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Abstract—This paper addresses the problem of target detection
and localisation in a limited area using multiple coordinated
agents. The swarm of Unmanned Aerial Vehicles (UAVs) de-
termines the position of the dispersion of stack effluents to a
gas plume in a certain production area as fast as possible, that
makes the problem challenging to model and solve, because of
the time variability of the target. Three different exploration
algorithms are designed and compared. Besides the exploration
strategies, the paper reports a solution for quick convergence
towards the actual stack position once detected by one member
of the team. Both the navigation and localisation algorithms are
fully distributed and based on the consensus theory. Simulations
on realistic case studies are reported.

I. INTRODUCTION AND RELATED WORKS

Unmanned Aerial Vehicles (UAVs), RPA (Remotely Pilot
Aircraft) are nowadays used for a large variety of applications,
such as structural monitoring [1], emergency scenarios like
search and rescue [2], target tracking and encircling [3],
reaching close to commercial solutions in some cases [4], or
environmental monitoring [5], [6].

The goal of this work is to localise the emission source of
the gas dispersion as fast as possible as proposed in [7], using
multiple autonomous UAVs, and specifically, quadrotors [8],
to speed up the task of seek-and-find. Our solution consists of
two steps: the first concerns the exploration strategies towards
the gas source detection, the second focuses on the distributed
localisation once the source has been detected.

The use of coordinated multiple agents is of course not
novel in the literature. In particular, it has been shown that the
information exchange between the agents of a team reduces
to time to accomplish a mission, which can be theoretically
demonstrated, for example applying the consensus theory [9].
In this framework, UAV formation control using a completely
distributed approach among the controlled robots is a field
already investigated in the literature [10].

Once the stack has been detected, the UAVs have to es-
timate its position. The literature for target tracking is quite
rich [11], [12], especially when the target is not governed by
a white noise but, instead, has a strong correlation between
the executed manoeuvres [13]. Assuming that the target is not
moving but it is standing in a fixed unknown location has also
been presented in the literature, for example by [14], [15] using
distributed consensus-based known algorithms.

Gas source localisation is considered in [16] using the
“Grey Wolf Optimiser”, a recently developed algorithm in-
spired by grey wolves (Canis lupus). It consists of three-
stage procedure: tracking the prey, encircling the prey, and
attacking the prey. This algorithm works with a minimum of 4
agents and, increasing the agent number beyond seven, caused
the reduction in success rate (percentage of success in gas
source localisation, 72% with 7 agents) and increase the time
to completion, due to increased frequency of irrecoverable
collisions between robots.

In this paper, three exploration algorithms for swarms of
UAVs conceived for gas source localisation are proposed and
are based on i) coordinated scanning, ii) Random walk and
iii) Brownian motion. All share the same method: as long
as one agent senses the gas with a concentration greater
than a certain threshold, it becomes the master of the group
and the source localisation phase starts. In this latter phase,
the agents are controlled with a distributed algorithm that
dynamically allocates the master role and localises the source.
The algorithms presented in this paper converge on the maxi-
mum concentration point, which is a property shared with the
Particle Swarm Operation [17] and the Ant Colony Optimisa-
tion [18] approaches. Nonetheless, there are some differences
with respect to the discussed literature, the most relevant being
the approach adopted to find the source. In fact, in the Grey
Wolf Optimiser, agents start in a zone where the concentration
of the gas is above a minimum sensing threshold, and this
data is necessary to reach the source; in our case, instead,
UAVs can start in any part of the environment. Moreover,
we can statistically prove through extensive simulations that
our algorithms can operate also with 2 drones instead of a
minimum of 4 and that the rate of success under the presented
assumptions is 100%. Finally, for the estimation problem as
well as for the exploration, we have considered a limited
sensing range for the UAVs.

The paper is organised as follows. Section II introduces
the adopted models and presents the problem at hand. Then,
in Section III and in Section IV the algorithms used for
the area exploration and the source localisation are defined.
Section V presents extensive simulations analysing all the rel-
evant features of the algorithms and their comparison. Finally,
Section VI draws the conclusions and discusses possible future



developments.

II. PROBLEM FORMULATION AND ADOPTED MODELS

The problem we are aiming at is the detection and lo-
calisation of a certain phenomenon (pollutant leak) taking
place in an unknown location (stack) inside the environment
of interest. The phenomenon is supposed to be measurable
by a sensor rigidly fixed on the robot chassis and capturing
the intensity of the pollutant concentration. More precisely, if
〈G〉 = {Og, Xg, Yg, Zg} is a fixed ground reference frame,
where Og identifies the origin of 〈G〉, the drone can be
modelled as an unconstrained rigid body having 6 degrees of
freedom. The position of its centre of mass in 〈G〉 (which will
be considered as the reference point of the drone) is given by
ξ = [x, y, z]T . Considering that the UAV dynamics is given
by a quadrotor and recalling that quadrotors are controlled by
differentially driving the four motors, we will make use of the
results in [19] to decoupling the attitude and position control.
In practice, given a desired position ξ∗ to be reached, it is
possible to generate a vertical thrust u1 and a torque vector
u2 around its centre of mass to steer the UAV towards ξ∗.
To this end, a suitable trajectory planner generating smooth
trajectories connecting the starting and ending position of the
quadrotor is utilised (this component is not described in this
paper, but it is quite customary in the literature). The UAV
model thus considered is approximated, since:
• The model does not take into account actuation satura-

tions, while in reality this is a major issue for this robotic
systems. Therefore, we assume the linear velocity limited
to 3 m/s;

• We have supposed to be capable of measuring the whole
state. In practice a nonlinear observer is adopted [19];

• We have not modelled several aerodynamic effects [19].
For instance, if the robot is flying at high speed, they
become no more negligible.

We consider these approximations acceptable in this work
since we are more interested in the distributed coordination
of the UAVs formation, making them a team of autonomous
agents, instead of giving a too much detailed analysis of the
single agent dynamic. As a result, the individual UAV can
be considered to be controlled by generating a set of desired
configurations to be reached. In particular, we will assume that
the i–th agent dynamic, with i = 1, . . . , n is given as a first
order integrator, i.e.

ξ̇i(t) = ui(t), (1)

where ui ∈ R3 are the three independent control inputs, hence
ξi = [xi, yi, zi]

T . The UAVs are supposed to be equipped with
GPS sensors to determine the UAV location with negligible
uncertainty. For the agents orientation, a magnetic compass is
considered. As a consequence, we will refer to ξi as the actual
position of the i-th quadrotor in the reference frame 〈G〉.

A. Gaussian Plume

Gaussian Plume [20] is a well-known method used to simu-
late the behaviour of pollutant mixture released in atmosphere

Figure 1. Visualisation of a buoyant Gaussian air pollutant dispersion
plume [20].

by a source in position ps = [0, 0, Hs]
T expressed in 〈G〉,

under the effect of the wind (see Figure 1). With the wind
blowing, e.g., in the Xg direction with speed w measured
in meters per second, the plume spreads as it moves along
Xg . In particular, the local concentration C(x, y, z) at a given
point (x, y, z) forms distributions which have shapes that
resembles Gaussian distributions along the Yg and Zg axes
as described in Figure 1. The two modelling distributions

are given respectively by p?(?) = 1√
2πσ?(x)

e
− ?2

2σ2?(x) , with
? = y, z and where the standard deviations σy(x) and σz(x)
of these Gaussian probability density functions (pdfs) are a
function of x, i.e. the spread increases with the distance x from
the source. At atmospheric stability conditions and using the
so called Pasquill-Gifford Curves [21], we have σy(x) = cxd

and σz(x) = axb, whose parameters can be found in the well-
known Pasquill Gifford stability tables [21].

Assuming as customary the two random variables modelling
the plume spread independent, we have that the joint pdf
py,z(y, z) = py(y)pz(z) and hence the concentration is

C(x, y, z,Hs) =
Q

w

1

2πσy(x)σz(x)
e
− y2

2σ2y(x) ·

·
[
e
− (z−Hs)2

2σ2z(x) + e
− (z+Hs)

2

2σ2z(x)

]
,

(2)

which accounts for the ground effect and where Q is the
dispersion mass and w is the wind speed.

For the concentration sensor, the MiniPID 2 PID1 sensor, by
Ion Science, is supposed to be available. This type of device is
a PID (photoionisation detector) sensor, able to sense volatile
organic compounds in challenging environments. Assuming
that a gas source is positioned in ps = [xs, ys, Hs]

T and that
the i–th robot is located in position ξi, the gas concentration
measured in the sensor position (here assumed co-located
with the UAV centre of mass without loss of generality) is
a modified version of (2), i.e.

Ci(ξi, ps) =
Q

w

1

2πσy(xi − xs)σz(xi − xs)
e
− (yi−ys)

2

2σ2y(xi−xs) ·

·
[
e
− (zi−Hs)

2

2σ2z(xi−xs) + e
− (zi+Hs)

2

2σ2z(xi−xs)

]
.

(3)

1https://www.ionscience.com/products/minipid-2-hs-pid-sensor/minipid-2-
hs-pid-sensor-whats-included/



Considering the limited range of the sensor, we finally have
that the measurement results are given by

hi(ξi) = sat (Ci(ξi, ps)) , (4)

where sat(α) is equal to α if α < 100, otherwise α = 100
(maximum sensing range).

B. Problem Formulation

Consider a set of n UAVs flighting at the same height,
i.e. on a generic Xg × Yg plane, and a gas source position
ps = [xs, ys, Hs]

T . Assuming that the i–th robot is located in
position ξi, the problem is to estimate the plane position p̂s =
[x̂s, ŷs]

T of the source with an error es = [xs − x̂s, ys − ŷs]T
such that ‖es‖ ≤ ρm.

III. EXPLORATION STRATEGY FOR STACK DETECTION

The concept of multiple autonomous systems, i.e. comput-
erised systems composed of multiple intelligent agents that
can interact with each other through exchanging information,
has been proposed for instance in [12]. The use of multiple
autonomous systems is usually more efficient than single agent
systems from both the task performance and the computational
efficiency viewpoints, besides the fact that some problems
are difficult or impossible for single agents. Regarding coor-
dination between agents, consensus control approaches have
gained a lot of attention for autonomous agents coordina-
tion [9]. The main objective is to find a consensus algorithm
between the multiple autonomous agents making use of local
information and with the aim to control the group using
agreements schemes.

Assuming the simple linear dynamic in (1), a quite simple
consensus algorithm that let the n agents to converge in a fixed
position (rendezvous problem) is the following:

ui(t) =

n∑
j=1

lij(ξi(t)− ξj(t)),

where lij is the element in position (i, j) of the Laplacian
matrix; if the final positions have to be separated by relative
position vectors δi, then

ui(t) =

n∑
j=1

lij [(ξi(t)− ξj(t))− (δi − δj)] , (5)

i.e., the UAVs reaches a final fixed formation. From this simple
idea, many different approaches can be applied using the
concepts of adjacency and Laplacian matrices [9].

A. Coordinated Scanning

One simple and effective approach is to use a leader-
follower formation: the leader is in charge of moving inside
the environment using a controlled reactive behaviour or just
following a predefined trajectory (that is the solution here
considered), while the followers are adapt to the leader’s
motion to preserve the formation. Using [22] and assuming
that the i–th agent is the leader, it is possible to use

ui(t) = ξ̇d(t)− ki(ξi(t)− ξd(t)− δi) + ui(t), (6)

Figure 2. Example of coordinated scanning. UAVs start from an initial
configuration (circles) that is a line and scan the whole area until one of the
team members (red star) does not detect a sufficiently high gas concentration
(stars in the final configuration).

where ui(t) is reported in (5), ξd(t) is the desired trajectory,
ξ̇d(t) the desired trajectory dynamic and ki > 0 is a tuning
parameter. Similarly, for the k-th follower, with k 6= i,

uk(t) =
1∑n

j=1 aij

 n∑
j=1

aij ξ̇j(t) + ui(t)

 , (7)

where, again, uk(t) is in (5) and aij is the element in position
(i, j) of the adjacency matrix. Notice that this algorithm is
entirely distributed and the information that the k-th agent
shares are its position ξi(t), velocity ξ̇i(t), and its formation
vector δi.

For the coordinated scanning, all the agents can start from an
arbitrary position and using (5) converge to a line. In particular,
we select as leader the l = d(n/2)e agent (any other heuristic
for the leader choice can be applied), which is in fixed position,
i.e. ul(t) = 0, and has δl = [0, 0, 0]T . For any other agent
i 6= l, we make use of (5) with δi = [0,−(l − i)∆y, 0]T ,
where ∆y = 20 m is the desired distance along the Yg
axis. This way, the UAVs are placed on a line parallel to Yg
(see Figure 2). Once this initial configuration is reached, the
exploration starts. In the example of Figure 2, the exploration
follows lines that are parallel to the Xg axis, hence the leader
desired velocity in (6) is set to ξ̇d = [±vm, 0, 0]T for motions
parallel to the Xg direction or to ξ̇d = [0, vm, 0]T when are
moving upwards along the Yg direction. In the simulations of
Figure 2 the UAV velocities are set to vm = 3 m/s and a
wedge formation is chosen. The decision to switch between
the different directions is taken by the leader knowing the
dimension of the area to scan, while the motion switches from
vertical to horizontal whenever the leader has travelled for a
distance of d = n∆y .

B. Random Walk
We simulate a random walk for the motion of the UAVs

inside the area of interest. In this case, the i–th agent moves
according to this dynamic

ξ̇i(t) =

cos(θi(t))
sin(θi(t))

0

 vm,



Figure 3. Example of random walk algorithm. UAVs start from an initial
configuration (circles) that is a circle centred at the origin and scan the area
until one of the team members (red star) does not detect a sufficiently high
gas concentration (stars in the final configuration).

that is computed every ∆t seconds and in which the orientation
θi(t) is updated following the update rule θi(t) = θi(t −
∆t)+ν, being ν ∼ U(−θM , θM ) a random variable uniformly
distributed and generated by a white stochastic process, where
θM is a user defined constant. Hence, the name random walk
for this exploration strategy. Whenever the i-th agent reaches
the area of interest border, a new orientation is randomly
generated according to θi(t) = νθinθr/θM , where θin is the
orientation of the angle of the local normal vector of the
border and pointing inwards the region, while θr is a user
defined constant threshold describing the feasible orientations
originating from a border location. For this particular strategy,
a collision avoidance mechanism is needed (recall that all the
UAVs are moving at the same height). In this paper, we adopt a
quite straightforward solution: whenever the distance between
the i–th and the j–th agent is less than a given safety threshold
dm, i.e., ‖ξi(t)−ξj(t)‖2 ≤ dm, the agents are subjected to a re-
pulsive force along the directions θi(t) = arctan

(
yi(t)−yj(t)
xi(t)−xj(t)

)
and θj(t) = θi(t)+π . A simulation explaining this behaviour
is reported in Figure 3-(a), where θM = 10◦ and θr = 75◦.

The initial configuration (circles) is on a circle centred at
the origin and with radius 50 m.

C. Brownian Motion

The final exploration strategy is dubbed Brownian motion.
According to the basic rules of Brownian motion particles,
in this work the random change in direction of the agents is
determined by two events: collision avoidance intervention and
boundary collision.

IV. LOCALISATION OF THE STACK

Since all the UAVs in the team has the capability of
sensing the gas concentration using the sensor described in
Section II-A, once any of the team members detects it, it
becomes the new leader of the formation (signed with a red
star in Figure 2 and Figure 3). This type of information,
together with position data, are shared with other agents and
the localisation phase starts. The algorithm works as follows:

1) At the beginning, the team is arranged in a circle of
radius r with the current leader acting as the fixed circle
centre. The positions on the circle are determined by
letting the leader, say the j–th agent, computing the
position vectors δi, i 6= j using polar coordinates, for
all the agents and then applying (7);

2) When the circle formation is reached, the n − 1 UAVs
move along a logarithmic spiral with the i-th agent
radius ri = rebβi , where βi is the arc spanned by the i-
th agent around the leader from the initial circle position
and the fixed coefficient b is computed in order to have
a reduction on the radius between two agents position of
γρm, where ρm is the maximum allowed error defined
in Section II-B. In particular, b = n−1

2π log r−γρm
r ;

3) If the i–th agent along the spiral motion detects a gas
concentration larger than the actual leader, i.e.

hi(ξi) > hj(ξj),

then the i–th agent becomes the leader and the algorithm
starts over from Step 1;

4) The spiral motion for all the agents ends when ri = ρm,
i.e. the desired tolerance of Section II-B;

5) At this point, the agents start to move on the circle with
radius ρm for an arc of length 2π/(n− 1);

6) If the i–th agent along this arc-circle motion verifies
the gas concentration condition hi(ξi) > hj(ξj), the i–
th agent becomes the leader and the algorithm restarts
from Step 5. Otherwise the algorithm ends.

The algorithm thus designed works assuming that the gas
concentration is a decreasing function of the distance from
the source, which is verified by the Gaussian plume model
described in Section II-A.

V. SIMULATION RESULTS

In this section, we propose a statistical comparison and
analysis of the effectiveness of the designed algorithms. This
simulative analysis is strictly necessary since many variables
come into play, i.e. the different exploration strategies, the
behaviour of the Gaussian plume, the number of UAVs. In all
the simulation here presented we assume a maximum UAV
velocity of vm = 3 m/s, a stack height Hs = 3 m (which
is equal to the agents flighting height), a stack emission of
5 g/s and a searching area of about 880× 880 m2. Statistical
data have been collected along ms = 100 simulations in each
considered configuration, mw = 100 different Gaussian plume
conditions as well as a variable number of UAVs, from 2 to
20 agents. Depending on the particular simulation set-up, each
simulation lasts for a variable number of mt samples, where
the sampling time is denoted as ∆t = 1 s as in Section III.

A. Pasquill-Gifford model

First, we present the results of the Pasquill-Gifford model
presented in Section II-A. The gas dispersion has been mod-
elled considering different conditions. Inspired by [23], a
synthetic dataset has been generated based on experimental
observations: a) wind coming from a constant direction; b)



(a) (b)

(c) (d)
Figure 4. Four UAVs trajectories during the localisation phase of the stack in position ps. (a) At the beginning, the UAVs are requested to move on a
circle (dash-dotted line) around the leader (red star). (b) After 92 seconds, the leader changes (red star), with a new desired circle (dash-dotted line). (c) After
132 seconds, a new leader reaches the desired circle and immediately becomes the new leader (red star). (d) After moving on logarithmic spirals, a new
leader is detected, which is quite close to the source ps. The overall trajectories followed by the four UAVs are depicted with solid lines.

wind coming from a completely random direction; c) wind
coming from a prevailing random direction. All the simula-
tions have been carried out considering very unstable wind
conditions. The concentration of the gas mixture in every point
of the area are time averaged along the simulation in order to
avoid transient conditions happening at the very beginning of
the gas leak emission. Figure 4 depicts the simulation results
with colours identifying the concentration and the red dot
representing the position of the source.

B. Exploration Strategies

For the statistical analysis of the three different exploration
strategies presented in Section III the minimum detection
threshold for each agent is hm = 30 parts per billion, i.e. con-
servatively 6 times the rated sensitivity of the sensor described
in Section II-A. Figure 5 depicts the mean average taken to
complete the mission, i.e. until ∃i such that hi(ξi) > hm as a
function of the number of UAVs.

Trivially, all the different algorithms behave better increas-
ing the number of drones. Another important aspect that is
underlined by the graph is the fact that an algorithm based a
deterministic approach has typically worse performance than
random exploration approaches, such as Brownian motion and
random walk.
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Figure 5. Time to accomplish the mission as a function of the number of
UAVs.

C. Localisation of the Stack

We will now present the results of the source localisation
algorithm. The maximum tolerable error is set to ρm = 5 m.
The radius of the circle arranged at the beginning of the
localisation phase is set to r = 50 m. The ratio governing
the contraction of the radius for the logarithmic spirals is set
to γ = 1/4. An example of a localisation manoeuvre for 4
UAVs is reported in Figure 4. At the beginning (Figure 4-
(a)), the UAVs are requested to move on a circle (dash-dotted
line) around the leader (red star), which is the first sensing a
concentration greater than hm. After that all the UAVs have
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Figure 6. Scattering plot of the error ‖es‖.

reached the circle and started to move along the spiral (after
92 s, Figure 4-(b)), the leader changes (red star) and a new
desired circle (dash-dotted line) is established. The UAVs start
moving toward the new circle and, right after 40 second,s they
reached it: a new leader is then immediately determined (red
star in Figure 4-(c)). At this point, the UAVs move toward the
new circle and start the spiral motions. Then, at time 553 s,
one of the UAVs senses a high level of concentration, and
becomes the new leader, denoted with the red star in Figure 4-
(d). Even though this new leader is quite close to the source
ps, the process continues in this way, changing two additional
leaders and ending after 721 s.

To clearly state the performance of this approach, we will
start by first saying that the average of the localisation error
‖es‖ defined in Section II-B along all the simulations does
not vary in a significant way for the three algorithms and it
stabilises around 1.6 m < ρm. Moreover, Figure 6 shows that
the condition ‖es‖ < ρm is always verified by design. As a
concluding remark, the exploration strategy adopted does not
play any role in the final accuracy, while the number of UAVs
reduces the exploration time.

VI. CONCLUSIONS

In this paper we have designed and analysed a multi-
agent system conceived for the detection of a source of a
gas dispersion. Methods based on random motions, such as
Brownian motion and random walk here presented, perform
averagely better in terms of completion time with respect to
deterministic approaches, such as the coordinated scanning
here proposed. For the maximum time of mission comple-
tion, deterministic approaches offer stringent guarantees, while
stochastic approaches can be sometimes excessively high. The
final accuracy of the source position is based on a common
distributed algorithm designed on purpose. Moreover, we have
shown how the number of agents in the team improves the
exploration algorithms performance, while it has negligible
effects on the localisation accuracy.

Future research directions will be focused on the actual de-
ployment of the algorithms in real scenarios, on the definition
of more flexible distributed control approaches as well as on
the multiple sources scenarios.
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