span of humans. Many heartbreaks and sorrows happen every day when family 

members pass away due to heart failures. Although this is how life works, there is no reason why 

anyone should not have the opportunity to live a long healthy life surrounded by his loved ones 

because of insufficient monitoring of health. In this section, we stress the importance of a couple 

of scenarios that anyone would much rather avoid.  

2.2.1 Scenario 1 

Now that we provided a better idea of the aims of our system, we can talk a briefly about 

the scenarios that lead us to more depth in the eHealth area. One scenario that is quite common is 

that an person (young or old) starting to feel chest pains in a relatively isolated room. This may 

happen more often than not with the elderly who spend many hours of the day alone at their homes. 

Without anyone’s help, this person may have to go through cardiac arrest alone and might not be 

able to call for help one’s self and may be unable to move during the cardiac arrest event further 

inhibiting any ability to garner assistance or medical treatment. This scenario can be avoided if 

that person had a wearable device that predicted a problem and immediately alerted an emergency 

contact.  

2.2.2 Scenario 2 

Another scenario that occurs frequently is related to athletes or marathon runners. 

Marathon runners with family histories of heart diseases should not consider themselves immune 

to potential heart failure. A recent study [30] has stressed that physicians should not assume that 

physically fit marathon runners cannot have serious, life-threatening cardiac problems. A person 
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preparing for a run or in a running state would be much safer if s/he had a wearable device attached 

to him/her, knowing that if any problem were to occur, the device would alert that individual or a 

caring person depending on how serious is the condition. 
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Chapter 3 

 

Related Work 

 

 

Given that the area under study is a very hot research area that is growing everyday as 

technology is improving, there has been a plethora of work done to which we can relate. Many 

individuals currently perform research in eHealth and many companies have taken advantage of 

this work by designing systems that connect patients with doctors around the world. We examine 

two different categories of related systems: comprehensive health care systems and connected 

eHealth mobile applications. Our work is more related to connected eHealth mobile applications 

since we are developing a mobile application that connects with an IoT device while huge 

corporations focus on comprehensive health care systems that allow patients to interact with one 

another and benefit from health articles and resources. However, we discuss both categories since 

what we are doing is essentially related to health systems.  

3.1 Comprehensive Health Care Systems 

There are many platforms that are shared by patients, doctors and research institutes to help 

all parties with their needs. One of the very well-known companies is called “PatientsLikeMe” 

with a main goal of listening to patients to identify their symptoms and treatments [31]. It focused 

on helping patients answer the question: “Given my status, what is the best outcome I can hope to 

achieve, and how do I get there?” They answered patient questions in several forms like having 

patients with similar conditions connect to each other and share their experiences. 

Another related system is called “DailyStrength”. It i’s a social network centered on 

support groups, where users provide one another with emotional support by discussing their 

struggles and successes with each other. The site contains online communities that deal with 

different medical conditions or life challenges [32]. It is very similar to “PatientsLikeMe” in the 

sense that both of them are free platforms that involve patients and doctors interacting. Two major 
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differences between them is that “DailyStrength” does not involve research institutes and does not 

have a mobile application. However, they are both global platforms that are very helpful for 

patients with health problems. “PatientsLikeMe” is more of a platform where patients share 

experiences of same symptoms while “DailyStrength” gives patients the option to talk to doctors. 

Another comprehensive health care system is called "Omnio” which is an all-in-one application 

for Medical Resources [33]. It provides, among its services, clinical resources, diagnostic 

resources, disease guides, drug information. Everyday Health [34] is a company which owns 

websites and produces content relating to health and wellness. It has higher ratings and publishes 

many health articles than can be very helpful for patients.  In addition, it has a smart search that 

provides users with easy access their materials. A comparison of the comprehensive health care 

systems described above is shown in Table 1. 

 

Table 1 Comparison of comprehensive health care systems 

Attribute PatientsLikeMe DailyStrength Omnio Everyday Health 

Mobile app Yes No Yes Yes 

Diseases guide information Yes Yes No Yes 

Drug guide information Yes Yes Yes Yes 

Support Groups Yes Yes No No 

Doctor-Doctor connection No No No No 

Patient-Doctor connection No Yes No No 

Patient-Patient connection Yes Yes No No 

Free or Paid Subscription Free Free Mix Free 

 

3.2 Connected eHealth Mobile Applications 

Even though all the system mentioned above provide health services, they do not provide 

devices that can be used by patients to monitor their everyday activities and alert them when 

needed. On the other hand, there are many heart monitors that provide users with their ECG signals 

so they can keep track of their condition but none of which who alert the users upon emergencies. 

A Smart Elderly Home Monitoring System named SEHMS has been  designed and developed on 

an Android™-based smartphone with an accelerometer; it could detect a fall of the user [35]. It 

provides a Graphical User Interface (GUI) to display health information gathered from the system. 
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The main advantage of SEHMS is that it provides remote monitoring for elderly and chronically 

ill patients. 

Remote Mobile Health Monitoring (RMHM) is a system that provides monitoring of a 

user’s health parameters such as his or her heart rate, which is measured by wearable sensors [36]. 

RMHM has a GUI that shows the wearer’s health status. It allows doctors (and family members) 

to monitor the patient’s condition to facilitate remote diagnosis. 

Other researchers have developed relevant examples [37]. The Advanced Health and 

Disaster Aid Network (AID-N) system is an electronic method to handle emergency responses to 

increase quality and quantity of patient care. The Personal Health Monitor (PHM) system is 

designed for patients who have a suspected cardiovascular disease and need to be monitored 

around the clock. The system uses sensors for each patient to provide personalized monitoring and 

treatment. A comparison of the related systems is shown in Table 2. 

 

Table 2 Comparison of connected eHealth mobile applications 

Attribute SEHMS RMHM PHM DTSDSA 

Uses Temperature Sensor  N Y N Y 

Uses Pulse Sensor N Y N Y 

Shows Heart ECG N N Y Y 

GUI Y Y Y Y 

Real-time Plotting of Data N N N Y 

Low-energy system N N N Y 

Mobile System Y Y Y Y 

Emergency Detection Y Y N Y 

 
Many IoT systems rely on using wearable devices. Qardiocore is a well-known and high 

quality heart monitor that tracks a user’s complete heart health and displays it on smartphones 

[38]. The device yields very accurate results and is one of the best products on the market in terms 

of showing real time graphs of ECG. However, it only detects cardiac conditions and allows users 

share data with their doctors. It does not give the patient/user the option of alerting the medical 

person in real time when their heart is at a serious condition and it certainly does not predict heart 

attacks. In fact, neither of the systems described above have the option of heart attack predictions. 
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Other related systems have been implemented and can successfully detect heart attacks. 

The idea of predicting heart attacks remains a challenge and that is the focus of our research. Every 

research group specifies its own approach on how they plan to achieve its objective. We decided 

to use a combination of body temperature and heart data to predict heart abnormalities. Other 

systems have different approaches with different hardware implementations. The attributes in 

Table 2 are all binary which means that the systems either have the attribute or not. While some 

systems have similar features to our system, none of them were concerned about energy 

consumption as much as we made it a priority. Our system uses a low energy Bluetooth module 

(BLE) which gives our IoT device a very long lifetime. The details of the device’s performance 

are discussed in Chapter 4. 

Recently published papers present a comparison between different data mining techniques 

for heart attack prediction [23,24]. Those papers present just prediction algorithms rather than a 

complete system with a data collection device and a computing platform. As shown in those 

papers, the best techniques that are most commonly used for predicting heart problems are: 

Decision Tree, Naïve Bayes, Neural Network, and K-mean. Our research not only includes a 

complete system with an IoT device and a computing platform, but also uses one of those data 

mining techniques (Decision Tree) to predict heart problems. This makes our system unique in the 

sense that we created a low energy IoT device and we applied a data mining technique in our 

prediction algorithm. Upon testing our prediction algorithm, we obtained results that were almost 

perfect for all our healthy and unhealthy test subjects. The algorithm’s results are discussed in 

more detail in the Chapter 7.  
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Chapter 4 

 

System Architecture 

 

 

To integrate the sensors, we used the output of the embedded sensors to perform an 

extensive set of experiments for evaluating and discriminating between normal and abnormal heart 

rate patterns. Subjects wear the embedded sensors, and carry their smartphone in their pocket or 

hold it in their hands. The embedded ECG and temperature sensors constantly collect the heart 

parameters while the subject is living a normal life. After receiving the data through a LE Bluetooth 

communication channel, the smartphone will process the data to classify whether the user’s 

condition is normal or abnormal. A quantitative heart-rate analysis is performed in the Android 

platform which gives the user the option of viewing his/her real-time plots of the ECG signal and 

body temperature.  

To determine abnormal heart patterns, we first establish a criterion for normal heart-rate. 

Quantitative analysis of heart rate stability and pulse symmetry will yield a series of parameters, 

like heart rate, RR intervals1, and ST segments2. We then design an early warning system to 

monitor those parameters for signs of cardiac arrest during any activity. Although the system 

continuously monitors ECG patterns, the planned design only triggers a warning if the ECG 

patterns and body temperature of the user reaches a certain point, wherein the user might face a 

potential heart attack. At that moment, the system transmits a warning to the subject in the form 

of a message or a vibration alert.  

Fig. 2 shows the flow of the system’s architecture. We discuss all the components in detail 

in the next section but, basically, the IoT device constantly collects data from the user and sends 

                                                        
1  RR Interval: is the duration between two consecutive R peaks in an ECG signal.  
2 ST Segment: is the flat section of the ECG signal between the end of the S wave and the beginning of the T 
wave. It represents the interval between ventricular depolarization and repolarization. 



15 
 

it via Bluetooth to the application as shown in the Fig. 2. All the processing and data analysis take 

place in the application where the user has the option to view his/her real-time plots.  These plots 

provide the user a basic idea of his/her body’s status. The user does not have maintain a record of 

his/her data to ensure that s/he is in a healthy or unhealthy state since the application’s job is to 

alert the user upon an emergency. Finally, when the algorithm senses an abnormality it 

immediately alerts the user.  

 

4.1 Hardware 

The developed IoT device consists of four main components which are listed in Fig. 3 

below. A LE Bluetooth chip, an Arduino Uno™, a pulse sensor, and a temperature sensor were all 

used to build the IoT device. The other components are the power supply unit along with a 

smartphone that has the application downloaded on it.  

The Arduino simply serves as an Analog to Digital Converter (ADC) [39].  An Arduino is 

an open-source physical computing platform based on a simple I/O board and a developmental 

environment that implements the processing/wiring language. The Arduino is programmed to read 

analog signals from the pulse and temperature sensors and create a data packet to convert the 

signals into digital form. Subsequently, it sends those packets to the phone as a response to the 

Fig. 2: System architecture 
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data sending request. It also manages the Bluetooth communication by coordinating with the RN42 

Bluetooth chip. The Bluetooth chip basically equips the Arduino with the ability to connect to the 

smartphone application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data read from the sensors is always an analog value between 0 and 5 volts since that 

is the operating voltage of this microcontroller. The Arduino then maps those voltage values to 

digital values ranging from 0 to 1023. To convert those values into numbers that make sense we 

use the equations that correspond to each sensor. Since the y axis for ECG signals is also a voltage, 

all we had do is scale the digital values to back voltage. The following lines of Arduino code in 

Eq. (4.1- 1) and Eq. (4.1- 2) show how we achieve that. 

 

   int sensorValue = analogRead(A0);                                  (4.1- 1) 

                                             float voltage= sensorValue * (5.0 / 1023.0);                           (4.1- 2) 

Basically, we read the sensor value from the Arduino through analog pin 0 and then 

multiply it by 5 and divide it by 1023 to get the correct voltage value. This only applies to the pulse 

sensor since the expected output from the temperature sensor is in degrees Celsius. The following 

lines of Arduino code in Eq. (4.1- 3) and Eq. (4.1- 4) show how to get Celsius values from the 

temperature sensor. 

  

Bluetooth Chip (RN-42) [40] Arduino Uno [41] 

 

 

Pulse Sensor [42] Temperature Sensor (LM-35) [43] 

Fig. 3: Hardware components 
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 int sensorValue = analogRead(A5);        (4.1- 3) 

 float temperature = (5.0 * sensorValue * 100.0) / 1024;        (4.1- 4) 

Similarly, we read the sensor value through analog pin 5 and then use the equation shown 

above to get the temperature in Celsius. The manufacturers of the sensor (LM-35) and Arduino 

specified this equation and all we need is to get the correct temperature value. 

Reading simultaneous readings from multiple analog pins in an Arduino results in 

inaccurate values. To avoid that problem, we not only need a delay between each reading but also 

need to read from the same analog pin twice. So basically, we read the temperature data from the 

sensor twice and send the second reading, then do the same for the pulse sensor. Of course, we 

need to send different symbols before the sensor readings to be able to parse the data at the 

receiving end (android application). Before sending a temperature reading we send a ‘/’ and before 

sending a pulse reading we send a ‘- ‘, which makes data parsing simple. Finally, the battery power 

supply gives the IoT device the mobility. This concludes the description of the functionalities of 

all the hardware components. 

4.1.1 Hardware Modifications 

After proposing our research, we worked on modifying the hardware to develop a better 

IoT device that can later on be used as a user friendly wearable device. In this section, we will 

discuss the new hardware components used, the design of the wearable device, and the 

performance of the device (power consumption /current draw).  

4.1.1.1 New Hardware Components 

Rather than using the Arduino Uno, we decided to use the Arduino Mini instead for many 

reasons that are explained below. Table 3 shows a comparison between both computing platforms. 

 

Table 3 Comparison between Arduino Uno and Arduino Mini 

 Length 

(cm) 

Width 

(cm) 

Area 

(cm2) 

Clock 

(MHz) 

Input Voltage 

(Volts) 

Operating 

Voltage (Volts) 

Microcontroller 

Arduino Uno 6.86 5.34 36.63 16 7-12 5 ATmega328P 

Arduino Mini 3 1.8 5.4 16 7-9 5 ATmega328P 

 

They both have the same microcontroller, clock speed, operating voltage, and range of 

input voltage. The main reason why we used the Arduino Mini instead of the Arduino Uno was 

the size difference. The Arduino Uno has an area of 36.63 cm2 which is almost 7 times larger than 
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the Arduino Mini. When developing a user friendly wearable device, it is crucial to have smaller 

components to be able to design a compact device. One challenge that we faced was that the 

Arduino Mini does not have a serial interface that allowed us to upload code. Therefore, we had 

to buy a Mini USB Adapter that gave us that capability. To be able to upload code to the device, 

we also needed an 0.1 µF (micro-farad) capacitor connected in series between the reset pin of 

the Arduino Mini and the reset pin of the Mini USB Adapter. We used a PCB soldering board to 

solder all the hardware components together. The board, which has dimensions of 5 cm x 7 cm 

(almost the same size of the Arduino Uno), has all the hardware components soldered to it. To 

power the device, we used a 7.4 Volt Lithium Ion battery with a current supply of 2200 mAH 

(milli-amperes per hour). This battery has an outlet plug that gives it the ability to recharge. So, 

we also bought a Pin Battery Connector Plug to insert the battery in. This allows us to solder the 

pin plug to the board without soldering the battery itself, allowing the user to remove the battery 

when it needs to be recharged. All the components that we added (shown in Bold in this section) 

are shown in Fig. 4 below. 

  

Arduino Mini [44] Mini USB Adapter [45] 

  

PCB Soldering Board [46] Li-Ion Battery [47] 

  

Capacitor [48] Pin Battery Connector Plug [49] 

 

Fig. 4: New hardware components 
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4.1.1.2 Design of the Wearable Device 

After soldering all the hardware components on the PCB board, we had to design a method 

that allows the user to wear the device. We decided to make the device wearable on the wrist of 

the user using Velcro strips. The device is designed such that the Mini USB Adapter can be 

connected only when we need to modify code on the Arduino. The final design of the device is 

shown in Figs. 5 and 6, where Fig. 5 shows the device with the Mini USB Adapter attached and 

Fig. 6 shows the device without the Mini USB Adapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the device when the battery is active; hence, the LEDs of the Arduino Mini, 

Bluetooth, and pulse sensor are all on. The wires connected to the battery can be easily plugged in 

and out of the IoT device to allow the user to power the device on and off. The battery is placed 

between two PCB soldering boards that are supported on top of each other using the four screws 

at each corner. The temperature sensor’s connection mounts over the Bluetooth chip and under the 

lower PCB board, where it will be in contact with the user’s skin when the device is worn. The 

pulse sensor extends to the palm where it should be wrapped around the user’s index finger. 

Finally, the Velcro is glued to the bottom of the lower PCB board and covered in black leather to 

give the device a better appearance. Figure 7 shows how the device should be worn. Note that this 

Fig. 5: IoT device with Mini USB Adapter Fig. 6: IoT device without Mini USB Adapter 
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device is only a prototype that was built to accomplish our goal. However, if this device was to be 

introduced to the market as a feasible selling product, it would have to be miniaturized into one 

chip that makes it much more usable and friendly. 
 

4.1.1.3 IoT Device Performance 

The next part we elaborate on the power consumption of the IoT device in different modes. 

When the IoT device is powered, the Bluetooth enters the idle mode where it blinks on and off 

waiting for a connection request. When the Android device connects to the IoT device through the 

application, the Bluetooth’s LED stops blinking and is set to green indicating a succesful 

connection.  

The performance of the device can be determined by measuring the current consumpution 

which tells us how long the device can be powered. For LE IoT devices, the main objective is to 

have a device powered and working with minimal voltage consumption and current draw. The 

voltage supplied from the battery is constant since the Arduino Mini takes the voltage it needs and 

supplies the devices connected to it. The typical way to determine the performance of the device 

is by checking the amount of current that is drawn from the battery in the different modes. The 

two modes in which we need to test the device are: the idle mode and the connected/transmitting 

mode. The measuring unit of the battery is in millamp hour (mAH) which is an energy measure. 

Fig. 7: Wearable IoT device 
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A battery with 2200 mAH will work for an hour if the current drawn from it is always 2200 mA. 

Similarily, if the current draw is 1100 mA, the battery would last two hours. Therefore, to measure 

how long the device can be powered in the on state without the battery draining, we need to 

calculate the average current draw of the IoT device. Table 4 shows the current draws, the device’s 

lifetime, and the power consumtion during the two modes for the IoT device.  

Table 4 Performance metrics 

 Current Draw (mA) Lifetime (Hours) Power Consumption (mW) 

Idle mode 26 84 192.2 

Connected/Transmitting 60 36 444 

 

The device shows that it has a very long lifetime in both modes which makes it very useful 

for users. When the battery is too low on power to operate the device, it can be recharged by simply 

plugging the battery’s wires to a charger. This validates that our device is of the LE type. 

4.2 Software 

To receive and analyze data from the IoT device, we use a heart rate and body temperature 

collector interface in the smartphone. As described in the hardware section, we developed a 

Bluetooth communication channel that is capable of transmitting data from the pulse and 

temperature sensors to the smartphone. On receiving data from the sensors, the system processes 

the data to identify any abnormality. 

To have a fully functional system, we had to start with a wireless communication channel 

to transmit data from the IoT device to the application. To achieve that we opened a socket from 

the Android application that connected to the transmitting signals of the Bluetooth module. To 

communicate with the Arduino, we created a software serial object and specified the transmitting 

and receiving pins. When the Bluetooth is supplied with power, it immediately enters the pairing 

mode, where it waits for any device to connect to it. At this point, the, mobile phone’s Bluetooth 

adapter is opened through the application and it starts searching for devices around the phone. 

When the Bluetooth chip’s name appears on the screen, simply clicking on it opens a connection 

between the two devices. When a successful connection can be confirmed from both sides, the 

application will produce a message on the screen informing the user that the connection was 

successful, and the Bluetooth chip’s LED will turn from red (pairing mode) to green (connected 

mode).  
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After successfully connecting to the IoT device, the application will automatically start 

receiving the sensors’ data. At this point, the application parses the temperature and pulse data into 

separate arrays that are then sent to different pages where they are plotted in real time. The user 

has the option of either viewing the separate plots for each sensor data or viewing a page that has 

both plots in real time. While data is being plotted, the algorithm is constantly examining the ECG 

data waiting for any abnormality. 

The next part shows the pages of the android application starting with the login and sign 

up pages. When starting the application, the user will have the option of either signing up or 

logging in depending on whether the user has an account or not. If the user has an account s/he can 

simply enter the username and password to login. If not, clicking on the sign-up button will take 

the user to another page where s/he will be asked to enter some information to create an account. 

Figs. 8 and 9 show the login page and sign up pages, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The user will then be directed to the home page (shown in Fig. 10) of the application where 

s/he will have different options. The user will need to connect to the IoT device before s/he can 

start viewing his/her data. This can be done by pressing the connect button which will take the user 

to another page where s/he can find the device. 

Fig. 8: Login page 

 
 

Fig. 9: Sign up page 
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The pages shown in Fig. 11 are screenshots from the ‘Connect’ page. The one on the right 

is the first thing the user sees when s/he enters the page. First the user needs to turn on the Bluetooth 

of the Android device. By pressing the “TURN ON” button, the Android device will respond to 

the application’s request, asking the user if the application can open the Bluetooth and by hitting 

yes, the Bluetooth turns on. The figure on the left shows what happens when the user hits “LIST 

DEVICES”. Since we are working on a prototype, we named the Bluetooth device “YOSUF” and 

only allow the user to connect to this Bluetooth device for simplicity. Simply pressing on 

“YOSUF” will connect to the Bluetooth chip which opens the communication channel between 

the user and the IoT device. The user can then go to the home page where s/he will have several 

options between viewing his/her real-time plots of the sensed data or going to the decision page. 

The decision page will basically have information that describes the user’s current health status. 

 

 

Fig. 10: Home page 
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Screenshots in Fig. 12 show the real-time plots for each sensor individually and for both 

sensors on one page. The time axis shows that the graph retrieves the current time from the Android 

device and displays it in real-time as the axis moves with incoming data points. 

Fig. 11: Connect page 

Fig. 12: Real-time plots of sensors' data 
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We conclude our software discussion by combining all the pages in the application in one 

diagram to give an overview of how the user can access each page. Figure 13 shows the GUI pages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 13: Graphical user interface of the application 
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4.3 Summary of System Components 

In this section, we summarize all the components that were used to build the system in Table 5. 

Table 5 System Components 

Category  Item 

Hardware Arduino Mini 

Bluetooth RN-42 

Pulse Sensor 

Temperature Sensor (LM 35) 

Li-Ion Battery + Pin Battery Connecter Plug 

PCB board + Capacitor + Wires + Male Headers 

Software Android Smartphone Application 

Arduino Mini software 

MATLAB prediction algorithm 

Supplemental Materials Leather + Jeans + Screws + Velcro 

 

This information can be helpful to people who plan on creating such a system. The 

hardware components listed in the hardware category and the supplemental materials are sufficient 

to help developers create our IoT device. Of course, the IoT device can always be improved by 

using more advanced components. For example, one can design a smaller device by using a Nano 

Arduino instead of the Mini Arduino. There are also many other Bluetooth modules, temperature 

sensors, pulse sensors, and batteries out that that can be used instead of the ones we chose. 

However, we believe that the hardware components that we chose were enough to give us a LE 

IoT device that provides the performance metrics we set at the start of the research. The 

supplemental materials can also be upgraded to create a more user friendly wearable device. For 

the software, we have the Android smartphone application that collects the data and plots it in real 

time, the Arduino software that is responsible for sending the data via Bluetooth, and the prediction 

algorithm written in MATLAB™. 
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Chapter 5 

 

Data Collection 

 

 

Gathering data is the most important task of the IoT device. This process can be divided 

into two main parts, reading the data from the sensors and sending it to the application. For the 

first part, one sensor gets the heart’s pulse rate and the other one gets the body temperature. As 

described in the previous chapter, once the required data arrives at the computing device, it is 

parsed and plotted on the device’s screen. Each plotting page contains its corresponding data. The 

plot gives the user the indication of the status of the patient under investigation.  

5.1 Data Collection Interface 

One of the most important things in data collection is the sampling frequency or the rate at 

which we are collecting the data. For our system, we send the data from the two sensors 

simultaneously, so intuitively, the sampling rate for our system would be less than the sampling 

rate of a system that reads data from just one sensor. Given that the body temperature does not 

undergo as many changes as the ECG signal, we increased the ECG’s sampling rate at the cost of 

decreasing the temperature’s sampling rate. We fixed the sampling rates for the temperature sensor 

and the ECG signal at 5 Hz and 160 Hz, respectively. Figure 14 shows the block diagram that 

describes the data collection interface from both ends, the sensors’ side and application’s side. The 

two sensors are connected to different analog pins on the Arduino. The Bluetooth chip is 

alsoconnected to the Arduino which enables the IoT device to transmit the sensed data to the 

Android application. This gives the user a data collection interface that is simple to use on both 

ends. 
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The user first wears the device as described in the hardware section and then uses the 

application to connect to the Bluetooth interface as described in the software section. From this 

point the user only needs to interface with the application where s/he can navigate through the 

different options. 

5.2 Subject Data Collection 

This system is fully equipped to collect data from people and store it in the phone’s 

database but, more importantly, it can plot and process the data in a fast manner. To be able to 

write our algorithm, we had to collect data from many subjects while doing different activities to 

see how the heart behaves under different circumstances. The three scenarios that we consider for 

each subject are: sitting, walking, and climbing (upstairs). We believe that those different scenarios 

can help us understand how everyone’s heart behaves during different activities. Table 6 shows 

the different subject groups from which we collected data. We also used data from other resources 

to have a better scope of the different heart behaviors for different age groups with different 

weights and heights and different heart conditions. 

 
Table 6 Test subject groups  

 
 Weight Range (lbs) Height Range (cm) Age Range Testing Scenarios 

7 Males 128 - 220 165 - 190 23 - 26 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 
3 Females 125 - 180 160 - 184 20 - 34 

 

Fig. 14: Block diagram of data collection interface 
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5.3 Subject Sample Data 

The data collected show that the system has a data collection system that is capable of 

gathering data under any circumstances, such as in the three scenarios described in Section 5.2. In 

this section, we show the sample ECG data for each of our four test subjects. The temperature 

sensor sample data are just plots to demonstrate the accuracy of the sensor and to show that it 

works.  

5.3.1 Temperature Data  

In this subsection, we present the detailed data for our temperature sensing process.  

Temperature does not need much analysis except for converting the data points to the time domain 

and smoothing the signal for better visual representation. Figure 15 shows a typical result; noting 

the “noisiness” of the signal indicates a need for smoothing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Of course, the smoothing operation will not affect the decision; its only purpose is to show 

more consistent flow of data. The y-axis represents the temperature in Celsius and the x-axis shows 

the number of data points. To convert the data points to time in seconds, we need to use the 

sampling frequency which for this case was 100 Hz. The sampling rate that was used here was just 

to demonstrate the plot in an easier way since 700 hundred data points can be easily mapped to 7 

seconds using 100 Hz. However, the sampling rates used for our system are still 5 Hz for the 

Fig. 15: Sample temperature data 
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temperature data and 160 Hz for the ECG data. Figure 16 shows a set of data when converted from 

data points to time in seconds. 

 

 

 

 

 

 

 

 

 

 

 

 
The temperature sensor used in our work has an accuracy of +/- 0.5, which allows it to 

capture changes in temperature very quickly as shown in the 7 second plots in Fig. 17. The one on 

the left shows the temperature decreasing while the one on the right shows the temperature 

increasing. 

Fig. 16: Temperature data in time domain 

Fig. 17: Temperature accuracy 
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5.3.2 ECG Data 

ECG data was collected from ten subjects and analyzed on MATLAB. In this section, we 

show the data of four test subjects in the three scenarios, two males and two females. We were 

able to collect data for the walking scenario using treadmills and for the climbing upstairs scenario 

using stair steppers at the rec center. For each scenario, we show the ECG signal and its 

corresponding heart rate. The heart rate was ultimately calculated using the Fourier transform 

method to make sure it is accurate [50]. Table 7 shows the information of the four test subjects. 

 

Table 7 Test subject information 

 
Subject Weight (lbs) Height (cm) Age Scenario Heart Rate 

Subject 1 

(Female) 

125 173 20 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 

➢ 107 

➢ N/A 

➢ N/A 

Subject 2 

(Male) 

141 177 24 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 

➢ 72 

➢ 98 

➢ 108 

Subject 3 

(Male) 

163 180 23 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 

➢ 72 

➢ 100 

➢ 134 

Subject 4 

(Female) 

128 184 23 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 

➢ 79 

➢ 89 

➢ 105 

 

The data collected for Subject 1 is considered useless data for two of the three collected 

scenarios. The data collected while sitting had no problems. Problems occurred when the data was 

collected while the subject was walking and climbing upstairs. This is a result of the sensor moving 

while the subject was performing the different activities. Data had to be collected multiple times 

carefully before we can consider analyzing it. However, we decided to present the noisy data 

obtained for Subject 1 to show the major distinction between noisy and proper ECG data. 

Therefore, the heart rates for Subject 1 for the last two scenarios are displayed as N/A. Figs. 18 - 

21 show the data collected for Subjects 1, 2, 3, and 4, respectively. 
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Fig. 19: Test subject 2 ECG data 

Fig. 18: Test subject 1 ECG data 
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Fig. 20: Test subject 3 ECG data 

Fig. 21: Test subject 4 ECG data 
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Chapter 6 

 

Data Analysis Techniques 

 

 

The purpose of our data analysis is to show the relationship between heart behavior, body 

temperature, and the criticality of patients’ statuses. Our data analysis was mostly done using 

MATLAB as it is a very useful tool that provides many functions to help with signal processing 

and data analysis. Before getting into the main focus of this section’s discussion, we talk briefly 

about the essential aspects that all electrical engineers who deal with signals should know.  

When we talk about a signal, we must always consider the noise that accompanies that 

signal. In signal processing, noise is a general term for unwanted alterations that a signal may 

suffer during collecting, storing, transmitting, or processing data [51]. In our case, we are 

collecting data from analog sensors and transmitting them over a LE Bluetooth communication 

channel. The reading can be affected through the process of the transmission and that is why we 

need data enhancement techniques before we can start analyzing the data. The reason why this is 

very important is because a noisy signal has information that does not accurately describe a signal 

and which can very much affect the decision. Since temperature values do not usually have many 

fluctuations, we are more concerned about the enhancement of the ECG signals. This motivated 

us to study the different biomedical engineering analysis techniques so that we can apply them to 

the collected data. One thing we can do with temperature plots is smooth them to give them a better 

visual representation but, other than that, all the data analysis techniques will focus on ECG 

enhancement. 

6.1 Noise Reduction: Filtering 

In this section, we discuss the noise reduction techniques and filtering. Before analyzing 

the ECG signals to extract features, we had to remove the noise to reduce false outputs in feature 
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extraction. Extracting features from a noisy signal can give a heart rate of 200 when the actual 

heart rate is 80. Therefore, we ensure that, before we send our signal to the feature extraction 

method, almost every unwanted part of the signal is removed. There are two types of noise with 

which we deal in ECG signals that will be described in detail in next subsections.  

6.1.1 Baseline Wander Removal 

We begin with the most common problem usually found in ECG signals, namely, baseline 

wander.  This is a problem that shows ECG signals in a wavy fashion rather than being more of a 

constant envelope. Reasons for this phenomenon may be due to respiration or the motion of the 

patients or the instruments. The technique that has been proven to work best with this is applying 

a high pass filter to the signal. This improves the “look” of the signal because it removes the low 

frequency component that manifests itself as a sine-like pattern of the baseline.  This is shown 

clearly in Fig. 22. The figure is divided into three subplots: the first one shows the original signal; 

the second one shows the low frequency component that needs to be removed; and the third one 

shows the result after removing that low frequency component. Removing the baseline wander 

gives a better signal which can help us process data more accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 22: ECG baseline removal 
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The mathematical equation for the operation of high pass filtering can be done using Eq. 

(6.1- 5) where wc is the cut off frequency and N is the filter order: 

 

|𝐻 (𝜔)|2 =  
1

1+ (
𝜔𝑐
𝜔

)2𝑁
                                                      (6.1- 5) 

Using a powerful tool like MATLAB allows us to use time domain operations that also 

achieve the process of high pass filtering. We used two simultaneous equations to remove the 

baseline wander. First, we smooth the signal using the MATLAB built in function ‘smooth’, which 

gives us that sine-wave-like signal, then we subtract that sine-wave-like (low frequency 

component) from the original signal.  

6.1.2 Removal of High-Frequency Component  

Another common problem is high-frequency noise that would need a low pass filter rather 

than a high pass filter. Another solution to that would be applying a synchronized average on the 

periods of the signal but, for real time applications, a low pass filter would be a better option. The 

time domain operation of a low pass filter for signals is the mathematical operation called the 

moving average (often addressed to as smoothing). Figure 23 shows a signal distorted with high 

frequency components and the enhanced version of it. The distorted signal has major fluctuations 

that alter the details of the original signal. The enhanced version was achieved by applying a low 

pass filter with a very satisfying result as can be seen in the plot. The key when using high pass or 

low pass filters is to choose the correct cut-off frequency. Choosing the wrong cutoff frequency 

can result in huge alterations in the signal and irrelevant or, worse, erroneous data decisions. The 

mathematical equation for the operation of low pass filtering can be done using Eq. (6.1- 6). 

|𝐻 (𝜔)|2 =  
1

1+ (
𝜔

𝜔𝑐
)2𝑁

                                                  (6.1- 6) 

Again, MATLAB allows us to use time domain operations that are equivalent to this 

equation. For this case, all we did was apply a moving average which is achieved by using the 

smooth function in MATLAB. Using the correct window for smoothing is essential as it can affect 

the signal’s expected output. For the ECG signal shown in Fig. 23 we used a smoothing window 

of 20 data points.  
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6.2 Extracting Features 

Now that we have clean signals, we are ready to extract features that accurately describe 

the ECG signals. We extract three features from the ECG signal, heart rate, RR intervals, and ST 

segments. Our algorithm takes those three features along with the body temperature and starts the 

prediction process. In the next subsections, we describe how we extracted the features from the 

ECG signal in detail. 

6.2.1 Heart Rate 

One major feature that needs to be extracted from ECG signals is a person’s heart rate or 

beats per minute. This can be calculated using several techniques including taking the number of 

QRS peaks in a given time, using autocorrelation, or using Fourier transform. The first technique 

can sometimes yield inaccurate results, however, when a signal has no baseline wander problem, 

this technique should work perfectly fine. Autocorrelation and Fourier transform techniques yield 

very accurate results.  

Fig. 23: ECG smoothing 
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6.2.1.1 Autocorrelation 

Autocorrelation is a mathematical operation in which a signal is correlated with a shifted 

copy of itself as a function of delay or lag. Correlation basically indicates the similarity between 

observations as a function of the time lag between them.  This process works well for our case 

since ECG signals are periodic. We can tell the heart rate from the autocorrelation of an ECG 

signal by a series of simple steps using MATLAB. Figure 24 shows a plot of the autocorrelation 

of an ECG signal. First, we calculate the difference between two peaks which gives use the length 

of one period in data points. Dividing that number of data points by the sampling frequency gives 

us the time in seconds of one period. Inversing that and multiplying it by 60 gives us the total beats 

per minute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mathematical equation for the autocorrelation function for signal processing is shown 

in Eq. (6.2- 7). 

𝑅(𝑘) =  ∑ 𝑥(𝑚) ∗ 𝑥(𝑚 + 𝑘)𝑁2−𝑘
𝑛=𝑁1                                 (6.2- 7) 

 

  The equation shows the summation of the product of a signal (x(m)) and a shifted version 

of it (x(m+k)). From the equation, one can intuitively understand that at lag zero, the signal will 

Fig. 24: Autocorrelation of an ECG signal 
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have the highest amplitude since it is a multiplication of itself without any shift. The MATLAB 

result in Fig. 24 shows the theoretical lag of zero at lag 1 on the plot. 

6.2.1.2 Fourier Transform 

 Given that the Fourier Transform extracts the frequencies and harmonics of any signal, all 

we need to do is find the location of the maximum harmonic in the frequency plot as shown by the 

red circle in Fig. 25. 

 

 

 

 

 

 

 

 

 

 

 

 The first significant harmonic in the signal is shown approximately around 0.92 (the red 

circle), which represents the beats per second. Simply multiplying it by 60 gives us the beats per 

minute. The other peaks in the signal represent either noise or information are irrelevant in terms 

of calculating the heart rate. The mathematical equations for the Fourier and inverse Fourier 

transforms are shown below in Eq. (6.2- 8) and Eq. (6.2- 9), respectively [52]. 

𝐹(𝜔) =  ∫ 𝑓(𝑡) ∗ 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
                                     (6.2- 8) 

𝑓(𝑡) =  
1

2𝜋
∫ 𝐹(𝜔) ∗ 𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
                                   (6.2- 9) 

 𝐹(𝜔) is the frequency domain of a given signal and 𝑓(𝑡) is the time domain of the signal. 

To go from frequency domain to time domain or vice versa, we multiply the signal by the 

exponential component shown in the equations. However, for our data analysis, we used a the “fft” 

function in MATLAB that gives us the plot of the signal in the frequency domain. From there, we 

get the location of the maximum harmony and multiply it by 60 to get the beats per minute. 

Fig. 25: Fourier transform of an ECG signal 
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6.2.2 RR Intervals 

Another feature that we extracted from the ECG signal is called the RR interval, which is 

the interval between successive R peaks in an ECG signal. For normal ECG signals, the RR 

intervals do not fluctuate or suddenly change in a drastic manner. We recorded RR intervals by 

having a standard deviation analysis that tells us the amount by which the RR intervals fluctuate 

with time. We will discuss the method by which we determine problems with RR intervals when 

we present our algorithm. For now, we will explain the extraction method for the RR intervals 

from the ECG signals. Figure 26 gives a visual representation of an RR interval.  

 

 

 

 

 

 

 

 

 We basically find the R peaks and subtract the locations of them in time, giving us the 

duration between each beat. We find the peaks using a threshold value that ensures that all the R 

peaks are included. To do that, we get the maximum of the signal and subtract it by a specified 

percentage to ensure that all the intervals are above the threshold value. The reason for this was 

because not all the R peaks have the same voltage value, the voltage values of the peaks usually 

fluctuate which is why we dynamically calculate that threshold value based on the portion of the 

ECG signal with which we are dealing. From this point, we create arrays that store the RR intervals 

of the ECG signal to calculate the variability of the durations.  

6.2.3 ST Segments 

Another feature we extracted from the ECG signals is the ST segment voltage values. An 

ECG signal is divided into points with each segment describing what each interval represents. We 

need to take the ST segment into consideration for heart attack predictions since elevated ST 

segments are one of the biggest indicators of heart attacks. Figure 27 shows the difference between 

a normal ECG and an ECG with an elevated ST segment. 

Fig. 26: RR interval [53] 
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Figure 28 shows sample data from one of our test subjects. To calculate the ST segment 

voltage value, we take the average of the points shown in the rectangle.  This produces a number 

that represents the ST segment voltage value. The RR interval is basically the range between both 

peaks. We take a 20 percent from that range and add it to the location of the first peak which gives 

us the point where we would start adding the voltage values. Then we take 50 percent of the range 

and subtract it from the location of the subsequent peak, which gives us the point where we would 

stop adding the voltage values. Those voltage values are shown in the box in Fig. 28. After adding 

all the voltage values, we divide by the number of points to get the average voltage value 

representing the ST segment. Typically, the voltage values of a normal ECG would be much lower 

than the voltage values of an ECG with an elevated ST segment. We also use a standard deviation 

analysis to detect if an ST segment suddenly changed. Note that using percentages of the RR 

interval to get the locations of the ST segment voltage values and then averaging them is not a 

conventional way to calculate the voltage value of the ST segment. This is based on our analysis, 

which used trial and error, and that method to extract the ST segment voltage value provided us 

with the best results. 

 

 

 

 

Fig. 27: Elevated ST segment [54] 
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6.3 Algorithm 

The algorithm is the most important part of the system. The algorithm functions as shown 

in the flow chart in Fig. 29. The first step is to read the data from the sensors at 5 Hz for the 

temperature data and 160 Hz for the ECG data. We then maintain a sampling window of 5 seconds 

on which to perform all computations. After selecting the sample window, we reduce the noise by 

applying the filtering techniques discussed in Chapter 6. After removing all the noise components 

from the signals, we extract the three features from the ECG and pass on those features along with 

the temperature data to our prediction algorithm. If the results from the algorithm indicate that the 

current sample window is normal, the window shifts by 1 second and takes the next 5 seconds of 

data. If the algorithm detects an abnormality, it immediately warns the user. Using a moving 

window of 1 second creates the need more computation but it provides faster and more accurate 

feature extraction and prediction results. This means the next sample window will have 1 second 

of new data and 4 seconds of data from the previous sample window. 

 

 

 

Fig. 28: Sample ECG with RR interval and ST segment 
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Our prediction algorithm is based on a predictive machine-learning model called J48 

Decision Tree [55]. This model decides the target value of a new sample based on various attribute 

values of the available data. We apply that model to our algorithm with the result that the target 

value would indicate whether the patient is having a heart attack or not and the available data 

would be contained in the extracted features. We note that the decision tree is a general model that 

can be used in many applications in many different ways. We created our own unique algorithm 

that uses the decision tree model with a standard deviation statistical analysis which gives our 

algorithm the unique name: Heart Attack Prediction using a Decision Tree based on a Standard 

Deviation Statistical Analysis (DTSDSA). Now we examine the method by which the extracted 

features are processed at the decision tree. Using a standard deviation statistical analysis, we 

determine whether the features are abnormal or not. Figure 30 shows the structure of our decision 

tree which refers to the prediction algorithm block in Fig. 29. Our algorithm uses warning levels 

from 0 to 4 to determine the degree of abnormality for each incoming window. 

 

Fig: 29: Algorithm block diagram 



44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We employ a sample window and a moving window. The sample window contains the part 

of the ECG signal that is being processed while the moving window specifies the amount by which 

that sample window is shifted to start taking the next sample window. Figure 31 illustrates the 

appearance of both of the windows on one of our test subjects for both sensors. As shown in 

Fig. 30, the sample window is 5 seconds and the moving window is 1 second. This provides an 

overlap of 4 seconds for subsequent sample windows. We note that for the 30 second ECG signal 

shown below, if we did not have a moving window, we would have only had 6 sample windows 

(30 seconds / 5 second windows). This means that the features would only be updated 6 times 

throughout the entire 30 seconds. The way we implemented it, we get 26 results instead of 6 for 

Fig. 30: Decision tree 
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the entire 30 seconds. This represents a far more practical method since heart rates change very 

fast, especially during cardiac events.  
 

For each sample window, the feature extraction function returns a single value for the heart 

rate, in a one-dimensional array with the RR interval durations, and a one-dimensional array with 

the ST segment voltage values. Since heart rates are the most important feature that describe the 

heart’s status, we start by checking variations in the heart beats first. We do so by making sure that 

the heart rate is consistent using our standard deviation analysis. Any heart rate while walking or 

running is obviously going to be higher than the heart rate while sitting or resting. Since we have 

a wide range of heart rates that are considered normal, we were not able to simply apply a 

thresholding technique where a heart rate above a certain threshold value would be a sign of 

potential heart failure. Heart rates can vary from 55 all the way to 150 depending on the person 

and what the person is doing. By using our standard deviation statistical analysis, we only detect 

an issue with the heart rate when it suddenly fluctuates out of the normal range. If the current heart 

rate has an error above 7 percent, we set the warning level to 1. For example, if a person’s average 

heart rate is between 80 beats per minute for 20 seconds then suddenly goes up to 100, the error 

would be 25 percent. We only proceed to check the RR intervals if there is a problem with the 

Fig. 31: Illustration of sample and moving windows 
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current heart rate. For the RR intervals and ST segments arrays, with which we are dealing, we 

calculate the standard deviation of the sample window for both features. If the RR intervals’ error 

is higher than a certain percentage, we set the warning level to 2 and proceed to check the ST 

segment. If the ST segment also has an error higher than what is considered to be normal, we set 

the warning level to 3 and proceed to check the body temperature. At this point, we already know 

that this sample window is abnormal. We still check the body temperature to see if the warning 

level would go up to 4 or not since up to this point, it can be a false reading based on errors in 

feature extraction due to noisy signals. Since the temperature is a single value, we calculate the 

error the same way we did for the heart rates only with different thresholds. We then return the 

warning level for each sample window to process that warning and read the next sample window.  

We created a dynamic buffer that attends to the processing of warnings that are returned for each 

sample window. The buffer is responsible for collecting the warning levels and making a decision. 

To implement the buffer, we created another window called the prediction window along with a 

moving window. This window initially waits to collect the results from 8 sample windows (8 

warnings). The moving window then shifts the prediction window 2 spots to the right. A decision 

is made on each prediction window based on a ratio that is calculated from the warning levels. 

Figure 32 shows the technique by which the prediction and moving windows are established. The 

moving window is equivalent to 2 warnings and the prediction window is equivalent to 8 warnings, 

which results in 10 prediction windows for the 30 second segment.  
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Assuming that the body temperatures are normal, the worst case would be a prediction 

window with all 3’s which gives a sum of 24. We add all the warning levels and divide by 24. If 

the ratio is 0.5 or above, we trigger a warning to the user. The results shown in Fig. 32 are from an 

ECG signal that was very noisy and did not have any characteristics of a proper ECG. The 

algorithm therefore started detecting abnormalities in the third prediction window as shown in Fig. 

33. Running this algorithm on normal ECG’s for healthy subjects gave us ratios that were either 

zero or close to zero. Those were our first indications that the algorithm does indeed work. 

However, our next step was to run the algorithm on real test subjects with heart failures for more 

validation. The results are shown and discussed in more detail in the next chapter. 

  

Fig. 32: Algorithm results using prediction window 
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Chapter 7 

 

Results and Evaluation 

 

 

In this chapter, we present some of the results we obtained from our algorithm. We showed 

the results of one test subject at the end of the previous chapter. The data was for Subject 7 while 

the subject was asked to walk and as you can see in Fig. 33, the signal was very noisy. This gave 

us an indication that the algorithm does in fact yield results that make sense. However, we still 

needed to validate our algorithm with real test subjects that suffered from heart failures.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 33: Subject 7 walking 
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We were able to download datasets from a database online that has records of patients who 

suffered from sudden cardiac deaths. Before discussing that aspect of our research, we show some 

results for the healthy test subjects that we collected using our system. We show the results in the 

same form of the results shown in Fig. 32.  

7.1 Healthy Test Subjects 

The results shown are for one test subject in the three different scenarios. Since all subjects 

had normal body temperatures, we will show the ECG signals and the results of the prediction 

algorithm for each sample window. The test subject’s information is shown in Table 8. 

Table 8 Information for test subject 1 

Subject Gender Age Scenario Average Heart Rate 

1 Male 24 ➢ Sitting 

➢ Walking 

➢ Climbing Upstairs 

➢ 84 

➢ 108 

➢ 135 

 

Figure 34 shows the ECG signal of Subject 1 in the sitting scenario. This ECG is normal 

and, therefore, the algorithm triggered no warnings. We will start showing the prediction algorithm 

results for the next two cases since there were no warnings for this case where the subject was 

sitting. 

  

Fig. 34: Subject 1 sitting 
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Figure 35 shows the ECG signal of the same subject while walking. This ECG was also 

normal. It had a couple of warnings that are considered to be false errors. This is why we have the 

prediction window, to eliminate the false warnings.  

 

 

 

 

 

 

 

 

 
 

Figure 36 shows that the results from the prediction algorithm had three warnings of level 

one. Therefore, there was no need to warn the user since it was a false error.  

Fig. 35: Subject 1 walking 

Fig. 36: Prediction algorithm results for subject 1 while walking 



51 
 

The algorithm triggered some warnings for the case where the test subject was climbing 

upstairs. Figure 37 shows the ECG for that scenario. 

 

 

 

 

 

 

 

 

 

 
 

 

 

As shown in Fig. 38, the results show that there are a few warnings for each prediction 

window none of which passed 50 percent. We know that the test subject was not having a heart 

attack since we collected the data.  

 

 

  

Fig. 37: Subject 1 climbing upstairs 

Fig. 38: Prediction algorithm results for subject 1 while climbing upstairs 
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7.2 Unhealthy Test Subjects 

The algorithm was able to account for different heart rates as shown for Subject 1 in the 

previous chapter. We also ran the algorithm on our 10 healthy test subjects and the results validated 

that the algorithm works very well for healthy test subjects. The results showed that the algorithm 

gives no warnings for all scenarios that had different heart rates. However, as mentioned before, 

validating our algorithm using only healthy subject data is not enough. Even though we ran our 

algorithm on noisy data, we still cannot say for sure that our algorithm can predict heart problems. 

Therefore, we downloaded 10 datasets from a database online that has ECG signals for patients 

that suffered from sudden cardiac deaths. The ECG signals we selected for each test subject was 

moments before the subject passed away. Table 9 shows the information of each test subject [56].   

Table 9 Information of unhealthy test subjects 

Subject Gender Age History Medication Underlying Cardiac Rhythm 

1 Male 43 Unknown Unknown Sinus 

2 Female 72 Heart Failure Digoxin; 

Quinidine 

gluconate 

Sinus 

3 Female 30 Unknown Unknown Sinus 

4 Female 72 Mitral valve replacement Digoxin Atrial fibrillation 

5 Male 75 Cardiac surgery Digoxin; 

Quinidine 

Atrial fibrillation 

6 Male 34 Unknown Unknown Sinus 

7 Female 89 Unknown Unknown Atrial fibrillation 

8 Male 66 Acute myelogenous leukemia Digoxin; 

Quinidine 

Sinus 

9 Female 82 Heart failure None listed Sinus 

10 Male 68 History of ventricular ectopy Digoxin; 

Quinidine 

Gluconate 

Sinus 
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We tested the ECG signals of all the test subjects shown in Table 9 and the algorithm’s 

results were exactly what we expected. In this final section, we show some details of the 

algorithm’s results for test Subject 5 to clarify why the warnings were triggered. Figure 39 shows 

the ECG signal for Subject 5. 

 

 

 

 

 

 
 

 

Before showing the prediction algorithm results, we will show the results from the feature 

extraction to see why the algorithm triggered warnings. 

Heart Rates for first 11 sample windows 

71.94 131.89 71.942 119.90 119.90 131.89 71.942 71.942 71.942 71.942 131.89 

 

Sample window 2:  
 

1) Heart Rate Error = 100 * |131.89 – 71.94| / 71.94 = 83.3 %   Warning level 1  

2) As shown in Fig. 40, the RR Intervals had very high fluctuations which explains why the 

heart rate jumped from 71.94 to 131.89 in just one second.   Warning level 2  

 

 

  

Fig. 39: ECG signal of unhealthy test subject 5 

Fig: 40: RR Intervals on sample window 2 



54 
 

3) As shown in Fig. 41, the ST Segment voltage values were also fluctuating in an abnormal 

fashion.  Warning level 3 

 

 

 

 

 

 

 
 

The prediction results for the whole ECG signal are shown in Fig. 42. The warning result 

from the second sample window, the one we just analyzed, is highlighted in yellow. This ECG 

signal had several fluctuations in all the features, which is why the algorithm triggered warnings 

of level 3 for almost all the sample windows. This is what we expected for a patient who had a 

history of cardiac surgery and passed away shortly after the signal was recorded. 

 

  

Fig. 41: ST segments on sample window 2 

Fig. 42: Prediction algorithm results for unhealthy test subject 5 



55 
 

 

 

Chapter 8 

 

Conclusion and Future Work 
 
 
8.1 Conclusion 

We managed to build a system that is capable of collecting data and presenting it to the 

user in real-time as shown in the previous chapters. We also managed to create a LE consumption 

communication channel between the IoT device and the application. The application is developed 

on smartphones which are normally powered via batteries that are limited in size and capacity. The 

use of a LE Bluetooth chip helped to provide our service with minimal effect on the smartphone’s 

battery life. 

The smartphone application is composed of the needed user screens as described in the 

system’s architecture section. We also considered some optimization on the computations on the 

smartphone’s end to help with the low battery consumption. For instance, when collecting data to 

plot the body temperature, we discard any plotting computations that are related to the incoming 

data from the pulse sensor and vice versa. This allows the application to focus on one aspect and 

hence less computations. We also took advantage of using threads to plot the data in real-time to 

avoid interference with the main UI thread which gives an overall better application performance.  

We collected many datasets and started analyzing them as described in the data collection and data 

analysis techniques sections. We created an algorithm that is capable of reading a signal, dividing 

it into sample windows, reduce noise, extract features, and predict abnormalities using a standard 

deviation statistical analysis decision tree. Based on the sensed data and the condition of the 

patient, different levels of warnings are triggered and a conclusion is reached based on prediction 

windows. The algorithm’s results showed that healthy test subjects had no issues. We were even 

able to distinguish between false readings and abnormalities by using prediction windows and 

calculating ratios based on the levels of warnings.  
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8.2 Future Work 

In the future, this system can be enhanced by collecting more data from both healthy 

subjects and patients who have heart problems. The algorithm can be enhanced by adding more 

features such as the wave durations for each beat. We can also enhance the system by adding more 

sensors to the IoT device. Some sensors we can take into consideration include skin conductivity 

sensors, respiratory sensors, blood pressure sensors, and accelerometer sensors. The algorithm 

would obviously need to be modified to account to the features from the additional sensors. We 

also mentioned that the IoT device is not ideal for a selling product, so by using more advanced 

hardware components we can develop a more feasible device that can be introduced to the market. 

Finally, the prediction algorithm that we created was developed on MATLABTM. A big step 

towards the future involves integrating that algorithm to a computing platform where users can 

benefit from the algorithm using a smartphone. We can also create a warning system that uses a 

user’s GPS information to generate an alert message to an emergency contact.  
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