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Abstract— Computing Systems are evolving towards more 

complex, heterogeneous systems where multiple computing cores 

and accelerators on the same system concur to improve computing 

resources utilization, resources re-use and the efficiency of data 

sharing across workloads. Such complex systems require equally 

complex tools and models to design and engineer them so that their 

use-case requirements can be satisfied. Adaptive Traffic Profiles 

(ATP) introduce a fast prototyping technology, which allows one 

to model the dynamic memory behavior of computer system de-

vices when executing their workloads. ATP defines a standard file 

format and comes with an open source transaction generator en-

gine written in C++. Both ATP files and the engine are portable 

and pluggable to different host platforms, to allow workloads to 

be assessed with various models at different levels of abstraction. 

We present here the ATP technology developed at Arm and pub-

lished in [5]. We present a case-study involving the usage of ATP, 

namely the analysis of the worst-case latency at a DRAM control-

ler, which is assessed via two separate toolchains, both using traffic 

modelling encoded in ATP.  

Keywords—ATP, modeling, worst-case analysis, embedded sys-

tems 

I.  INTRODUCTION 

Embedded systems are acquiring more and more importance 
in the context of critical applications, such as Industry 4.0, auto-
motive industry, robotics and avionics. In the above context, 
providing firm upper bounds on the execution time of applica-
tions becomes of paramount importance. On the other hand, the 
paradigm of hardware design is moving more and more towards 
resource sharing, be it the transit network on chip or shared 
memories. By tying the performance of an application to the 
concurrent presence and behavior of others, this makes it more 
difficult to perform design-space exploration, verification and 
performance evaluation. Recently, hardware designers (such as 
Arm, with MPAM [3], and Intel, with CAT [4]) have addressed 
some of these concerns by envisaging hardware systems where 
labeling of transactions allows for Quality of Service provision-
ing techniques, such as static/dynamic resource partitioning, ad-
mission control, path routing, and packet scheduling. This has 
been shown to make systems more predictable, abating the so-
called tail latency [2]. 

Such complex systems, defined as heterogeneous due to the va-
riety of devices composing them, as opposed to simpler 

CPU/Memory SoCs, can be especially difficult to design and di-
mension for their target use-cases. Tools which ease design-
space exploration of heterogeneous system are therefore in need, 
to allow designers to test and achieve the desired performance 
level on such systems when running their target use-cases.  

In this paper, we introduce the AMBA Adaptive Traffic Pro-
files (ATP) framework, which is a portable way to generate in-
put for heterogeneous system verification and/or design space 
exploration. ATP are flexible rule-based profiles, which can be 
configured to emulate the traffic injection behavior of masters in 
a heterogeneous system, e.g., a GPU accessing a range of RAM 
addresses. We introduce the profile syntax, and then describe the 
ATP engine, that allows one to run both standalone applications, 
where ATP masters communicate with ATP slaves, or mixed-
mode applications, where the same two entities communicate 
through a host platform (e.g., the gem5 simulator [6]), which 
takes care of traffic forwarding. Moreover, as a case-study in-
volving ATP, we discuss the worst-case analysis of a First-
Ready, First-Come-First-Served (FR-FCFS) DRAM controller: 
we compute an upper bound on the maximum delay that a read 
request may undergo as a function of its position in the read 
queue, when the write request traffic is generated according to 
profiles that match ATP specifications. This allows us to char-
acterize the DRAM controller through its service curve, hence 
to use it in worst-case analysis of complex scenarios. We com-
pound our theoretical analysis with a simulative analysis, carried 
out in similar conditions, using gem5 fed with ATP profiles.  

The rest of this paper is organized as follows. Section II in-
troduces the ATP framework. In Section III we present the mod-
eling of the DRAM controller, whereas Section IV discusses the 
tools used for its evaluation and presents performance results. 
We conclude the paper in Section V.  

II. THE AMBA ATP FRAMEWORK 

This section describes the AMBA ATP modelling frame-
work and the event-based engine that allows it to be run. 

A. Adaptive Traffic Profiles 

Adaptive Traffic Profiles (ATP) are a synthetic traffic mod-
elling framework. ATP enables users to model the dynamic be-
havior of computer systems devices when executing a specific 
workload. ATP was released by Arm in the form of non-confi-
dential specifications and subsequently in the form of an open-



source reference implementation [5]-[6]. The ATP specifica-
tions lay down a series of fundamental principles upon which 
the Arm implementation and all other ones build.  

ATPs represent a device executing a workload.  There are 
four classes of profiles: Master, Slave, Delay and Monitor. A 
Master ATP models what a master (e.g., a GPU) would do, i.e. 
send memory requests and receive responses, according to some 
configurable address space/time pattern. A Slave ATP models 
what a slave (e.g., a memory) would do, i.e. respond to requests 
according to a fixed latency and bandwidth. A Delay ATP just 
does nothing for a configurable amount of time, thus acting as a 
null source. A Monitor ATP, finally, logs events related to other 
profiles (typically Master ones, possibly more than one simulta-
neously). Master and Slave ATPs can be active, terminated or 
locked. The last state occurs when the Master (Slave) ATP can-
not send (receive) any more requests (e.g., because it has 
reached its limit of outstanding transactions). The ATP reverts 
to the active state when the above condition is removed. After 
completing all the transactions specified by its configuration, the 
ATP switches to terminated.  

An ATP consists of a collection of ATP FIFOs specifying its 
behavior. These are linked in time and/or space via an event-
based mechanism. An ATP FIFO is the basic block of the ATP 
Technology: it can be utilized to compose complex waveforms 
in the same way base harmonics can compose complex signals 
in signal theory. The ATP FIFO is a dynamic structure with its 
own size and rate. Two types of FIFOs are defined in ATP: a 
producer (“write”) FIFO and a consumer (“read”) FIFO. A 
write FIFO fills a buffer at constant rate, up to its configured size 
(see Fig. 1).  

 

 A FIFO  

After every fill, it is inspected and a number of memory 
write-requests are synthesized, based on their configured size 
and amount of data in the FIFO. Such data is marked as in-flight. 
Upon reception of acknowledgements (memory responses), in-
flight data are marked as committed and removed from the 
FIFO. Should the FIFO be unable to accommodate the amount 
of data produced by its fill-rate, an overrun event would be 
logged instead.  

A read FIFO is the dual of the write one and behaves very 
similarly: its rate is a depletion rate, and every time the FIFO 
updates its state, it consumes an amount of data according to 
such rate. Then, the FIFO produces as many memory read re-
quests as can fit its EMPTY space and marks such requests as in-
flight. Upon reception of acknowledgments (memory responses 
and data), the data is stored in the in-flight marked empty loca-
tions, and it is therefore made available to be consumed by the 
next FIFO rate activation. Should the read FIFO be unable to 
deplete enough data to satisfy its depletion rate, an underrun 
type even would be logged when that occurs.  

 

An additional parameter, TxnLimit, can be set to limit the 
number of transactions “in-flight” that a FIFO can have at any 
given time, thus potentially reducing the amount generated after 
its fill/deplete phase. ATP FIFOs are complemented by a pattern 
object which describes how the addresses and data size fields of 
its generated transactions should be filled. Finally, an ATP FIFO 
Profile element groups together a FIFO and a pattern object into 
a self-contained descriptor, and assigns it to a system device 
master, as shown in the example of Fig. 2.  

 

 Simple FIFO example 

In this example, the FIFO will generate transactions at a sus-
tained rate of 12GB/s, with a latency tolerance of about 165ns 
(12GB/s * 165ns = 1980 bytes, i.e. the FIFO size – 1 transaction, 
the one that needs to be drained to avoid underrun). All transac-
tions will be filled with linearly incrementing memory addresses 
starting from the memory location 0x0000 with increments of 
64 bytes. 

 

 Linked FIFOs for a memcopy operation. 

As a slightly more complex example, we discuss how to em-
ulate a memcopy operation. This boils down to simply adding 
an additional write-type FIFO to the one of Fig. 2, and linking 
them via a “Linked FIFO” type of event, in this case 
“PROFILE_LOCKED", which causes a FIFO to lock (i.e., it 
cannot issue transactions, as if its TxnLimit was reached, or it did 
not have any more data to use for issuing write requests – or 
empty space to issue read requests) when its linked one unlocks 
and vice-versa. This type of event creates correlation between 
the two linked FIFOs, in this case between a READ and a 
WRITE one, therefore replicating the typical read/write alter-
nate behavior of a memcopy operation. The example is reported 
in Fig. 3. 

Requests 
Fill Rate 

Drain Rate 



B. The AMBA ATP Engine 

The AMBA ATP Engine is a platform-independent module 
that generates synthetic traffic according to the ATP specifica-
tions. It can be plugged into event- or time-driven software mod-
elling, simulation and testing platforms, such as gem5 [7], via a 
simple API. The Engine can work in standalone or mixed mode. 
In the first mode, traffic is exchanged among TPs directly. In the 
mixed mode, an external software (host platform) conveys traf-
fic to/from TPs.  

The core component of the Engine is the Traffic Profile 
Manager (TPM), which manages the configured ATPs, sched-
ules their events, and connects to external platforms via the API. 
Events are triggered by ATPs, and are scheduled in an efficient 
event list, implemented as a calendar queue. Examples of events 
are “FIFO_EMPTY/FULL”, which occur when an ATP’s FIFO 
becomes empty or full, “PROFILE_LOCKED” when a Master 
ATP is unable to send data, etc. 

The Engine includes facilities for logging events to a stream, 
with different levels of verbosity, and for gathering statistics, ag-
gregated per master, such as the number of packets sent/re-
ceived, the number of overruns/underruns in the buffer, the 
send/receive rate, latency, jitter, and average FIFO level. 

As anticipated, the Engine can be connected to a host plat-
form. For instance, this allows a Master ATP to send memory 
requests to the host platform and receive responses from it. This 
is realized in practice by adding an adaptor layer to the host 
platform, acting as a bridge between the Engine’s API and the 
host platform’s API. ATP comes pre-packaged with a gem5 
adaptor layer, so that its integration with gem5 does not require 
any effort on the part of the user. Any adaptor layer should al-
ways interact with the TPM engine, and exchange information 
with the latter in the form of either C++ objects or serializable 
Google Protocol Buffer [8] objects. If required, the adaptor layer 
should take care of format conversion between ATP and host 
packets. The host platform is required to provide time ticks for 
the Engine.   

The ATP Engine provides a handful of APIs available to us-
ers wishing to develop their own adaptor. Control API can be 
utilized to configure the TPM (e.g. to set its options, its time do-
main scaling, logging level etc.) and to load ATP files into the 
Engine. At run time, the adaptor layer is only required to call the 
send API to obtain packets from the Engine and to provide pack-
ets to the Engine via the receive API. The gem5 Adaptor Profi-
leGen - is implemented as a MemObject derived class, which 
wraps around the Traffic Profile Manager and allows gem5 to 
send and receive memory request and response packets from the 
ATP Engine. ProfileGen connects to other gem5 objects by in-
stantiating a configurable number of master ports dedicated to 
the individual ATP masters, through which it sends and receive 
packets belonging to such masters.   

III. WORST-CASE ANALYSIS OF A DRAM CONTROLLER 

As an example of an application, we propose a study on the 
worst-case access delay at a DRAM controller. In a heterogene-
ous system the DRAM is a shared resource used by multiple de-
vices. As such it is a point of contention that may affect both the 
average performance and the compliance to real-time con-
straints. This study focuses on the second aspect, i.e. to obtain 

the maximum delay that a read request may suffer under a given 
contention scenario. We compare the results of two distinct tech-
niques: a simulative approach with gem5 and an analytical one 
using Network Calculus (NC, [1]). For both techniques, we lev-
erage ATP modeling of traffic.  

The system under study is a DRAM module accessed by 
multiple devices via a controller that schedules commands 
(reads, writes, refreshes) according a combination of policies. 
This system is represented in Fig. 4. 

 

 System model of a DRAM controller 

In a general case, contention among requests is avoided with 
various mechanisms. A DRAM stick is composed of multiple 
chips which may serve requests independently. The controller 
may leverage this to run requests concurrently. Another example 
is when a read request addresses data for which a write request 
is enqueued. The controller may then short-circuit the read re-
quest with that data, without waiting for the write request to be 
committed to DRAM first. Since we focus on the worst case, we 
need to assume a scenario where these mechanisms are ineffec-
tive: all requests target the same bank, so that they cannot run 
concurrently, and no read-write pair addresses the same data, so 
that no short-circuit occurs. Under these assumptions, the con-
troller must arbitrate and issue the requests one at a time.  

Due to the DRAM hardware characteristics, any request 
needs to “open the row” before accessing cells. This leads to dif-
ferent servicing times between requests that target a row that had 
already been opened by a previous request (“row hit”) and those 
that must instead close the current row and open another one 
(“row miss”). The controller takes this in consideration, servic-
ing read requests according to a “First Ready, First Come First 
Served” policy (FR-FCFS): row miss requests are scheduled in 
order of arrival, but a request that would results in a row hit can 
overtake the others and be scheduled with higher priority. The 
controller limits the amount of times a given read can be over-
taken to a maximum of 𝑁𝑐𝑎𝑝. In fact, since row hits have strict 

priority over row misses, this limit is necessary to guarantee that 
row misses are served within a finite time in a worst case. Note 
that, depending on the DRAM parameters (but this is the most 
frequent case in our experience), serving all the 𝑁𝑐𝑎𝑝 read hits 

back-to-back often results in the highest delay. 

To serve a write request, the bus direction must be reversed 
first, which incurs a time overhead. Thus, controller policies nor-
mally aim at avoiding unnecessary switches between the two di-
rections. In our system, a watermark approach is used to switch 
between reads and writes. With reference to Fig. 5, the relevant 



parameters are the high and low watermark thresholds, 
𝑊ℎ𝑖𝑔ℎ ,𝑊𝑙𝑜𝑤 , and the write batch length 𝑁𝑤𝑑.  

When in read mode, the controller switches to serving writes 
when either of the following conditions holds: 

1. The read queue is empty, and there are at least 𝑊𝑙𝑜𝑤  
write requests in queue; 

2. There at least 𝑊ℎ𝑖𝑔ℎ write requests in queue. 

When in write mode, the controller switches to serving reads 
when either of the following conditions holds: 

1. The read queue is empty, and write queue is below 
max⁡(𝑊𝑙𝑜𝑤 − 𝑁𝑤𝑑 , 0); 

2. The read queue is not empty, and 𝑁𝑤𝑑 writes have been 
served. 

As we are envisaging a worst-case scenario where the read 
queue is never empty, we can neglect conditions 1 of each case 
without any loss of generality. Thus, only parameters 𝑊ℎ𝑖𝑔ℎ and 

𝑁𝑤𝑑 are used in our study. 

 

 Watermark policy for read/write switching. Depending on the presence 

of enqueued read requests, a different watermark is used to decide when 

to switch to serving writes and vice versa. 

Lastly, DRAM memories require periodic refreshes to avoid 
loss of data, so a refresh timer is used to schedule them. The 
controller schedules refreshes whenever the timer fires, after the 
current read or write operation is completed. 

We focus on bounding from above the maximum delay ex-
perienced by a row miss read request which enqueues at the Nth 
position of the read queue, call it 𝑡𝑁. In fact, the curve that joins 
points (𝑡𝑁 , 𝑁) is a service curve for the system under study. A 
service curve is an NC construct that represents the worst-case 
impulse response of a system to a batch of requests. We refer the 
interested reader to [1] for a tutorial on NC, and limit ourselves 
to mention that the main property of service curves is composa-
bility: given a tandem of devices characterized by service curves 
𝑆1  and 𝑆2 ,  we can compute a service curve for the tandem 
𝑆1,2 = 𝑆1⨂𝑆2, where ⨂ denotes the min-plus convolution alge-

braic operator. Modeling a FR-FCFS controller via a service 
curve enables the study of the worst-case performance of com-
posite systems involving DRAM memory access, as well as 
(say) network-on-chip traversal, in a heterogeneous setting with 
multiple masters and several resource contention points. 

In order to obtain an upper bound on the maximum delay of 
a row miss, we need to envisage a worst-case scenario, possibly 
including pejorative assumptions. However, overestimating the 
maximum delay inevitably leads to overprovisioning a system, 
hence it pays to keep these pejorative assumptions to a minimum 
in order to obtain tight upper bounds. In this respect, character-
izing the arrival process of write requests makes a considerable 
difference. Lacking any such characterization, in fact, the only 

assumption compatible with a worst-case scenario is that writes 
are unbounded, i.e., the write queue is always above the water-
mark, so that each read request is always followed by a write 
batch. In this case, envisaging the scenario leading to the worst-
case delay of the 𝑁th read is relatively straightforward (we leave 
it to the alert reader), but the delay thus obtained is unrealistic 
for at least three independent reasons: first, masters do not send 
infinite batches of write all the time; second, rate-limiters can be 
(and often are) employed at the entrance of a shared NoC to limit 
the amount of requests sent by a single (e.g., misbehaving) mas-
ter; third, the NoC itself acts as a rate limiter, hence the write 
bandwidth cannot exceed the NoC bandwidth along the path 
from the master to the controller. For all the above reasons, we 
assume that the process feeding the write queue at the controller 
is upper bounded. In fact, ATP masters emit requests at a con-
stant rate. However, since the DRAM is a shared resource, mul-
tiple masters may emit requests at the same time. Compounded 
with the NoC traversal, where contentions can lead to increase 
of burstiness, we can then assume that multiple requests, possi-
bly from different masters, may arrive at the controller at a 
higher peak rate than those at which they were emitted. For these 
reasons, we model the arrival process with a token bucket shaper 
(Fig. 6), with arbitrary but known parameters burst and rate. The 
burst parameter 𝑏  (the vertical offset) models the fact that a 
number of concurrent requests may arrive near-simultaneously. 
The rate parameter 𝑟 (the slope of the line) is the aggregate av-
erage rate of the masters that are using the DRAM. The fact that 
a process 𝑅(𝑡) is upper bounded by a token bucket shaper with 
a shaping curve 𝛼(𝜏) = 𝑏 + 𝑟 ∙ 𝜏, 𝜏 > 0, implies that ∀𝜏, 𝑅(𝑡 +
𝜏) ≤ 𝛼(𝜏) + 𝑅(𝑡). In other words, the only legitimate processes 
are those that never intersect the shaping curve. Besides being a 
useful model for an aggregate traffic process, a token bucket 
shaper can be practically implemented in hardware (all it takes 
is a buffer and a timer).  

 

 Example of token bucket shaper. The traffic process 𝑅(𝑡) is always 

below the shape function 𝛼(𝑡) and its translations along 𝑅(𝑡). 

IV. PERFORMANCE EVALUATION 

This section reports performance evaluation results. We de-
scribe the tools that were used for the assessment, the configu-
ration of the experiments, and the results. 

A. Tools used 

We present the two approaches used to study the above sys-
tem. The first one is an analytical approach, where we developed 
a mathematical model for the worst-case timing of concurrent 
events that would delay the read of interest. The second one is a 
simulative approach, where ATP has been used to create request 
streams close to the worst-case assumptions of the analytical 
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model, observing the behavior of the controller under such sce-
nario.  

In the analytical approach, the assumptions are used to de-
velop a mathematical model of the worst-case timing of concur-
rent requests and refresh timer. This is done by focusing on the 
time windows in which a concurrent event (arrival of hit reads, 
switching to writes, scheduling of a refresh) may add the highest 
delay to the servicing of miss reads. We modelled the possible 
sequences of such events as a Finite State Machine (FSM), 
where each operation is modelled as a state and the transition 
cost between states A and B is the “miss read delay” introduced 
by scheduling B after A. An example of such FSM is in Fig. 7. 
The parameters to construct such model are the timing parame-
ters of the DRAM chip, controller parameters such as 𝑁𝑐𝑎𝑝 and 

the write watermark parameters, the target queue position of the 
request under study 𝑁.  

 

 Example of Finite State Machine for the possible events occurring 

before serving 𝑁 read misses. The number of instances of each type of 

node depends on the problem parameters. 

We then developed a C++ tool that efficiently computes an up-
per bound to the path of maximum cost that can be followed on 
such FSMs to go from the starting point to the execution of the 

𝑁𝑡ℎ read, whose worst-case delay we set to obtain. The upper 
bound is constructed as follows: 

- we assume that, at time 0, the controller has just started 
serving a read miss; 𝑁 more reads are enqueued, and all 
of them will result in a miss;  

- we assume that, at time 0, the write queue contains 
𝑊ℎ𝑖𝑔ℎ − 1 requests; 

- from time 0 onward, the arrival process of writes is the 
maximum allowed by the token bucket constraint, i.e., 
𝑊(𝑡) −𝑊(0) = 𝑏 + 𝑟 ∙ 𝑡, where 𝑊(𝑡) are the writes 
arrived by time 𝑡; 

- just after time 0, 𝑁𝑐𝑎𝑝   new read requests will arrive, 

which will result in hits (hence will overtake read 𝑁, 
whose worst-case delay we are assessing); these will be 
served all in a batch, to maximize the impact on the de-
lay of read 𝑁; 

- by the time the 𝑁𝑡ℎ read is served (call it 𝑡𝑁), ⌈𝑡𝑁/𝑇⌉ 
refresh cycles will occur, 𝑇 being the refresh period.   

Under the above hypotheses, we navigate the FSM accord-
ing to the FR-FCFS controller policy described above. This al-
lows us to compute an upper bound on the delay, counting in all 
the overhead induced by every operation and change of state, 
quantified based on the timing parameters of the DRAM model 
being analyzed and on the FR-FCFS configuration (e.g., values 
of 𝑁𝑐𝑎𝑝, 𝑊ℎ𝑖𝑔ℎ, 𝑁𝑤𝑑). We stress that what we obtain is an upper 

bound on the worst-case delay. In fact, some of the conditions 
in the above bullet list may not be actually possible. We show 
this via a simple example.  

Assume that the write arrival process is shaped by a token 
bucket whose rate is 𝑟. Assume also that 𝑁 is very large, so that 
the controller will have to serve many write batches before 

scheduling the 𝑁𝑡ℎ  read miss. A quick back-of-the-envelope 
computation is sufficient to compute the largest interval of time 
during which the controller will be serving reads between any 
such two time batches, which is Δ = 𝑁𝑤𝑑/𝑟. Among our hy-
potheses, we find that the controller should schedule 𝑁𝑐𝑎𝑝 read 

hits back-to-back, since this maximizes the delay of the  𝑁𝑡ℎ 
read miss. However, one can always envisage an 𝑁𝑐𝑎𝑝 so large 

that the longest read interval Δ⁡is not long enough to serve all the 
hits back-to-back. This means that, in order to compute the max-

imum feasible delay for the 𝑁𝑡ℎ read miss, we should try to par-
tition the set of 𝑁𝑐𝑎𝑝 read hits among several read intervals. De-

pending on the timing parameters of the controller, finding such 
optimal partitioning may not be straightforward.  

In order to obtain the exact worst-case delay, an alternative 
algorithm is required, which would exhaustively explore the 

FSM to obtain the highest-cost feasible path to the 𝑁𝑡ℎ  read 
miss. Such an algorithm, which can clearly be expected to have 
a much higher computational costs, is being researched at the 
time of writing. The advantage of the one presented in this paper 
is that it is computationally cheap (few milliseconds, even for 
large values of 𝑁, under very broad settings of DRAM and con-
troller parameters). This, together the fact that it does not require 
complex operations, means that it could also be used to make 
online decisions in a system (e.g., to decide whether or not a new 
master should be admitted, based on expected worst-case delays 
for reads), possibly implemented in hardware. 

In order to benchmark the above analytical approach, we 
simulate the system under study using gem5. In the simulative 
approach, ATP FIFOs are used as input to a modified gem5 



model of a DRAM memory device and controller to recreate a 
scenario close to the worst case, as summarized in Fig. 8. The 
modifications to the gem5 model include a “locking” mecha-
nism to prevent requests from being served until there are the 
required number of packets enqueued, and a manually triggered 
refresh to ensure that the time taken by refreshing the memory 
at least once is taken into account in the worst-case measure-
ment. 

The ATP FIFOs used are set out in Fig. 9, and can be split 
into “setup” and “run” profiles. The setup profiles produce the 
packets that fill the input queues of the controller to meet the 
initial conditions as described above – 𝑁 read-misses in the read 
queue and 𝑊ℎ𝑖𝑔ℎ ⁡– ⁡1 write-misses in the write queue. The inter-

fering reads generator produces 𝑁 − 1 packets, as the tagged re-

quest is enqueued in the 𝑁𝑡ℎ position. The run profiles include 
one to produce the tagged packet (upon receiving which the con-
troller will start to serve requests), a profile producing read-hits 
that overtake the tagged request, and one producing writes at a 
variable rate. The controller serves at least one read before 
switching to writes even if the write queue is above the water-
mark, so the read-hits address row 101, which is the row of the 
first interfering read to be served after the initial set of 𝑁𝑤𝑑 
writes.  

 

 ATP FIFO configuration, setup in blue, run in green. Arrows indicate 

waited for profiles 

B. Experiment description and configuration table 

The controller parameters for the write queue are shown in 
Table I. Three memory configurations were tested and com-
pared: a DDR3-1600 with timings based on a DDR3-1600 4 
Gbit datasheet, a DDR4-2400 based on an 8 Gbit datasheet, and 
a LPDDR-3200 based on a 4Gbit per channel datasheet. An 
open-adaptive page management policy was used, which means 
that the controller keeps a row buffer open once accessed, but 
closes it if there are no row hits and there are bank conflicts in 
the queue. Address mapping can be varied according to the num-
ber of ranks and the page policy being used. The mapping used 
was RoRaBaCoCh, which can be expanded to Row-Rank-Bank-
Column-Channel and determines how the address is decoded. 
The memory parameters are reported in Table II. The timing pa-
rameters are given in Table III, and are derived from the Joint 
Electron Device Engineering Council (JEDEC) standards for 
DDR3, DDR4, and LPDDR4. Experiments were run using val-
ues of 𝑁 between 2 and 55 (higher values of 𝑁 led to the read-
hits being re-sent and were not added to the input queue in time 
to be served as hits). The bitrate of the incoming write request 
packets was varied from 1 Gbps to 8 Gbps. 

 

 

TABLE I.  WRITE QUEUE PARAMETERS 

Maximum entries 64 

Whigh 55 

Wlow 32 

Nwd 16 

 

  

 
 

Fig. 8.    Simulation schema, using ATP FIFOs to recreate a quasi-worst-case scenario. 



TABLE II.  MEMORY PARAMETERS 

 DDR3_1600 DDR4_2400 LPDDR4_3200 

Device size 512 MB 1 GB 512 MB 

Bus width 8 b 4 b 16 b 

Burst length 8 8 16 

Device row buffer size 1 kB 512 B 2 kB 

Banks per rank 8 16 8 

Ranks per channel 2 2 1 

Page policy Open-adaptive Open-adaptive Open-adaptive 

Address mapping RoRaBaCoCh RoRaBaCoCh RoRaBaCoCh 

TABLE III.  DRAM TIMING PARAMETERS (NS) 

 DDR3_1600 DDR4_2400 LPDDR4_3200 

tCK 1.25 0.833 0.625 

tBURST 5 3.332 5 

tRCD 13.75 14.16 18 

tCL 13.75 14.16 18 

tRP 13.75 14.16 18 

tRAS 35 32 42 

tRRD 6 3.332 10 

tXAW 30 13.328 40 

tRFC 260 350 180 

tWR 15 15 18 

tWTR 7.5 5 10 

tRTP 7.5 7.5 7.5 

tRTW 2.5 1.666 2.5 

tCS 2.5 1.666 1.25 

tREFI 7800 7800 3900 

tXP 6 6 7.5 

tXS 270 340 188 

 

C. Results 

We studied the DRAM models described in the previous par-
agraph under different write contention scenarios, comparing 
the results from the analytical and simulative approaches. 

Fig. 10 reports the DDR3 service curve as a function of the 
write bitrate. As can be seen, the worst-case rate (i.e., the slope 
of the service curve) is reduced as the “write intervals” become 
more frequent, which implies that the “read intervals” get 
shorter. Comparing the two approaches, we can verify that the 
analytical results are upper bounds to the scenarios produced via 
simulation. The distance between the two increases with the 
contention, which is likely due to a) pessimism in the upper 
bound approach becoming more impactful, and b) simulation 
scenarios becoming less capable to capture the worst-case se-
quence of events. Fig. 11 and Fig. 12 show similar results, re-
spectively, for DDR4 and LPDDR4, for which the same reason-
ing applies. 

Comparing the results for the DDR3 and DDR4 memories in 
Fig. 13, we can see that DDR4 has inferior worst-case perfor-
mance with respect to the DDR3. This counterintuitive result is 
due to design trade-offs aimed to improve memory density and 
bandwidth, for which the DDR4 model has higher timing pa-
rameters than DDR3, namely the refresh length tRFC (350 ns 
vs. 260 ns). This difference is stressed out in a worst-case sce-
nario, since targeting a single bank prevents one from leveraging 

the other improvements of the DDR4. This shows that improv-
ing the average performance or the worst-case performance are 
different objectives, and one may be achieved at the expenses of 
the other. 

 

 Service curve of the DDR3 DRAM under varying write contention. 

Continuous lines show the Network Calculus upper bounds, dots are the 

gem5 simulative lower bounds. 

 

 Service curve of the DDR4 DRAM under varying write contention. 

Continuous lines show the Network Calculus upper bounds, dots are the 

gem5 simulative lower bounds. 

 

 Service curve of the LPDDR4 DRAM under varying write contention. 
Continuous lines show the Network Calculus upper bounds, dots are the 

gem5 simulative lower bounds. 



Fig. 14 compares the Low Power DRAM to the others, and 
clearly shows the effects on performance of the power-
efficiency tradeoff. Note that the studied LPDDR4 memory has 
a different packetization to the other two, since each write 
request consists of 256 bits of data, against 512 bits in DDR3 
and DDR4. Thus, for the same write rate, the worst-case 
contention is further amplified. 

 

 Service curve of DDR3 and DDR4 memories when the write rate is 

equal to 6 Gbps. 

 

 Service curve of DDR3, DDR4 and LPDDR4 memories when the write 

rate is 2.5 Gbps. 

V. CONCLUSIONS 

This paper presented an overview of the AMBA ATP pro-
files, a fast prototyping technology, which allows users to model 
the dynamic memory behavior of computer system devices 
when executing their workloads. ATP profiles can be used either 
in a standalone mode, or combined with a host platform (e.g., 
the gem5 simulator), to which they can inject packets (e.g., re-
quests) and from which they obtain the associated responses. We 
used ATP modeling to derive the worst-case behavior of a 
memory controller through Network Calculus, in the form of a 
service curve. ATP modeling allows one to capture the inherent 
limitations of interference due to the environment (e.g., the fact 
that the amount of write requests per unit of time is limited), in 
order to derive tighter characterizations, which can in turn lead 
to a higher system utilization. Our analysis allows one to obtain 
non-trivial results: for instance, the fact that DDR4 actually ex-
hibits worse performance than a DDR3, as far as worst-case de-
lay is concerned.  
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