
Experience report: How to extract security
protocols’ specifications from C libraries

Itzel Vazquez Sandoval and Gabriele Lenzini
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, Luxembourg
Email: {itzel.vazquezsandoval,gabriele.lenzini}@uni.lu

Abstract—Often, analysts have to face a challenging situation
when formally verifying the implementation of a security pro-
tocol: they need to build a model of the protocol from only
poorly or not documented code, and with little or no help
from the developers to better understand it. Security protocols
implementations frequently use services provided by libraries
coded in the C programming language; automatic tools for code-
level reverse engineering offer good support to comprehend the
behavior of code in object-oriented languages but are ineffective
to deal with libraries in C. Here we propose a systematic, yet
human-dependent approach, which combines the capabilities of
state-of-the-art tools in order to help the analyst to retrieve, step
by step, the security protocol specifications from a library in C.
Those specifications can then be used to create the formal model
needed to carry out the analysis.

I. INTRODUCTION

To protect a system, cryptographic protocols need to be
not only carefully designed but also rigorously implemented
and verified for security. Certification standards for Infor-
mation Technology Security such as the “Common Criteria
for Information Technology Security Evaluation”1 award the
highest certification levels (EAL7, EAL7+) to companies that
incorporate formal methods to verify the compliance of their
products with expected security guarantees [1]. An ample set
of approaches are available today for this task, also supported
by automated tools: taken as input a formal model of a
protocol, i.e. a clear and unambiguous description expressed
in a formal language (e.g. Applied π-calculus for the tool
Proverif [2]), they rely on logic-based techniques (e.g. model
checking and theorem proving) to find flaws in the protocol
against specific adversary models.

To create a protocol’s formal model, the analyst requires
to clearly understand the protocol’s structure and logic, and
to know the crypto primitives used, the parties involved and
the messages exchanged between them. Ideally, the companies
should offer such insights, from the high level design to the
underlying protocol’s implementation. Still, given the diversity
of software development methodologies, the availability of
up-to-date documentation is not always guaranteed. In agile
methods2 for instance, documentation tasks are dictated by the
needs and experience of each development team, following the
principle: “Working Software over comprehensive documenta-
tion” [3]. Projects with minimal comments in the code as their

1ISO/IEC 15408-1:2009: https://www.iso.org/standard/50341.html
2https://en.wikipedia.org/wiki/Agile software development

sole documentation are thus not hard to be found. Appropriate
documentation can be missing as well for protocols developed
following a secure-by-design [4] approach since companies,
pressed by deadlines, have little time to dedicate to write
crystal clear documentation and comments.

The analyst therefore often remains with the problem of
extracting the required information from lengthy software
projects, navigating through which, is a daunting task.

Here, we discuss how to obtain a concrete high-level
representation of a security protocol whose core algorithms
are services provided by a library, assuming that the only
documentation available about the library is the source code
itself implemented in C. The work takes inspiration from a
real experience: asked to analyze the security of a private-by-
default communication protocol that uses the security services
provided by a proprietary library implemented in C, we were
given nothing more than such library.

II. PROBLEM CONTEXT

Assuming that a protocol has been correctly designed, its
security also depends on its implementation which must be
error-free. Instead of risking to implement their protocols in-
house, companies follow the recommended practice to rely
on trusted libraries (e.g. [5], [6]) that offer access through
well-defined interfaces (API). Such cryptographic services are
frequently implemented in C, which is a relatively low-level
programming language with simple data structures. Since the
code written by programmers is almost directly translated into
machine code by compilers, programs in C tend to have very
high runtime performance [7], a desired feature for cryp-
tographic functions that involve mathematical computations
inherently expensive for the CPU.

But what if an analyst has access only to those C libraries?
How can (s)he retrieve a model apt to be formally analyzed?
We posed to ourselves the same questions, and assuming
to work under the following conditions: (i) unavailability or
scarcity of documentation; (ii) unknown specifications of the
protocol; (iii) inaccessibility to any application requesting the
library’s services to fully set up the protocol. Such situation
appears frequently when working with third-party software
libraries. But it also arises when analysts and library’s devel-
opers collaborate: documenting and analyzing security may
occur in parallel, hence, documents may not be available yet
when the analyst need them.

Reverse engineering software: To extract knowledge from
source code, an analyst can resort to reverse engineering (RE),
i.e. the examination of a system to identify its components
and their correlation, and to represent it at higher levels of
abstraction [8]. The piece of software to be reversed delimits
the techniques and tools that can be applied, and the kind of
diagrams that can be retrieved.

In security protocols’ analysis, RE frequently refers to
reversing executable binaries or programs to source code,
for instance through system-monitoring tools, disassemblers,
debuggers and decompilers. Here we use RE in the context of
software at code level, i.e., to go from source code to a concep-
tual model. Stable and good-performing tools exist nowadays
to automate the creation of diagrams, mostly complying with
the UML ISO standard for modelling systems.

Given that RE’s prevailing motivation is to understand how
a system works, tools usually consider as input a running
application. This input does not always exist though; as
previously discussed, security protocols are often encapsulated
in libraries, which have no executable files.

Contribution: We searched for tools capable of generat-
ing interaction diagrams of services implemented in non-
executable C code and concluded that no fully automatic tool
is capable of executing such task. Thus, we present a chart
recapping capabilities of relevant related state-of-the-art RE
tools; then, we propose a methodology which integrates those
tools with manual tasks for the analyst, aiming to offer a
practical pathway to retrieve a high-level protocol description,
concise enough to allow the derivation of a formal model
for a security analysis. Since its steps are independent of the
implementation’s logic, our methodology is generic enough
to be applied for obtaining a high-level model (e.g. UML
diagram) of any C library. To the best of our knowledge, no
work addresses this specific problem.

III. STUDY CASE: SECENGINE’S PROTOCOL

Our research scenario concerns a cyber security solution
offered by a company to protect by default the privacy and
reliability of digital written communications. The core of the
software product is encapsulated in a library that provides the
main services to set up protocols for handshaking, trust levels,
keys management and encryption; for simplicity, we will refer
to this library as SecEngine. SecEngine is implemented
in C (C99) and contains ∼70 files, from which the longest has
approximately 2524 lines of code while the shortest contains
around 40. The cryptographic primitives used in the services
rely on verified third-party libraries implementing OpenPGP3.
SecEngine is open source; however, the specifications of the
implemented services are not published anywhere. The only
documentation available refers to the application release.

Since the security of the whole product strongly depends
on SecEngine, it is imperative for the company to ensure
that such component is correctly implemented according to
expected security goals. The research that we pursue regards

3https://www.openpgp.org/

the application of formal methods to assess the security level
of SecEngine. But as previously discussed, we require
to comprehend the protocols’ logic in detail before even
thinking about formal verification tasks. The experience that
we report here addresses such problem: how to obtain a high
level abstraction (e.g. a diagram) of the services provided by
SecEngine. For this task, our industrial partner gave us the
source code, as well as a .dll binary of the library.

Note that, although in general source code compilation is
achievable, it is not always an easy task, especially when
several third-party libraries or automatic code generation are
involved. Since this step was already covered for us with the
.dll, we found practical to use Windows for this work.

IV. RETRIEVING A PROTOCOL FROM A LIBRARY IN C

Aside from the company’s study case, the approach we
suggest is to reverse engineer the source code of C libraries in
order to retrieve a model that describe the protocols sufficiently
well to proceed with a formal analysis.

We first sought for an automatic tool fulfilling all the
following requirements: performing RE of code without an
executable file; supporting the language C; and being capable
to generate any kind of interaction diagram (e.g., sequence,
message). In searching such a tool, we browsed the Internet,
IT blogs, and forums, we glanced through academic papers,
and we conducted informal and unstructured interviews with
experienced software developers and architects working in
industry. We looked at both commercial and non-commercial
tools, although for the last ones we only tested the demo
versions, which in general provide full features for a limited
period of time. Notwithstanding our search, we did not find
a tool meeting all the constraints and we were led to design
a streamline process where we combine different tools (Table
I), and increasingly extract and gather pieces of information
until we had enough knowledge to be able to build a model
useful for the analysis. The process has five steps.

Step (1): Extract and list the API specification of the library
Input: Compiled Libraries; Output: The APIs

When a library implements and offers security services (e.g.,
handshake and authentication procedures), programs wanting
to use it need to know its API, i.e., what functionalities they
offer. DLL EXPORT VIEWER4 for dll files or the regular
export for jar files are good tools for getting an insight into
the services that the code provides and a hunch of their
functionalities via some keywords in the names.

Once we learn the (names of the) functionalities that can
be invoked, the next goal is to understand what exactly they
do, what are their constituent steps and how the protocol’s
components calling them interact, all which can be captured
by an interaction diagram. These diagrams are particularly
suitable for the task as they show sequences of messages sent
among components of a system (s.a. classes, files, hardware),
including passed parameter values and events occurring in

4http://www.nirsoft.net/utils/dll export viewer.html

Fig. 1: Call graph for get_message_trustwords obtained by DOXYGEN.

between [9]. Unfortunately, since a library does not run by
itself, there is no easy way to gather this information. In
fact, an intuitive solution would be to compile the libraries
and create a simple application to request the services from
the obtained binary; an existing tool could then be used
to automatically get a model from such application. This
approach is equivalent to implement a simple security protocol
using the libraries. But the problem is circular: having no
documentation, we do not know how to invoke the services
and, moreover, we do not know yet what they do. In order to
gain this knowledge we need to proceed with the next step.

Step (2): Create an overview of the protocol’s architecture
Input: Library’s source code; Output: graphs and diagrams

This step’s goal is to create a global picture of the library’s
components and of the way in which they are related. De-
pendency graphs and collaboration diagrams accomplish this
purpose. A convenient tool capable of automatically generating
them is DOXYGEN, the standard tool to create documentation
from annotated C++ sources, but it supports more program-
ming languages, C among them5. The documentation is by
default generated in HTML. A similar tool is OOVAIDE6.
It creates classes and sequence diagrams, however, it was
conceived for the Object Oriented approach and thus the
functionality with C is incomplete. Auxiliary documents that
can be created are UML class diagrams or the analogous
file diagrams for C code [9]; they depict the relation among
.c and .h files composing the implementation. Call graphs
provide another useful visualization of the dependency among
functions (Fig. 1).

Using the output from this step and keywords in the API
functions’ names (step 1), the analyst can identify and select
the files and functions that contain code related to the logic
of the protocol to be reversed, and discard code irrelevant for

5http://www.stack.nl/∼dimitri/doxygen
6http://oovaide.sourceforge.net/

DYNAMIC API . . .
g e t m e s s a g e t r u s t w o r d s (. . .) {

a s s e r t (k e y l i s t) ;
a s s e r t (msg) ;
a s s e r t (r e c e i v e d b y) ;

i f (! (k e y l i s t && msg
&& r e c e i v e d b y))

r e t u r n ILLEGAL VALUE ;

i f (k e y l i s t == NULL) {
message ∗d s t = NULL;
s t r i n g l i s t t ∗ k e y l i s t . . .

}

Fig. 2: Left: extract of SecEngine’s function get_message_trustwords, intended
to retrieve words for authentication between two peers. Right: flowchart after removal
of instructions related to parameters checking.

the protocol’s description (e.g., files implementing system’s IO
operations or interaction with databases).

Step (3): Retrieve algorithms of the relevant functions
Input: Library’s source code; Output: Flowcharts

Call graphs from the previous step provide already an
idea of a function’s complexity in terms of the number of
sub-functions invoked, but the order in which those sub-
functions are called is missing. The goal here is to retrieve
the algorithm that an identified relevant function follows.
CODE VISUAL TO FLOWCHART (CVF)7 converts procedural
code into flowcharts and works with both, executable and
non-executable declarations. The flowchart provides an easier
way to follow the workflow of an algorithm, but since all
the instructions are mapped into the diagram, it still needs
to be refined by extracting only those instructions directly
concerning the main purpose of the algorithm. C programs in
particular contain a lot of low-level instructions, for instance
to handle memory and pointers; code related to exceptions
handling is also irrelevant in the normal flow of a protocol.
After performing this step, the analyst has a flowchart with
instructions related only to the protocol’s logic or containing
important assignments (Fig. 2).

Step (4): Identify relevant calls and group instructions
Input: Flowchart/Code; Output: Flowchart/Code

At the end of step (3) we have a sketch of the algorithm
performed by a function but it is still too detailed. The
objective in this step is to abstract the instructions into a
higher-level conceptual model; the representation is still a
flowchart/code but instead of direct programming instructions,
the content will be in terms of tasks. For that purpose, we
introduce two rules to be performed, which are similar to
the extract and inline refactoring methods, used principally to
reorganize code for better reuse and readability [10]: (1) Detect
instructions linked to a single more general task and replace
them all with a newly defined method with a meaningful name
related to the purpose of the task; (2) For each function call:
review the implementation details and if they are relevant

7http://fatesoft.com/s2f/

c h a r ∗ s o u r c e 1 = id1−>f p r ;
c h a r ∗ s o u r c e 2 = id2−>f p r ;

i n t s o u r c e 1 l e n = s t r l e n (s o u r c e 1) ;
i n t s o u r c e 2 l e n = s t r l e n (s o u r c e 2) ;
i n t max len ;

∗words = NULL;
∗wsize = 0 ;

max len = (s o u r c e 1 l e n > s o u r c e 2 l e n ? s o u r c e 1 l e n : s o u r c e 2 l e n) ;

c h a r∗ XORed fpr = (c h a r ∗) (c a l l o c (1 , max len + 1)) ;
∗(XORed fpr + max len) = ’\0 ’ ;
c h a r∗ r e s u l t c u r r = XORed fpr + max len − 1 ;
c h a r∗ s o u r c e 1 c u r r = s o u r c e 1 + s o u r c e 1 l e n − 1 ;
c h a r∗ s o u r c e 2 c u r r = s o u r c e 2 + s o u r c e 2 l e n − 1 ;

w h i l e (s o u r c e 1 <= s o u r c e 1 c u r r && s o u r c e 2 <= s o u r c e 2 c u r r) {
. . .
∗ r e s u l t c u r r = xor hex ;
r e s u l t c u r r−−; s o u r c e 1 c u r r−−; s o u r c e 2 c u r r−−;

}
. . .
s t a t u s = t r u s t w o r d s (s e s s i o n , XORed fpr , l ang , &the words) ;

After step (4)

XORed fpr = c o m b i n e F i n g e r p r i n t s (id1 , i d 2)
s t a t u s = t r u s t w o r d s (s e s s i o n , XORed fpr , l ang , &the words) ;

Fig. 3: Application of the abstraction rules. 1) goups the code above into the new function
combineFingerprints. 2) keeps the call to trustwords.

to define the protocol, mark the function (e.g., by an ‘*’);
otherwise, leave the call as a method.

These actions might be applied recursively to create
flowcharts for the functions marked in 2 and so on. It is
the analyst’s duty to determine when an adequate level of
abstraction has been reached.

Step 4 requires navigation through the files and the code
itself, thus, any IDE would be in principle enough. We
worked with VISUAL STUDIO 20158; it is worth mention its
functionality to view the call hierarchy of a function, since
observing the references to and from a function helps to
determine whether it has a principal or an auxiliary role.

Step (5): Create a diagram of the Protocol
Input: Flowcharts; Output: Message Sequence Chart

At this point, the analyst has a very deep understanding
of the examined services’ behavior, therefore, in the last step
(s)he interprets the previous flowcharts to create a protocol’s
representation in the appropriate notation. There are many
accepted notations; here we adopted Message Sequence Charts
(MSC), defined in SDL9. This step is completely manual since
it requires the analyst not only to connect information from
the flowcharts, but also to use any domain knowledge to come
up with the complete scenario of the protocols, including the
actors involved. The participants can be for instance derived
from the input parameters of the functions; as well, calls to
databases imply the existence of a repository, which needs
to be considered as an actor in the protocol model. The
analyst’s domain knowledge can come from different sources:

8https://www.visualstudio.com/es/vs/
9The Specification and Description Language (SDL): http://www.sdl-forum.

org/SDL/.

Fig. 4: Extract of the final protocol as a MSC created with PlantUML.

a very general notion about the intention of the protocol can
be learned in documents regarding final products using the
library; often implementations include test files, which can
provide examples of functions calls; user manuals can also
contain hints about the components of the protocol and their
interaction.

The modelling tool to be used is at choice of the analyst;
we consider though more efficient the use of tools that
automatically generate diagrams from scripts, given that the
scripting languages’ syntax tend to be simple and intuitive
for programmers. A good performing tool in such category is
PLANTUML10 it supports all kinds of UML and some non-
UML diagrams, and provides an online application as well as
plugins to be integrated with many different IDEs. ZENUML11

is another tool in this category; it has a syntax closer to C
code an can be used online or as a Chrome extension, but is
very limited in terms of the diagram it produces and also in
the conversion to image formats.

V. EVALUATION AND REMARKS

According to our experience, this methodology is suitable
to be applied in small and medium size projects since manual
parts could become exhausting with very lengthy code. Based
on the details in Sec. II, we consider SecEngine to be
medium size.

We applied the methodology to reverse the protocols im-
plemented in SecEngine and to generate the corresponding
descriptions as MSC diagrams. The following outcomes re-
port on our experience: Steps (1) and (2) can be executed
relatively fast: one person/day was enough to generate the
documents, scan them and identify the relevant functions.
Step (3) requires attention since the analyst needs to concern
about not discarding meaningful information; we invested 1
days per function in this task. Step (4) is the most time-
consuming because here is where the analyst truly understands

10http://plantuml.com/
11https://www.zenuml.com/

Step Tool Availability Supported
Languages

Step Output Diagrams Output Format O.S.

1 DLL Export Viewer Free dll - File Explorer Windows

2 Doxygen Free C++, C, C#, PHP,
Java, Python, ...

Call graphs, Dependency graphs,
Inheritance diagrams

HTML, Latex Windows, Linux,
MacOS

Oovaide Free C++, CLang related,
Java

Zone, Class, Portion diagrams SVG Linux, Windows

2,3,4 Rational Rhapsody for
Architect (RRA)

Free: 1 month, full func-
tionality / Commercial

C, C++, Java, C# Object model, Flowcharts Several image for-
mats

Linux, Windows

Enterprise Architect Free: 1 month, full func-
tionality / Commercial

Ada, C, C++, Java,
PHP, Python, ...

Several structural and behavioural
diagrams

HTML, Several im-
age formats

Windows, Mac/Linux
(WINE)

3,4 Code Visual to
Flowchart

Free for C,C++,C#: lim-
ited functionality / Com-
mercial

C, C++, Java, PHP,
PL/SQL, T-SQL,
Perl, JavaScript ...

Flowcharts PNG, only visual in
the free version

Windows

- Visual Paradigm Free: 1 month, full func-
tionality / Commercial

Java, C++ Class, Sequence, Communication,
Component, Package, Object, In-
teraction Overview diagrams

Several image for-
mats

Windows, Linux,
MacOS

Architexa Free / Prototype for C on
request

Java, Prototype for
C++, C

Layered, class and sequence dia-
grams

PNG, own format OS free. Plugin for
the Eclipse IDE

TABLE I: Summary of RE tools reviewed in our methodology. The last two tools, do output sequence diagrams but only when taking as input Object Oriented (OO) code, not C.
Although they do not work with our requirements, we include them here as a reference for analysts working with OO languages.

a program; (s)he has to decipher the control flow statements,
such as conditions and loops, and try to reconstruct the logic
behind. Reconstructing the algorithm of a function containing
around 500 lines of code took a PhD student inexperienced
in the tools up to two weeks of work (thus, we believe that
with practice and experience, this time can be considerably
shortened). An appropriate selection of the auxiliary tool may
have influence in these steps, given the differences in the
accuracy and comprehension levels of the diagrams produced.
We included two well-known commercial tools in this re-
search: RATIONAL RHAPSODY FOR ARCHITECT (RRA) and
ENTERPRISE ARCHITECT. In general, with C libraries they
do a good job for class diagrams and flowcharts; RRA’s
flowcharts are slightly the most comprehensive from all the
tools. For sequence diagrams though, both commercial tools
rely on exploring execution traces from running applications,
thus they are useless for automation in our case. The final
transition from step (4) to step (5) was achieved by the student
in one week. Certainly, these times are relative and depend on
the complexity of the project’s architecture; small files can
contain very complex logic, requiring hence longer time to
be understood. The time we have reported for the work is
only meant to give a relative estimation to whoever wants
to contemplate the possibility of applying this technique in a
project.

The methodology is quite straightforward and uses auto-
matic tools to perform the main tasks; still it unavoidably
requires human interaction to connect the steps. And even
if could be conceived as a manual RE assisted by tools, it
presents clear advantages over purely manual analysis: at the
end of each step, there is already a document concerning
the source code and, in a situation where documentation is
still missing, it supplies the analyst with means to promote
discussion and knowledge exchange with the development
team. Those intermediate diagrams as well help the analyst
to contextualize faster his/her mental process after interrup-
tion periods during the analysis, in case that they occur.
Another important advantage is that, even before starting the
code inspection, the analyst has an organized and complete

overview of the library’s structure including the connexion
among functions; this is beneficial to address the RE efforts
in the adequate direction. The methodology exposes hints and
techniques that could also be applied to optimize a manual RE
process.

VI. RELATED TOOLS AND APPROACHES

The most general approach to automatically reconstruct
protocols’ specifications observes the code at runtime and then
records sequences of executed actions; it aims to describe the
protocol from an application perspective. The survey in [12]
reports on tools following this approach. A close problem is
treated in [11], where the authors work on reverse engineering
code in C++, however, their algorithm relies on the number of
objects instances and so is not directly applicable in our case.
Another flourishing technique to infer the application-level
protocol specifications relies on network traffic observation.
It is aimed to network protocols (e.g., HTTP, RPC and
CIFS/SMB) implemented in any layer of the OSI model12. The
central idea is to automatically reverse engineer the protocol
message formats of an application from its network trace. This
method is especially useful when a file to execute the protocol
is unavailable because it only requires a system implementing
the protocol to be running, even if it is not running locally. The
work in [13] surveys Automatic Protocol Reverse Engineering
Tools using this approach. Those tools seem to be mostly
academic; a commercial one is VISUALETHER PROTOCOL
ANALYZER 7.013, which uses the output of Wireshark (a
network protocol analyzer) to generate sequence and call-
flow diagrams. Avalle et al. [14] survey state-of-the-art re-
search aimed at automatically getting formal security proofs
of models close to the source code of real protocol-logic
implementations. They comment extensively on work that
extracts models to further validate widely deployed existing
protocol implementations written in C (rather than libraries as
in our case), limited to a subset of the language. In particular,
they conclude that approaches for model extraction cannot deal

12https://en.wikipedia.org/wiki/OSI model
13https://www.eventhelix.com/VisualEther/

with arbitrary legacy code, but introduce some requirements on
how the code should be written, for instance by adding anno-
tated semantic information. A relevant technique is reported in
[15]. It aims to automatically create a formal model from an
implementation in C. To drive the model extraction process
though, it requires input from the analyst which demands
him/her to have knowledge about both, the C language and
the high level description of the protocol. Finally, although
weakly referenced, Wikipedia offers a quite complete list of
available tools for automatic reverse engineering into UML14.

VII. CONCLUSION

We presented a methodology to retrieve a concrete and clear
security protocol’s description from undocumented source
code implemented in C and without any executable file. The
methodology, developed in five steps, combines commercial
and free state-of-the-art tools to assist in the otherwise manual
code-level reverse engineering process.

This approach offers a solution to whom needs to get
to know (for instance to run a formal analysis) about the
structure, the logics, the messages exchanged and their formats
of security protocols encapsulated in C libraries but has
to work in the scarcity of high-level documentation and/or
definitions of security protocols, besides the lack of fully
automatic tools to generate such definitions (e.g. interaction
diagrams). State-of-the-art tools able to produce this output
aim the Object Oriented paradigm, but little exists that work
on non-executable code in C language.

Security analysts performing formal verification of software
components that implement algorithms for security protocols
can potentially benefit with the proposed technique, since core
security services are frequently encapsulated and provided
by C libraries but such libraries are not so often properly
documented. Ensuring that they have a proper security level is
however essential not to jeopardize the protection of software
using them. By applying the methodology, the analyst can not
only retrieve the protocols’ specifications indispensable for the
analysis, but also become much more aware of the vulnerable
points of the system and detect security properties to verify.

Even though the scenario to reverse engineer executable
applications is very advanced and efficient, the current situ-
ation for non-executable implementations still requires a lot
of manual effort. Although our reverse engineering process
is useful to achieve the final diagrams, its efficiency would
highly improve when interaction with people knowing about
the implementation or an insight in any kind of functionality-
related document are possible.

The methodology presented here is the outcome of a prac-
tical research, testing and combining RE tools in the hunt
of a model that capture the knowledge needed to perform a
formal analysis, when the sole source of information about
the protocol is the code itself. Considering the big amount of
software that exists for reverse engineering, this involved an
exhausting and also long process trying all candidate tools in

14https://en.wikipedia.org/wiki/List of Unified Modeling Language tools

the hope to find one useful for our specific problem. Therefore,
with this report we attempt as well to make security analysts
aware of the current RE situation and of the capabilities
and limitations of existent tools; we intend our experience to
prevent them from investing time and effort in such survey,
allowing them to proceed further with the formal analysis
tasks.

Our interest focused only in finding a solution that led
to the assessment of security in implemented and scarcely
documented protocols: our methodology has been indeed
applied in a real industrial product herein briefly presented as
a case study. We did not attempt to merge what we proposed
into a fully automatic tool: despite conceivable it was a goal
beyond the scope of our research but such a toolkit would
have, we believe, its audience. Taking over this task is a
challenge that we leave to software engineers working in the
development/improvement of RE tools.

ACKNOWLEDGMENT

We thank the pEp Security SA/SnT partnership project
”Security Analysis of Protocols for Privacy” for supporting
this research.

REFERENCES

[1] H. Garavel and S. Graf, “Formal methods for safe and secure computers
systems,” Federal Office for Inf. Security, Tech. Rep., 2013.

[2] B. Blanchet, “A computationally sound automatic prover for cryp-
tographic protocols,” in Workshop on the link between formal and
computational models, Paris, France, Jun. 2005.

[3] K. Beck, J. Grenning, R. Martin, M. Beedle, J. Highsmith, S. Mellor,
A. Van Bennekum, A. Hunt, Schwaber, Cockburn, Jeffries, Sutherland,
Cunningham, Kern, Thomas, Fowler, and Marick, “Manifesto for agile
software development,” 2001, accessed: 2018-01-11.

[4] C. Dougherty, K. Sayre, R. Seacord, D. Svoboda, and K. Togashi,
“Secure design patterns,” SFW Engineering Inst., Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2009-TR-010, 2009.

[5] Tech-FAQ, “Cryptographic libraries,” http://www.tech-faq.com/
cryptographic-libraries.html.

[6] Wikipedia, “Comparison of cryptography libraries,” https://en.wikipedia.
org/wiki/Comparison of cryptography libraries.

[7] E. Eilam, Reversing: Secrets of Reverse Engineering. New York, NY,
USA: John Wiley & Sons, Inc., 2005.

[8] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[9] B. P. Douglass, “Uml for the c programming language,” IBM, Tech.
Rep., June 2009.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[11] P. Tonella and R. Potrich, “Reverse engineering of the interaction
diagrams from c++ code,” in In International Conference on Software
Maintenance, 2003, pp. 159–168.

[12] N. Tiwari and L. Prasad, “Reverse engineering tools for simplifying
programming environment through flowcharting,” Int. Journal of Eng.
Trends and Technology (IJETT), vol. 26, pp. 65–71, 8 2015.

[13] J. Narayan, S. Shukla, and T. Charles Clancy, “A survey of automatic
protocol reverse engineering tools,” ACM Computing Surveys, vol. 48,
pp. 1–26, 12 2015.

[14] M. Avalle, A. Pironti, and R. Sisto, “Formal verification of security
protocol implementations: a survey,” Formal Aspects of Computing, pp.
1–25, 2012.

[15] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Extracting and verifying
cryptographic models from C protocol code by symbolic execution,” in
Proceedings of the 18th ACM Conf. on Computer and Communications
Security, ser. CCS ’11. NY, USA: ACM, 2011, pp. 331–340.

