
Integrating Static Code Analysis Toolchains
Matthias Kern∗, Ferhat Erata§¶, Markus Iser‡, Carsten Sinz†, Frederic Loiret‡, Stefan Otten∗, and Eric Sax∗,

∗FZI Research Center for Information Technology, Karlsruhe, Germany
†Karlsruhe Institute of Technology, Institut für Theoretische Informatik, Karlsruhe, Germany

‡KTH Royal Institute of Technology, Embedded Control Systems, Stockholm, Sweden
§Yale University, Department of Computer Science, New Haven, USA

¶UNIT Information Technologies, Research & Development, Izmir, Turkey
∗{mkern, otten, sax}@fzi.de †{markus.iser, carsten.sinz}@kit.edu ‡floiret@kth.se §ferhat.erata@yale.edu

Abstract—This paper proposes an approach for a tool-agnostic
and heterogeneous static code analysis toolchain in combina-
tion with an exchange format. This approach enhances both
traceability and comparability of analysis results. State of the
art toolchains support features for either test execution and
build automation or traceability between tests, requirements and
design information. Our approach combines all those features
and extends traceability to the source code level, incorporating
static code analysis. As part of our approach we introduce the
“ASSUME Static Code Analysis tool exchange format” that
facilitates the comparability of different static code analysis
results. We demonstrate how this approach enhances the usability
and efficiency of static code analysis in a development process. On
the one hand, our approach enables the exchange of results and
evaluations between static code analysis tools. On the other hand,
it enables a complete traceability between requirements, designs,
implementation, and the results of static code analysis. Within
our approach we also propose an OSLC specification for static
code analysis tools and an OSLC communication framework.

Index Terms—Traceability, Interoperability, Static Analysis,
OSLC

I. INTRODUCTION

Highly automated vehicles with more than hundred electri-
cal control units (ECUs) and millions of lines of code are good
examples of safety-critical, complex systems [2], [3]. In the
future, with the technological advances in autonomous driving,
the complexity of those highly automated mobility systems
will increase further in the number of sensors, communication
pathways, and functionality.

Yet, there are many tools without any linkage to other ones
building so-called “islands of information” [4]. This means
the data produced by such tools has no traceable connection
between each other. In order to support the development of
highly automated mobility systems in a safe and secure man-
ner, toolchains that give the possibility to trace and exchange
all design artifacts over the complete life-cycle are needed.
Such toolchains would enable a direct exchange of information
between different tools and thus enhance the traceability
between the different sources of information. Standardized
exchange formats are crucial to the creation of tool adapters
which increase the interoperability among them and enhance
the comparability of their outputs. Toolchains that are not

This work was funded by German Federal Ministry of Education and
Research (BMBF) under grant #01IS15031A as part of ASSUME [1] project.

constrained to a specific set of tools and that support the
replacement of them, are so-called tool-agnostic toolchains.

Today, it is difficult to reuse configurations and to compare
reports of different static code analysis tools (SCAT) since
they mostly use a proprietary data format for both the analysis
results and the analysis configuration. Furthermore, they have
its own strengths and developers must often aggregate the
analysis results of different analyzers to form an overall
picture of program quality [5]. However, without standardized
exchange formats, it is not easy to combine their strengths.
Additionally, it is very common for tool vendors to offer
linkage between their own products, especially for web-based
ones; nevertheless, tools of different vendors are required
within a toolchain. Besides, there are many tools without
a possibility to link their data easily between each other.
To overcome aforementioned limitations, we propose a tool-
agnostic and heterogeneous toolchain for SCAT.

The rest of the paper begins by presenting the background
and related-work of our approach in Section II. In Section III
we give an overview of concepts through an exemplary use-
case for “ASSUME Static Code Analysis Tool Exchange
Format (ASEF)”, developed within the European ASSUME
ITEA3 Project [1]. In Section IV we introduce technical
concepts implementing the toolchain in which an adapter com-
munication framework based on OSLC and the ASEF Format
are presented, as well as an approach for static code analysis
automation that supports traceabilty to design artifacts. Finally
we give a conclusion and future work in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we present the basic concepts and technolo-
gies that are necessary to understand our work. In Section II-A,
we give a quick introduction into static code analysis with
three small examples to motivate the necessity of static code
analysis. In Section II-B, we describe the current literature on
the traceability research to position our work in this area. In
section II-C, we present OSLC, which builds technologically
the base of our approach and is used to set up our toolchain
that addresses system development. Since one of the main
contributions of this work is the so-called ASSUME SCA tool
exchange format (ASEF), in Section II-D, we explain a closely
related standard, “Static Analysis Results Interchange Format”
(SARIF) and discuss how our format is complementary to

ar
X

iv
:2

40
3.

05
98

6v
1

 [
cs

.S
E

]
 9

 M
ar

 2
02

4

mailto:mkern@fzi.de
mailto:ferhat.erata@yale.edu
mailto:markus.iser@kit.edu
mailto:carsten.sinz@kit.edu
mailto:floiret@kth.se
mailto:otten@fzi.de
mailto:sax@fzi.de

the SARIF. Finally, in Section II-E, we present common
continuous integration (CI) technique that today does not
support traceability to design artifacts and comparability of
different static code analysis tools.

A. Static Analysis

Static code analysis involves methods and algorithms to
automatically proof the absence of specific types of unwanted
behavior in a piece of code. Static analysis tools can calculate
a combination of input parameters and an execution trace that
lead to an invalid state in a program. Such invalid states might
include undefined behavior, the violation of custom assertions
or the access of uninitialized memory.

1) Undefined Behavior: Unspecified semantics where the
behavior of a programming language becomes unpredictable
are commonly known as undefined behavior. Such states are
unwanted and should not be reachable at all. In the piece
of code shown in example 1, the removal of lines 2 and 3
leads to the reachability of an undefined state (considering the
semantics of the C programming language).

Example 1: Undefined Behavior

1 int z ← a− b
2 if z = MIN INT then
3 handle invalid state()

4 int y ← −z

2) Custom Assertions: Code optimization can lead to ob-
fuscated pieces of code that are hard to comprehend and verify.
There are scenarios, where code optimization is indispensable.
Example 2 shows how developers can use a custom assertion
to use static analysis to show that an optimized piece of code
still behaves exactly the same as the unoptimized variant.

Example 2: Function Equivalence

1 int a← foo()
2 int b← foo optimized()
3 static assert(a = b)

3) Uninitialized Memory: Working with old or unstructured
low-level code can be a challenge with respect to memory
management. Functional extensions might lead to non-trivial
bugs which can not easily be discovered. Example 3 is an
abstract representation of a common situation.

Example 3: Access Uninitialized Memory

1 if init-condition then
2 initialize memory

3 do some processing and access memory

While init-condition (see line 1) might hold when-
ever needed in the original version of the software this property
might get lost during a sequence of extensions and patches.
Static code analysis tools can automatically trace execution
paths to states where uninitialized memory is accessed.

B. Traceability

Regarding the industrial tools and technologies on trace-
ability, modeling tools such as EMF [6] and SysML [7],
requirement interchange standard (ReqIF [8]) and management
tools such as RMF1 and IBM Rational DOORS [9] provide
some automated or manual means to specify and manage trace-
ability. However, none of them provides integration with static
analysis code analysis tools, especially on a heterogeneous
development and design environment.

C. Open services for Lifecycle Collaboration (OSLC)

Open services for Lifecycle Collaboration (OSLC)2 is an
open community that defines specifications to link the data of
different tools, used in the Application Lifecycle Management
(ALM) [10] and Product Lifecycle Management (PLM) [11],
in order to directly support traceability. The OSLC specifi-
cations build on REST [12], the W3C Resource Description
Framework (RDF) and Linked Data3.

OSLC offers specifications for the requirement-
management, the quality-management (QM) and the
architecture-management. With the architecture-management
specification, data from modeling-tools can be mapped
to resources. Data from testing tools can be mapped
with the help of the QM specification [13]. However, a
specification for mapping results of static code analysis tools
is missing. Therefore, a resource definition based on the QM
specification and the ASEF format have been created as part
of our approach. This specification is shown more in detail
in the Section IV-C.

For several tools, there are already OSLC adapters available,
like the Matlab Simulink integration from Axel Reichwein4 or
for Bugzilla, a bug-tracking tool5.

D. Static Analyis Results Interchange Format (SARIF)

The Static Analysis Results Interchange Format (SARIF) is
a standardized interchange format that enables the aggregation
of results of different analysis tools. SARIF was originally
developed by Microsoft and is currently being standardized
by OASIS in the OASIS SARIF Technical Committee. The
format addresses a variety of analysis tools that can indicate
problems related to program qualities such as correctness,
security, performance, compliance with contractual or legal
requirements, compliance with stylistic standards, understand-
ability, and maintainability. There are several tools available
for the programming language C# as SDKs or Converters.
Furthermore, there is a Viewer for Visual Studio extension 6.
SARIF enhances the usability by combining and comparing
the result in a more easier way than the several competing
static analysis tools 7.

1https://www.eclipse.org/rmf/
2http://open-services.net/software/
3http://open-services.net/
4https://github.com/ld4mbse/oslc-adapter-simulink
5http://wiki.eclipse.org/Lyo/BuildOSLC4JBugzilla
6https://sarifweb.azurewebsites.net/
7https://www.oasis-open.org/committees/tc home.php?wg abbrev=sarif

https://www.eclipse.org/rmf/
http://open-services.net/software/
http://open-services.net/
https://github.com/ld4mbse/oslc-adapter-simulink
http://wiki.eclipse.org/Lyo/BuildOSLC4JBugzilla
https://sarifweb.azurewebsites.net/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif

E. Continuous integration with static code analysis tools

Current static code analysis tools like Astrée8 from AbsInt
or Coverty Scan from Synopsys offer a Jenkins9 plugin that
allows using these tools before the build process starts. Jenkins
itself enables a continuous integration. The integration process,
including testing and a build process, is normally triggered by
a REST request. This request is normally sent out from a Git-
repository manager, like GitHub or GitLab, after code was
pushed to a specific git repository. However, traceability from
testing results to requirements or other design artefacts is not
supported through Jenkins. Furthermore, Jenkins plugins are
specific for each tool, so there is no standard that enables
a plugin for different static code analysis tools and offers
comparability between different analysis tools.

III. CONCEPT AND USE-CASE

To motivate our approach we present an illustrative example
for the development of a functionality for a direction indi-
cator lamp. This functionality could be run on an electronic
control unit (ECU). Direction indicator lamps or informally
“blinkers” or “flashers” are blinking lamps mounted near
the left and right front of a car and can be activated by
the driver at a time to advertise intent to turn or change
lanes towards that side. For direction indicator lamps exist
regulations like the E/ECE/324/Rev.1/Add.47/Rev.12 - E/E-
CE/TRANS/505/Rev.1/Add.47/Rev.12 10. To find all necessary
regulations and requirements, requirement engineering tools
as shown in Figure 2 can be used. In this regulation there is
a requirement in section 6.5 that says “The light shall be a
flashing light flashing 90±30 times per minute”. To fulfill this
requirement the functionality of the direction indicator lamp
is designed with a stateflow chart (cf. Figure 1). The design
of the functionality could be done with design tools as shown
in Figure 2.

Fig. 1. Direction indicator lamp for a car.

After the system design the code can be written or generated
during the implementation activity. A piece of software code
for the functionality of the direction indicator lamp could look
like that shown in Listing 1.

Here, we assume to have a hardware timer that is increased
every millisecond by one, and its value can be read out using
function getTimer(), which returns a signed short. To
achieve a blinking frequency of 1.5 Hz, the light should be

8https://www.absint.com/astree/index.htm
9https://jenkins.io/
10https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2015/

R048r12e.pdf

switched every 333 ms. To make sure that the implementa-
tion satisfies the requirement, we have added assertions (via
static_assert) to make sure that a switch occurs after
between 250 ms and 500 ms and that the time increases in
each iteration of the loop.

1 typedef enum { Off, On } state_t;
2 typedef short time_t;
3

4 extern time_t getTimer();
5 extern void setIndicatorLamp(state_t s);
6

7 int timerExpired(time_t start, time_t end, time_t diff)
8 {
9 return end-start > diff;

10 }
11

12 void process()
13 {
14 time_t startTime = getTimer(), currentTime;
15 state_t light = Off;
16 while (1) {
17 currentTime = getTimer();
18 static_assert(currentTime - startTime >= 0);
19 if (!timerExpired(startTime, currentTime, 333)){
20 continue;
21 }
22 if (light == Off) {
23 setIndicatorLamp(light = On);
24 } else {
25 setIndicatorLamp(light = Off);
26 }
27 static_assert(currentTime - startTime >= 250);
28 static_assert(currentTime - startTime <= 500);
29 startTime = currentTime;
30 }
31 }

Listing 1. Direction indicator lamp C Code.

Due to an integer overflow bug, the implementation will
not work in all cases, in particular on a 32-bit platform.
E.g., if startTime = 32700 and currentTime has a
negative value due to an overflow, then end - start in function
timerExpired() will be a large negative value (due to
integer promotion no overflow occurs in the subtraction), and
it will take a long time (approx. 65 seconds) until a timer
expiration is reported.

This kind of overflow bug is not only of academic interest,
but also of practical importance, as an incident from 2015
shows: Engines of the Boeing 787 Dreamliner could fail due to
loss of electric power after 248 days of continues operation11.
The fault was caused by a timer-related integer overflow bug
similar to that of the example above.

The analysis of the code from Listing 1 belongs to analysis
activities, and many static analysis tools will be able to find
the bug in the implementation. Output from an analysis tool
might look as in Example 4.

All these artifacts of our example should be traceable within
the proposed toolchain. Therefore we give here an exemplary
overview of possible tools which allows us to manage and
produce the necessary results. An overview of this toolchain is
given in Figure 2. To make a proof of concept we implemented

11See, e.g., https://arstechnica.com/information-technology/2015/05/
boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug.

https://www.absint.com/astree/index.htm
https://jenkins.io/
https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2015/R048r12e.pdf
https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2015/R048r12e.pdf
https://arstechnica.com/information-technology/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug
https://arstechnica.com/information-technology/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug

Example 4: Analysis results.

1 Assertion in line 18 failed:
2 startTime = 32452
3 currentTime = -32684

a part of this concept (red shaded box in Figure 2). As a
technology to implement the traceability links among artifacts
we employ Open Services for Lifecycle Collaboration (OSLC)
(cf. Section II). The requirement analysis activities can be

Fig. 2. Toolchain

supported with IBM Rational Doors Next12 or PTC Integrity13.
The design activity could be supported with Matlab Simulink
from MathWorks14 or Enterprise Architect from SparxSys-
tems15. With Matlab Simulink, the behaviour of systems can
be modeled and simulated. The architectural description of
a system can be described with Enterprise Architect, which
supports Unified Modeling Language (UML) and Systems
Modeling Language (SysML). For the software implementa-
tion we suppose an integrated development environment like
Visual Studio from Microsoft or Eclipse from the Eclipse
Foundation. For the static code analysis, Astrée from AbsInt
or QPR Refine from QPR Technologies could be used. Both
tools use abstract interpretations of C code to detect runtime
errors, data races or assertion violations and includes a MISRA
C checker16. In the box “Analysis” in Figure 2 two static code
analysis tools can use the ASEF format (cf. Section IV-B) to
produce comparable results. However, only one analysis tool
is adapted here in our toolchain.

IV. TECHNICAL CONCEPTS

To show the process behind the scenes of our toolchain the
most important technical concepts are presented in this section.

12https://www.ibm.com/us-en/marketplace/rational-doors
13https://www.ptc.com/en/products/plm/plm-products/
14https://www.mathworks.com/products/simulink.html
15https://www.sparxsystems.eu/start/home/
16https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx

These concepts include the framework of our toolchain, the
ASEF exchange format and a specification for static code
analysis tools based on the OSLC quality management speci-
fication.

A. The OSLC adapter communication framework

In the following section, the framework and its communi-
cation is described. Here, only the communication between
an integrated development environment (IDE) and a static
code analysis tool is regarded (see red box in Figure 2).
In Figure 3, the communication between the IDE and the
static code analysis tool is depicted. The static code analysis
tool uses a client that manages the communication. For each
communication participant exists a git repository. Within these
git repositories, the data is stored and version managed in a
standardized format. In the case of C code the standardized
format is the C code itself. In the case of the static code
analysis, the analysis report is stored in the tool independent
ASEF exchange format. Through the git repository, only
checked in versions are linked within the tools in the toolchain.
The adapters “Code Adapter P1” and “Analysis Adapter P2”
parses the data from the git repositories into the Linked Data
format namely “Resource Description Framework” (RDF).
The adapters are triggered every time a new version is pushed
into the corresponding git repositories. During parsing, they
link the corresponding information of the different adapters. In
this case, the information of the analysis report is linked with
the C code. The participants can retrieve the linked information
via the both adapters. The adapters were implemented with the
help of the model based development tool “Lyo Modeller”.

Fig. 3. Communication framework

B. The ASEF Format

The ASSUME SCA tool exchange format (ASEF) offers an
XML schema for a tool-agnostic configuration format in static
code analysis and for the reporting of analysis results. We
developed ASEF Format aiming at tool-interoperability and
facilitating well-defined check-semantics. The format is ex-
tensible and allows tool-dependent configuration. The schemes
and the documentation are available on the following pages:

http://assume-project.github.io/download.html

1) ASEF Configuration Format: The ASEF configuration
is split into a global part and a local part, in which the global
part is intended to contain the main configuration that can
be shared across multiple hosts, whereas specific hosts are

https://www.ibm.com/us-en/marketplace/rational-doors
https://www.ptc.com/en/products/plm/plm-products/
https://www.mathworks.com/products/simulink.html
https://www.sparxsystems.eu/start/home/
https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
http://assume-project.github.io/download.html

able to adapt the local part of the configuration to their needs.
Listing 2 shows a small example of an ASEF configuration.

The configuration allows the definition of source modules,
hardware targets, language targets and check targets. Source
modules define the files to analyze. Hardware targets define
hardware specific properties such as pointer size or endianness.
Language targets define details about the language standard
and system to be checked.

<a s e f : C o n f i g u r a t i o n x s i : s c h e m a L o c a t i o n =”ASC3F . xsd ”>
<a s e f : G l o b a l C o n f i g u r a t i o n>
<a s e f : C o m m o n C o n f i g u r a t i o n>

<H a r d w a r e T a r g e t s>
<HardwareTarget x s i : t y p e =” ase f :HomogenousHardwareTarge t ”

name=” g e n e r i c 3 2 ” e n d i a n n e s s =” b i g ” p o i n t e r S i z e =”32” />
</ H a r d w a r e T a r g e t s>
<L a n g u a g e T a r g e t s>

<LanguageTarget x s i : t y p e =” a s e f : C L a n g u a g e T a r g e t ” name=”
bas icC11 ” s t a n d a r d R e v i s i o n =”C11” />

</ LanguageTarget>
</ L a n g u a g e T a r g e t s>
<C h e c k T a r g e t s>

<CheckTarget x s i : t y p e =” ase f :CCheckTarge ” name=” base ”>
<CorrectnessCheckCategory name=” a s s e r t ” />
<CorrectnessCheckCategory name=” numer ic ” />
<CorrectnessCheckCategory name=” c o n t r o l f l o w ” />
<CorrectnessCheckCategory name=”mem” />

</ CheckTarget>
</ C h e c k T a r g e t s>
<E x e c u t i o n M o d e l T a r g e t s>

<ExecutionModelTarget x s i : t y p e =”
a s e f : C S y n c h r o n o u s E x e c u t i o n M o d e l T a r g e t ” name=” sync ”>

<E n t r y P o i n t s>
<E n t r y P o i n t>main</ E n t r y P o i n t>

</ E n t r y P o i n t s>
</ ExecutionModelTarget>

</ E x e c u t i o n M o d e l T a r g e t s>
<SourceModules>

<SourceModule name=”main” r o o t U r i =”$ R e p o s i t o r y $”>
<S o u r c e F i l e s>

<S o u r c e F i l e u r i =” example . c” i d =”1” />
</ S o u r c e F i l e s>
</ SourceModule>

</ SourceModules>
<A n a l y s i s T a s k s>

<Analys i sTask name=” analyzeMainSourceModule ”>
<HardwareTarget>g e n e r i c 3 2</ HardwareTarget>
<SourceModule>main</ SourceModule>
<LanguageTarget>bas i cC11</ LanguageTarget>
<CheckTarget>base</ CheckTarget>
<ExecutionModelTarget>sync</ ExecutionModelTarget>

</ Analys i sTask>
</ A n a l y s i s T a s k s>

</ a s e f : C o m m o n C o n f i g u r a t i o n>
</ a s e f : G l o b a l C o n f i g u r a t i o n>
<a s e f : L o c a l C o n f i g u r a t i o n>

<U R I S u b s t i t u t i o n R u l e s>
<URISubst i tu t ionRule t o k e n =”$ R e p o s i t o r y $” s u b s t i t u t i o n =”

/ l o c a l / pa th / t o / r e p o s i t o r i e s ”>
</ U R I S u b s t i t u t i o n R u l e s>
</ a s e f : L o c a l C o n f i g u r a t i o n>
</ a s e f : C o n f i g u r a t i o n>

Listing 2. ASEF Example Configuration

Via check targets, several check categories define which
checks should be executed. One of the key-strength of ASEF
lies in the precise specification of the check semantics. As
different static analysis tools offer different stages of precision
in various check categories there was a need to define these
levels of precision. They are used in the ASEF Reports when a
flaw was discovered. More details about check semantics can
be found in Section IV-B2.

The execution of checks is triggered through the definition
of analysis tasks. Analysis tasks are a combination of the

previously defined targets, they specify which checks should
be executed with which hardware and language configuration
etc.

2) ASEF Report Format: The analysis reports involve
source locations, failure traces, and check semantics.

Locations define the row and column where a fault was
detected and are assigned to the checks via identifiers. It is
also possible to refer from a location to another. This is useful
to describe so-called macro locations, because macros can use
code from other files or locations.

A check status can be safe, unsafe, undecided, warning,
and syntactic violation. The check category describes the kind
of fault. Table I shows a small excerpt of the hierarchy of
ASEF check categories and how the categories map to those of
various static analysis tools. ASEF offers well-defined check
semantics and thus enables comparability of the results of the
different static analysis tools.

TABLE I
ASEF CHECK SEMANTICS VS. NATIVE CATEGORIES OF VARIOUS TOOLS

(INCLUDING POLYSPACE (PS) CHECK CATEGORIES, QPR CHECK
CATEGORIES AND ASTREE (AS) ALARM CATEGORIES)

ASEF Category Native Categories

numeric.overflow PS:OVFL, AS:”Overflow in arithmetic”,
AS:”Initializer range”

numeric.overflow.int QPR:arithmetic.overflow, QPR:shift.overflow
numeric.shift PS: SHF
numeric.shift.rhs AS:”Wrong range of second shift argument”
numeric.shift.rhs.amount QPR:shift.by.amount
numeric.shift.rhs.negative QPR:shift.by.negative

mem PS:COR
mem.ptr.deref PS:IDP, QPR:pointer.dereference
mem.ptr.deref.misaligned AS:”Dereference of mis-aligned pointer”
mem.ptr.deref.invalid AS:”Dereference of null or invalid pointer”
mem.ptr.deref.field AS:”Incorrect field dereference”

C. Proposal of an OSLC specification for static code analysis
data and results exchange

Figure 4 shows the resource definition based on both the
OSLC quality management (QM) specification and the ASEF
format. This definition was used to create the OSLC adapter
to link the analysis information with the files and to offer
an analysis case that enables the configuration for the static
code analysis via OSLC. In the following, the proposed
specification is explained in detail.

The orange boxes in Figure 4 represent resources that are
adapted from the OSLC QM specification. The new name of
the adapted resources stands in brackets behind the original
name. The grey boxes represent resources based on the ASEF
format. In the following, these resources are explained more
in detail.
The Analysis Case is linked with all files that should

be analyzed and contains the configuration for the static code
analysis. The Analysis Result bunches all so-called
Checks of one ASEF analysis report. There can be different
Analysis Results for different versions of the source code files.
One Analysis Result refers to a specific Analysis

Fig. 4. Proposal static code analysis OSLC-Specification

Case. Checks contain the type of a detected fault at a spe-
cific location in the code. There is a link to the location, where
the fault occurs. A Location gives the line and column
number in the code where a problem or fault was located.
The Location is linked with the appropriate file, or with
another Location in the case that the Location is a so-
called macro. Through the presented linkage the Analysis
Cases are traceable from their results up to the source code
of a specific version.

D. Approach for a static code analysis automation process

In this section, an approach for an automation process
of the static code analysis within the toolchain is proposed.
This process is oriented at the communication framework (cf.
Figure 3) and is divided into the ten following steps: 1) A
developer push files from an IDE into a git repository; 2)
GitLab, that manages this git repository, triggers the analysis
Client via a so-called webhook; 3) The Analysis client requests
the new files from the Code Adapter P1, stores them locally
and looks which analysis cases are affected through the
changed files of the current commit; 4) The Analysis Client
runs for each affected Analysis Case the analysis; 5) The
Analysis Client reads the configuration from the Analysis
Cases and changes the path for the analysis to the local
stored C language files; 6) The Analysis Client starts the
static analysis tool via an API; 7) The static code analysis
tool analysis the files defined in the analysis configuration and
produces an analysis report in the ASEF format and sends a
ready acknowledgment to the analysis client; 8) The Analysis
Client replaces in the analysis report the local files with the
Unified Resource Identifier (URI) to the files in the Code
Adapter P1 and pushes the report into the analysis repository;

9) GitLab triggers the analysis adapter, after the analysis client
pushed the analysis report into the analysis repository; 10)
The analysis adapter parses the information of the analysis
report into Linked Data resources and links the resources of the
Locations with the Files provided by the Code Adapter
P1. Afterwards the developer can use a front-end to get a quick
overview of the analysis results (cf. Figure 2)

V. CONCLUSION AND FUTURE WORK

In this paper we introduced the necessity for improved
traceability from the requirements downwards to static code
analysis within a heterogeneous and tool-agnostic toolchain.
Starting with the integration of our approach into the V-model,
the state of the art and an overview about related work, we
show the gaps of common solutions and motivate our approach
with an use-case of a direction indicator lamp.

The approaches to enhance the traceability and the us-
ability are presented as well as a technical concept with
a new static code analysis exchange format, namely ASEF,
a communication framework, and an OSLC specification to
implement an adapter for static code analysis tools. Up to
now, our implementation create linkages between code and
static analysis results. For future work we are going to add new
tools to prove the usability and traceability of our concepts. We
demonstrated that the ASEF format brings several advantages
such as the possibility to configure static code analysis tools
in a uniform way. Nevertheless, we aim to show whether our
approach can work also with the SARIF Standard to reach a
larger community.

REFERENCES

[1] ITEA, “ASSUME: Affordable Safe & Secure Mobility Evolution,” https:
//itea3.org/project/assume.html, Sep 2015.

[2] G. Macher, M. Bachinger, and M. Stolz, “Embedded multi-core system
for design of next generation powertrain control units,” in 2017 13th
European Dependable Computing Conference (EDCC), Sept 2017, pp.
66–72.

[3] J. Mössinger, “Software in automotive systems,” IEEE Software, vol. 27,
no. 2, pp. 92–94, March 2010.

[4] J. El-khoury, D. Gürdür, and M. Nyberg, “A model-driven engineering
approach to software tool interoperability based on linked data,” vol. 9,
pp. 248–259, 01 2016.

[5] A. Fatima, S. Bibi, and R. Hanif, “Comparative study on static code anal-
ysis tools for c/c++,” in 2018 15th International Bhurban Conference
on Applied Sciences and Technology (IBCAST), Jan 2018, pp. 465–469.

[6] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[7] M. Soares and J. Vrancken, “Model-driven user requirements specifi-
cation using SysML,” Journal of Software, vol. 3, no. 6, pp. 57–68,
2008.

[8] A. Graf, N. Sasidharan, and Ö. Gürsoy, Requirements, Traceability and
DSLs in Eclipse with the Requirements Interchange Format (ReqIF).
Springer Berlin Heidelberg, 2012, pp. 187–199. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25203-7 13

[9] IBM, “Rational DOORS: A requirements management tool for systems
and advanced IT applications,” 2011.

[10] D. Chappell, What is Application Lifecycle Management? Chappell &
Associates, 2008.

[11] M. Eigner and R. Stelzer, Product Lifecycle Management : ein Leitfaden
für Product Development und Life Cycle Management, 2nd ed. Berlin:
Springer, 2009.

[12] S. Patni, “Pro restful apis : Design, build and integrate with rest, json,
xml and jax-rs,” Berkeley, CA, 2017.

[13] “Oslc specifications,” http://open-services.net/specifications/, 2018, ac-
cessed: 2018-08-29.

https://itea3.org/project/assume.html
https://itea3.org/project/assume.html
http://dx.doi.org/10.1007/978-3-642-25203-7_13
http://open-services.net/specifications/

