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Abstract—One of the promises of the “big data” revolution
is that trough the analysis of large datasets people will benefit
from the solution to many different problems obtained by the
deployment of advanced machine learning models. One of the
challenges of this standard approach, is that information needs
to be centralized on the data center or the machine where the
training phase is performed, posing many concerns about privacy.

In this paper we take a step towards secure and efficient pro-
cessing of distributed large datasets, where original data reside
at different locations and are processed in a privacy preserving
way. In particular we rely on the available technologies to achieve
the secure design of a machine learning model by performing the
training phase on encrypted data. The case study we examine is
focused on the forecasting of energy production by wind farms
situated in different locations. We show in detail how the machine
learning model is created on the basis of the available datasets,
we compare the results with the ones produced by the previous
models, and discuss also their performances.

Index Terms—machine learning; privacy preserving tech-
niques; secure multi-party computation

I. INTRODUCTION

The large amount of data that are being produced and stored
at an unprecedented rate is more and more used to develop
machine learning models that can produce some improvements
in different aspects of our live, from medical screening and
disease outbreak [14], [15], to malware detection [16] and
astronomical observations [21].

Usually, machine learning models are developed following
a centralized approach, where data are accumulated in large
datasets that are provided to a central server to create and
train the machine learning model. This approach, however,
poses a number of challenges, especially when large-scale
collections include sensitive data [17]. Indeed, the storage of
large amount of data at a central server may lead to a violation
of users’ privacy and augment the risks of releasing personal
data, infringing also current regulations such as GDPR [10].

An alternative approach, recently proposed and supported
by Google researcherswho named it Federated Learning (FL)
[13], [22], consists of a machine learning setting where
multiple clients collaborate to the training phase under the
orchestration of a central provider, while the data to be
analyzed is kept at the production sites. The local machine
learning models can then be combined contributing to the
update of the global federated model, that in turn can provide

feedbacks to the local machines. In this way, many of the
challenges of the centralized approach are addressed, such as
privacy, locality and data ownership protection.

The way data and models are combined leverages on secure
multi-party computation techniques (MPC) [7] and further ad-
vances the research on privacy preserving data analysis, started
more than 30 years ago and relying on different cryptographic
primitives, such as secret sharing, homomorphic encryption or
predicate encryption [4], successfully deployed in fields such
as data outsourcing [11], [18], private set intersection [3], and
many others.

In this paper we describe the application of current available
privacy preserving machine learning techniques to the fore-
casting of energy production in renewable energy scenario.
The case study we consider is focused on the analysis of data
coming from three sites where wind farms are located. We
describe in detail how the machine learning models are created
and trained on encrypted data and compare the resulting
forecasts with the ones developed in traditional setting, giving
also the analysis of their performances in terms of computation
time.

The paper is organized as follows: in the next section
we describe the energy market scenario, while in Sec. III
we describe the libraries deployed for the creation of the
machine learning model. In Sec. IV we describe the datasets
used for the training of the resulting model. We discuss the
forecasts resulting from the execution of the model on the
considered datasets in Sec. V as well as the comparison with
the forecasts resulting from the execution of the traditional
models. Finally, performances are analyzed in section VI while
related works and conclusions are reported in section VII and
VIII, respectively.

II. THE ENERGY MARKET

Forecast mechanisms play an important role in the energy
market where they serve as a prerequisite for the maximization
of the stability and the reliability of the energy grid, placing an
accurate balance between production demand and electricity
supply. For the producers, penalties may be imposed if the
production is different from what previously estimated in order
to maintain an equilibrium among the different suppliers. In
case of an overestimated energy production, the operator may



need to buy quotes from other suppliers in a more expensive
market. So in the event of errors in production estimates,
suppliers could be forced to buy in an unfavorable period of
the market.

The increase in the percentage deriving from renewable
sources - mainly photo-voltaic and wind - which has occurred
in recent years, and also the objectives imposed at both
national and international level require a further increase in
renewable sources in the coming years and consequently there
will be the need for more reliable estimates. Optimizing energy
production from these sources adds challenging elements, their
production being subordinated to external factors that are
difficult to control such as the presence and strength of the
wind, temperature, cloudiness, etc., causing large fluctuations
in actual production that are generally difficult to predict.

In the electricity market there are two trading paradigms:
the long-term one, more stable, and the short-term one (daily
or hourly horizon) that is exposed to high price variability.
For the long-term market, trades are made using so-called
forward contracts. Due to the characteristic dependence of the
renewable energy sector on atmospheric variables, therefore
the lower reliability of the forecast and the difficulties in
planning tends to neglect the forward contracts market in favor
of the short-term one. In this context, three ways of buying
and selling are possible:

1) First Day Market (MGP): counter-parties exchange
hourly blocks of energy production for the next day; the
market opens every trading day at 8:00 and closes at
11:55. The time interval between closing and reopening
of the market is justified by the need for technical times
for the delivery of the goods.

2) Intraday market (MI): used in the event of emergencies;
operators can use this market to make the necessary
adjustments to their planning. To this end, the intraday
market, organized into seven blocks, opens when the
market for the previous day is closed.

3) Market for Dispatching Service (MSD): in this market,
the operator of the electricity grid deals with the pro-
curement of the resources necessary for the management
and control of the system. Especially in the renewable
energy market this is a fundamental tool for managing
differences in estimated production.

III. PRELIMINARIES

In this section we discuss the software libraries that have
been chosen to develop the machine learning model. Currently
there are a number of libraries enabling the design of machine
learning algorithms, we selected Tensorflow and Crypten on
the basis of their characteristics and performance.

A. Tensorflow

TensorFlow [5] is a library capable of exploiting the GPU
and enabling the creation of neural networks with multiple
levels and neurons. TensorFlow has been developed and used
by Google company, and was released for free as open-source
in 2015, with the purpose of creating a standard for the

exchange of ideas, speeding up research on machine learning
algorithms, and providing a tool to allow the reuse of already
designed neural networks or ML models. To make complex
calculations, this library uses flow graphs, where information
passing through nodes if processed to design a neural network.
TensorFlow therefore, taking advantage of these features and
the possibility of processing the data through a single API on
various distributed CPUs (server, desktop, Mobile, etc.) allows
researchers to make their products evolve faster and faster, and
share the code more rapidly [5].

B. Pytorch and Crypten

PyTorch has been implemented by Facebook developers
and is based on the same operations implemented in Ten-
sorflow (flow graph logic, Tensors, etc.). For its simplicity
and efficiency, it has gained popularity among developers and
has been implemented in a number of ML projects. Pytorch
provides also an excellent management of neural networks and
the possibility of exploiting GPU computation power.

CrypTen is a Privacy Preserving Machine Learning frame-
work written using PyTorch that allows researchers and devel-
opers to train models using encrypted data [9]. The framework
allows the implementation of secure multi-party computation
in a transparent way and offers excellent tools for integrating it
into numerous projects. Crypten provides an additional library,
MPCTensor element, that is nothing more than a tensor where
the values are encrypted using a secret sharing protocol for
multi-party computation.

IV. THE MACHINE LEARNING MODEL

A. The datasets

The datasets include a number of parameters that have been
measured for each of the three wind farms under analysis. The
datasets have an hour as granularity and have been collected
for a period of about two years, from 2017 to the first months
of 2019. The considered features are:

• Asset availability: maximum power that can be produced
by the wind farm as a whole during the referenced hour:
it varies from the nominal maximum (61800, 37500 and
30000 following for Site1, Site2 and Site3, respectively)
up to a lower value non-negative, determined by the
number of turbine stops (for example for maintenance
reasons).

• WTG active: number of active turbines, helping to inte-
grate the reasons for the reduced availability of resources.

• Grid limitation: limit threshold provided by the electric-
ity grid operator in KW. The maximum value equals the
maximum of the nominal power of the whole site.

• Avg power: average power generated per turbine in KW.
• Power: power generated in the referenced hour by the

entire wind farm: it is the target variable, and the unit of
measurement has been converted in KW.

The data provided by the customer have been further analyzed
and filtered to eliminate also some discrepancies or inconsis-
tencies, and then processed to apply some simple machine
learning algorithm. Such data have also been integrated with



the weather data collected at each site (provided by a regional
agency), where every morning the forecast is produced for the
remaining hours of the current day plus the following 24.
The new dataset, used to integrate the original one, has the
variables listed below:

• Wind speed: wind speed in meters per second.
• Wind u, Wind v: components of the wind vector, repre-

senting the direction and speed of the movements.
• Wind direction: direction of origin of the wind, from zero

to 360 degrees.
• Temp: temperature in degrees centigrade.
• Pressure: atmospheric pressure in pascal.
• Cloud: cloud coverage, represented as a percentage.

B. Neural network model

Based on the previous parameters, we developed different
neural networks and analyzed their results. The one reporting
satisfactory results and performance can be classified under
these 4 different configurations:

1) NN-64-32: neural network with 2 hidden layers, with
64 and 32 nodes respectively.

2) NN-128-64: neural network with 2 hidden layers, with
128 and 64 nodes respectively.

3) NN-256-128: neural network with 2 hidden layers, with
256 and 128 nodes respectively.

4) NN-128-64-32: neural network with 3 hidden layers,
with 256, 128 and 32 nodes respectively.

Obviously each neural network has in addition to the listed
hidden layers an input layer, with a node for each feature,
and an output layer with a single node. Figure 1 reports the
behaviour of the considered networks for the dataset under
analysis.

It can be immediately noticed that the results produced by
the various configurations are very similar. All four networks,
for example, predict the 2 peaks present at the beginning of
the dataset quite well, the NN-128-64-32 NN with greater
precision without overestimating the highest peak. All curves
then settle down, approaching the forecast towards zero in
the second half of the dataset, in this case the NN-128-64
network does it better. As far as the first network in the figure
is concerned, the NN-128-64, rises more by approaching the
real data in the 50-70 segment. To have more objective data
than visual inspection, we consider the Mean Squared Error
(MSE) to select the best performing network. In the following
table we report the execution time and the MSE obtained by
each NN., showing the values observed during the various
executions:

NN-64-32 NN-128-64 NN-256-128 NN-128-64-32
No. of Iterations 115 175 97 200
MSE error 0.0475 0.0473 0.0459 0.0523
Training Time (s) 48.06 121.44 253.56 442.26
Forecast Time (ms)25.46 21.92 83.83 111.29

TABLE I: Training and forecast times for the different NNs

From these data it can be observed that the number of
iterations varies greatly according to the configurations. An

(a) NN-64-32 (b) NN-128-64

(c)
NN-256-128

(d)
NN-128-64-32

Fig. 1: Forecasts obtained from the different neural networks
tracing the energy production (y-axis) in the time period (x-
axis).

important point is obtained by observing the value of MSE; for
almost all NNs this value is very similar except for the network
with 3 different hidden layers, which is higher. The most
important comparison is played on performance, reminding
that these values have been measured on encrypted values and
on a history of only 3 months for a target of 7 days.

V. EXPERIMENTAL RESULTS

In this section we examine the results obtained by applying
the proposed machine learning models to the forecasting of
the energy production in the considered wind farms. In the
three sites, different models have been adopted in the past,
and a number of data have been collected. These data are
then compared with the results obtained by the application of
the neural networks described in the previous section, working
directly on plain-text data, and on encrypted data as well.
We quickly report which models have been considered optimal
by the machine learning experts for each wind farm in the
previous times:

• Site1: for this site only the linear regression model
Support Vector Regression has been implemented.

• Site2: for this site the best results have been obtained
by applying an arithmetic mean computed on the results
of the following models: Ordinary Least Squares Regres-
sion, Lasso regression and Support Vector Regression . In
addition, the ensemble learning method, Random Forest
has been also used.

• Site3: for this site, the best result has been obtained by
applying an arithmetic mean on the following models:
Lasso regression, Support Vector Regression and Random
Forest.



All the results shown in the following are therefore based
on these approaches and the neural network with 2 hidden
layers and 64 and 32 nodes (selected on the basis of results
and performances). For all sites, the forecasts made over two
different periods are reported:

• Period 1: From 22 to 24 October 2018
• Period 2: From 2nd to 4th November 2018

A. Forecasts for Site1

The wind farm located at Site1 has a maximum nominal
power of 30000 KWh of producible energy.

Fig. 2: Results obtained in the first period from ML and NN
encrypted for Site1

Fig. 3: Results obtained in the second period from ML and
NN encrypted for Site1

From both the graphs and the computation of the Mean
Absolute Error (MAE), it appears that the generated forecast
curves are very similar, but the encrypted neural network
obtains slightly better results in almost all the days taken into
consideration. Considering the two periods under observation,
in the first one the neural network obtains a score of well 0.7

MAE Encrypted NN MAE ML Models
MAE forecast 10/22 4,847 5,233
MAE forecast 10/23 3,770 3,592
MAE forecast 10/24 3,372 5,404
MAE forecast 11/02 0.779 0.959
MAE forecast 11/03 2,316 2,472
MAE forecast 11/04 1,182 0,909
MAE first period 4.005 4.734
MAE according to period 1,429 1,454

TABLE II: Mean Absolute Error reported for the NN and the
ML models for Site1

less than the traditional model, while in the second period both
models obtain good similar results.

B. Forecast for Site2

The wind farm located at Site2 has a maximum nominal
value of 37500 kWh. Differently from the previous case, the
data science team found it more efficient to use an approach
with different models, having a more flexible method that
exploits the different strengths of the various models.

Fig. 4: Results obtained in the first period from ML and NN
encrypted for Site2

MAE Encrypted NN MAE ML Models
MAE forecast 10/22 6,012 6,323
MAE forecast 10/23 5,071 6,888
MAE forecast 10/24 6,252 7,270
MAE forecast 11/02 12,159 11,304
MAE forecast 11/03 8,177 6,965
MAE forecast 11/04 7,546 6,936
MAE first period 5,772 6,821
MAE according to period 9,319 8,423

TABLE III: Mean Absolute Error reported for the NN and the
ML models for Site2

The results obtained for this wind farm confirm once again
that the results have a very similar curve and are therefore
comparable. Compared to the previous case, here we get
a quite different result between the two periods taken into
consideration. In the first period, the encrypted neural network
achieves better results on all the days taken, reaching a gap



Fig. 5: Results obtained in the second period from ML and
NN encrypted for Site2

of almost 2 points on the second day of the first period. In
the second period, however, it is the machine learning models
that obtain the most efficient results on all the scheduled days.
In fact, looking at the overall result of the periods, there are
inverse results; this indicates how both approaches guarantee
a fairly efficient coverage of the problem but depending on the
trend of the dataset in a given observation period an approach
turns out to be better, and in other data windows vice-versa.

C. Forecasts for Site3

This wind farm located at Site3 has a nominal power of
61800 KWh. Also in this case, the data science team has
selected an approach with the use of multiple models.

Fig. 6: Results obtained in the first period from ML and NN
encrypted for Site3

Once again, the fact that both approaches follow very similar
forecasting trends is confirmed. In the first period it is possible
to observe that there are peaks in the center of the graph
that are better covered by the neural network operating on

Fig. 7: Results obtained in the second period from ML and
NN encrypted for Site3

MAE Encrypted NN MAE ML Models
MAE forecast 10/22 11,197 10,138
MAE forecast 10/23 15,953 12,031
MAE forecast 10/24 9,580 6,692
MAE forecast 11/02 3,631 4,244
MAE forecast 11/03 6,314 6,617
MAE forecast 11/04 9,325 9,106
MAE first period 12,281 9,662
MAE according to period 6,383 6,621

TABLE IV: Mean Absolute Error reported for the NN and the
ML models for Site3

encrypted data. The calculation of the MAE shows that better
results are obtained by the machine learning models in the first
period, while in the second period, the results of the encrypted
neural network are slightly closer to the real points.

By observing all the results produced on the various wind
farms, it can be observed that the neural networks operating
on encrypted data represent an excellent alternative to the
traditional machine learning models, obtain valid forecasts
wingith the advantage of having high security for the privacy
of customer data.

VI. PERFORMANCE ANALYSIS

The developed neural networks show good performance in
terms of both computational resources and computation time.
The two tables below summarize the time needed comparing
three different approaches to perform the model training and
obtain the target forecasts. The first table shows the time
recorded for the training phase on a dataset including a 3
months period, carried out by the machine learning models,
the neural network on plain-text data, and the neural network
on encrypted data, respectively (all reported data are expressed
in seconds).
The data in the table above is stable for all three wind farms,
apart from the time needed for Site1, that is reduced since
it relies on one simple ML model (SVR), as explained in
section V). The neural network operating on encrypted data
takes approximately 6 times the time required for ML models



Models ML NN Plaintext NN Ciphertext
Site1 0.335 12.410 35.745
Site2 5,149 12,647 33,214
Site3 5.873 12.703 35.239

TABLE V: Computation time in seconds for the training phase

and 3 times the time required for the neural network operating
directly on plain-text data.

Models ML NN Plaintext NN Ciphertext
Site1 4.278 25.954 156.996
Site2 10.209 26.560 98.223
Site3 10,605 25,389 127,111

TABLE VI: Computation time in seconds for the forecasts

The table above, shows the time observed with the same
parameters but on a training history of a whole year. The
observation of performances using all the available history
shows that times are growing much more for the neural
network trained on encrypted data, as expected since the
execution of MPC protocol has an overhead. In this case,
the neural network takes 10 − 12 times more to carry out
training and forecasting in the case of complex ML models
and about 40 times more in the case of Site1 that adopts a
simple model. In any case, times are still acceptable, requiring
less than 3 minutes to produce a valid forecast, fully respecting
the privacy of the datasets used in input.

VII. RELATED WORKS

Cryptographic methods for computing in the encrypted
domain have been proposed in the last forty years, trying to
address benchmarking and classification techniques respecting
data privacy [1], [19], [20]. Many proposals have been based
on results coming from advancements in multi-party secure
computation [7] and on homomorphic encryption [8]. Privacy
preserving machine learning models have been proposed to
solve classification problems deploying neural network where
the training and computation phases are securely executed [2],
[6]. Secure federated machine learning frameworks have been
proposed by Google researchers starting from 2016 as possible
solutions to address many of the challenges related to the
security and privacy of the data [12], [13], [22].

VIII. CONCLUSIONS

Despite many researches performed in the last 40 years,
only recently the advancements on both theoretical and tech-
nological aspects for privacy preserving machine learning are
allowing to obtain practical results. In this paper we have
described how the deployment of current frameworks for the
design and the execution of neural networks can be efficiently
deployed to solve the forecasting problem in the energy market
scenario. The next step is to further develop the proposed
framework and deploy the developed models following the
secure federated learning approach.
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[7] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual Cryptology
Conference, pages 643–662. Springer, 2012.

[8] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[9] D. Gunning, A. Hannun, M. Ibrahim, B. Knott, L. van der Maaten,
V. Reis, S. Sengupta, S. Venkataraman, and X. Zhou. Crypten: A new
research tool for secure machine learning with pytorch, 2019.

[10] A. Gupta. How federated learning is going to revolutionize
AI. https://towardsdatascience.com/how-federated-learning-is-going-to-
revolutionize-ai-6e0ab580420f, 2019.

[11] M. A. Hadavi, R. Jalili, E. Damiani, and S. Cimato. Security and
searchability in secret sharing-based data outsourcing. International
Journal of Information Security, 14(6):513–529, 2015.

[12] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.
Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.
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