
Heterogeneous systems modelling with Adaptive Traffic Profiles

and its application to worst-case analysis of a DRAM controller

Invited paper

Matteo Andreozzi(a), Frances Conboy(a), Giovanni Stea(b), Raffaele Zippo(c,b)

(a) Arm Ltd.

Cambridge, UK

{name.surname}@arm.com

(b) Dip. di Ingegneria dell’Informazione

University of Pisa, Italy

{name.surname@unipi.it}

(c) DINFO

University of Florence, Italy

raffaele.zippo@unifi.it

Abstract— Computing Systems are evolving towards more

complex, heterogeneous systems where multiple computing cores

and accelerators on the same system concur to improve computing

resources utilization, resources re-use and the efficiency of data

sharing across workloads. Such complex systems require equally

complex tools and models to design and engineer them so that their

use-case requirements can be satisfied. Adaptive Traffic Profiles

(ATP) introduce a fast prototyping technology, which allows one

to model the dynamic memory behavior of computer system de-

vices when executing their workloads. ATP defines a standard file

format and comes with an open source transaction generator en-

gine written in C++. Both ATP files and the engine are portable

and pluggable to different host platforms, to allow workloads to

be assessed with various models at different levels of abstraction.

We present here the ATP technology developed at Arm and pub-

lished in [5]. We present a case-study involving the usage of ATP,

namely the analysis of the worst-case latency at a DRAM control-

ler, which is assessed via two separate toolchains, both using traffic

modelling encoded in ATP.

Keywords—ATP, modeling, worst-case analysis, embedded sys-

tems

I. INTRODUCTION

Embedded systems are acquiring more and more importance
in the context of critical applications, such as Industry 4.0, auto-
motive industry, robotics and avionics. In the above context,
providing firm upper bounds on the execution time of applica-
tions becomes of paramount importance. On the other hand, the
paradigm of hardware design is moving more and more towards
resource sharing, be it the transit network on chip or shared
memories. By tying the performance of an application to the
concurrent presence and behavior of others, this makes it more
difficult to perform design-space exploration, verification and
performance evaluation. Recently, hardware designers (such as
Arm, with MPAM [3], and Intel, with CAT [4]) have addressed
some of these concerns by envisaging hardware systems where
labeling of transactions allows for Quality of Service provision-
ing techniques, such as static/dynamic resource partitioning, ad-
mission control, path routing, and packet scheduling. This has
been shown to make systems more predictable, abating the so-
called tail latency [2].

Such complex systems, defined as heterogeneous due to the va-
riety of devices composing them, as opposed to simpler

CPU/Memory SoCs, can be especially difficult to design and di-
mension for their target use-cases. Tools which ease design-
space exploration of heterogeneous system are therefore in need,
to allow designers to test and achieve the desired performance
level on such systems when running their target use-cases.

In this paper, we introduce the AMBA Adaptive Traffic Pro-
files (ATP) framework, which is a portable way to generate in-
put for heterogeneous system verification and/or design space
exploration. ATP are flexible rule-based profiles, which can be
configured to emulate the traffic injection behavior of masters in
a heterogeneous system, e.g., a GPU accessing a range of RAM
addresses. We introduce the profile syntax, and then describe the
ATP engine, that allows one to run both standalone applications,
where ATP masters communicate with ATP slaves, or mixed-
mode applications, where the same two entities communicate
through a host platform (e.g., the gem5 simulator [6]), which
takes care of traffic forwarding. Moreover, as a case-study in-
volving ATP, we discuss the worst-case analysis of a First-
Ready, First-Come-First-Served (FR-FCFS) DRAM controller:
we compute an upper bound on the maximum delay that a read
request may undergo as a function of its position in the read
queue, when the write request traffic is generated according to
profiles that match ATP specifications. This allows us to char-
acterize the DRAM controller through its service curve, hence
to use it in worst-case analysis of complex scenarios. We com-
pound our theoretical analysis with a simulative analysis, carried
out in similar conditions, using gem5 fed with ATP profiles.

The rest of this paper is organized as follows. Section II in-
troduces the ATP framework. In Section III we present the mod-
eling of the DRAM controller, whereas Section IV discusses the
tools used for its evaluation and presents performance results.
We conclude the paper in Section V.

II. THE AMBA ATP FRAMEWORK

This section describes the AMBA ATP modelling frame-
work and the event-based engine that allows it to be run.

A. Adaptive Traffic Profiles

Adaptive Traffic Profiles (ATP) are a synthetic traffic mod-
elling framework. ATP enables users to model the dynamic be-
havior of computer systems devices when executing a specific
workload. ATP was released by Arm in the form of non-confi-
dential specifications and subsequently in the form of an open-

source reference implementation [5]-[6]. The ATP specifica-
tions lay down a series of fundamental principles upon which
the Arm implementation and all other ones build.

ATPs represent a device executing a workload. There are
four classes of profiles: Master, Slave, Delay and Monitor. A
Master ATP models what a master (e.g., a GPU) would do, i.e.
send memory requests and receive responses, according to some
configurable address space/time pattern. A Slave ATP models
what a slave (e.g., a memory) would do, i.e. respond to requests
according to a fixed latency and bandwidth. A Delay ATP just
does nothing for a configurable amount of time, thus acting as a
null source. A Monitor ATP, finally, logs events related to other
profiles (typically Master ones, possibly more than one simulta-
neously). Master and Slave ATPs can be active, terminated or
locked. The last state occurs when the Master (Slave) ATP can-
not send (receive) any more requests (e.g., because it has
reached its limit of outstanding transactions). The ATP reverts
to the active state when the above condition is removed. After
completing all the transactions specified by its configuration, the
ATP switches to terminated.

An ATP consists of a collection of ATP FIFOs specifying its
behavior. These are linked in time and/or space via an event-
based mechanism. An ATP FIFO is the basic block of the ATP
Technology: it can be utilized to compose complex waveforms
in the same way base harmonics can compose complex signals
in signal theory. The ATP FIFO is a dynamic structure with its
own size and rate. Two types of FIFOs are defined in ATP: a
producer (“write”) FIFO and a consumer (“read”) FIFO. A
write FIFO fills a buffer at constant rate, up to its configured size
(see Fig. 1).

 A FIFO

After every fill, it is inspected and a number of memory
write-requests are synthesized, based on their configured size
and amount of data in the FIFO. Such data is marked as in-flight.
Upon reception of acknowledgements (memory responses), in-
flight data are marked as committed and removed from the
FIFO. Should the FIFO be unable to accommodate the amount
of data produced by its fill-rate, an overrun event would be
logged instead.

A read FIFO is the dual of the write one and behaves very
similarly: its rate is a depletion rate, and every time the FIFO
updates its state, it consumes an amount of data according to
such rate. Then, the FIFO produces as many memory read re-
quests as can fit its EMPTY space and marks such requests as in-
flight. Upon reception of acknowledgments (memory responses
and data), the data is stored in the in-flight marked empty loca-
tions, and it is therefore made available to be consumed by the
next FIFO rate activation. Should the read FIFO be unable to
deplete enough data to satisfy its depletion rate, an underrun
type even would be logged when that occurs.

An additional parameter, TxnLimit, can be set to limit the
number of transactions “in-flight” that a FIFO can have at any
given time, thus potentially reducing the amount generated after
its fill/deplete phase. ATP FIFOs are complemented by a pattern
object which describes how the addresses and data size fields of
its generated transactions should be filled. Finally, an ATP FIFO
Profile element groups together a FIFO and a pattern object into
a self-contained descriptor, and assigns it to a system device
master, as shown in the example of Fig. 2.

 Simple FIFO example

In this example, the FIFO will generate transactions at a sus-
tained rate of 12GB/s, with a latency tolerance of about 165ns
(12GB/s * 165ns = 1980 bytes, i.e. the FIFO size – 1 transaction,
the one that needs to be drained to avoid underrun). All transac-
tions will be filled with linearly incrementing memory addresses
starting from the memory location 0x0000 with increments of
64 bytes.

 Linked FIFOs for a memcopy operation.

As a slightly more complex example, we discuss how to em-
ulate a memcopy operation. This boils down to simply adding
an additional write-type FIFO to the one of Fig. 2, and linking
them via a “Linked FIFO” type of event, in this case
“PROFILE_LOCKED", which causes a FIFO to lock (i.e., it
cannot issue transactions, as if its TxnLimit was reached, or it did
not have any more data to use for issuing write requests – or
empty space to issue read requests) when its linked one unlocks
and vice-versa. This type of event creates correlation between
the two linked FIFOs, in this case between a READ and a
WRITE one, therefore replicating the typical read/write alter-
nate behavior of a memcopy operation. The example is reported
in Fig. 3.

Requests
Fill Rate

Drain Rate

B. The AMBA ATP Engine

The AMBA ATP Engine is a platform-independent module
that generates synthetic traffic according to the ATP specifica-
tions. It can be plugged into event- or time-driven software mod-
elling, simulation and testing platforms, such as gem5 [7], via a
simple API. The Engine can work in standalone or mixed mode.
In the first mode, traffic is exchanged among TPs directly. In the
mixed mode, an external software (host platform) conveys traf-
fic to/from TPs.

The core component of the Engine is the Traffic Profile
Manager (TPM), which manages the configured ATPs, sched-
ules their events, and connects to external platforms via the API.
Events are triggered by ATPs, and are scheduled in an efficient
event list, implemented as a calendar queue. Examples of events
are “FIFO_EMPTY/FULL”, which occur when an ATP’s FIFO
becomes empty or full, “PROFILE_LOCKED” when a Master
ATP is unable to send data, etc.

The Engine includes facilities for logging events to a stream,
with different levels of verbosity, and for gathering statistics, ag-
gregated per master, such as the number of packets sent/re-
ceived, the number of overruns/underruns in the buffer, the
send/receive rate, latency, jitter, and average FIFO level.

As anticipated, the Engine can be connected to a host plat-
form. For instance, this allows a Master ATP to send memory
requests to the host platform and receive responses from it. This
is realized in practice by adding an adaptor layer to the host
platform, acting as a bridge between the Engine’s API and the
host platform’s API. ATP comes pre-packaged with a gem5
adaptor layer, so that its integration with gem5 does not require
any effort on the part of the user. Any adaptor layer should al-
ways interact with the TPM engine, and exchange information
with the latter in the form of either C++ objects or serializable
Google Protocol Buffer [8] objects. If required, the adaptor layer
should take care of format conversion between ATP and host
packets. The host platform is required to provide time ticks for
the Engine.

The ATP Engine provides a handful of APIs available to us-
ers wishing to develop their own adaptor. Control API can be
utilized to configure the TPM (e.g. to set its options, its time do-
main scaling, logging level etc.) and to load ATP files into the
Engine. At run time, the adaptor layer is only required to call the
send API to obtain packets from the Engine and to provide pack-
ets to the Engine via the receive API. The gem5 Adaptor Profi-
leGen - is implemented as a MemObject derived class, which
wraps around the Traffic Profile Manager and allows gem5 to
send and receive memory request and response packets from the
ATP Engine. ProfileGen connects to other gem5 objects by in-
stantiating a configurable number of master ports dedicated to
the individual ATP masters, through which it sends and receive
packets belonging to such masters.

III. WORST-CASE ANALYSIS OF A DRAM CONTROLLER

As an example of an application, we propose a study on the
worst-case access delay at a DRAM controller. In a heterogene-
ous system the DRAM is a shared resource used by multiple de-
vices. As such it is a point of contention that may affect both the
average performance and the compliance to real-time con-
straints. This study focuses on the second aspect, i.e. to obtain

the maximum delay that a read request may suffer under a given
contention scenario. We compare the results of two distinct tech-
niques: a simulative approach with gem5 and an analytical one
using Network Calculus (NC, [1]). For both techniques, we lev-
erage ATP modeling of traffic.

The system under study is a DRAM module accessed by
multiple devices via a controller that schedules commands
(reads, writes, refreshes) according a combination of policies.
This system is represented in Fig. 4.

 System model of a DRAM controller

In a general case, contention among requests is avoided with
various mechanisms. A DRAM stick is composed of multiple
chips which may serve requests independently. The controller
may leverage this to run requests concurrently. Another example
is when a read request addresses data for which a write request
is enqueued. The controller may then short-circuit the read re-
quest with that data, without waiting for the write request to be
committed to DRAM first. Since we focus on the worst case, we
need to assume a scenario where these mechanisms are ineffec-
tive: all requests target the same bank, so that they cannot run
concurrently, and no read-write pair addresses the same data, so
that no short-circuit occurs. Under these assumptions, the con-
troller must arbitrate and issue the requests one at a time.

Due to the DRAM hardware characteristics, any request
needs to “open the row” before accessing cells. This leads to dif-
ferent servicing times between requests that target a row that had
already been opened by a previous request (“row hit”) and those
that must instead close the current row and open another one
(“row miss”). The controller takes this in consideration, servic-
ing read requests according to a “First Ready, First Come First
Served” policy (FR-FCFS): row miss requests are scheduled in
order of arrival, but a request that would results in a row hit can
overtake the others and be scheduled with higher priority. The
controller limits the amount of times a given read can be over-
taken to a maximum of 𝑁𝑐𝑎𝑝. In fact, since row hits have strict

priority over row misses, this limit is necessary to guarantee that
row misses are served within a finite time in a worst case. Note
that, depending on the DRAM parameters (but this is the most
frequent case in our experience), serving all the 𝑁𝑐𝑎𝑝 read hits

back-to-back often results in the highest delay.

To serve a write request, the bus direction must be reversed
first, which incurs a time overhead. Thus, controller policies nor-
mally aim at avoiding unnecessary switches between the two di-
rections. In our system, a watermark approach is used to switch
between reads and writes. With reference to Fig. 5, the relevant

parameters are the high and low watermark thresholds,
𝑊ℎ𝑖𝑔ℎ ,𝑊𝑙𝑜𝑤 , and the write batch length 𝑁𝑤𝑑.

When in read mode, the controller switches to serving writes
when either of the following conditions holds:

1. The read queue is empty, and there are at least 𝑊𝑙𝑜𝑤
write requests in queue;

2. There at least 𝑊ℎ𝑖𝑔ℎ write requests in queue.

When in write mode, the controller switches to serving reads
when either of the following conditions holds:

1. The read queue is empty, and write queue is below
max⁡(𝑊𝑙𝑜𝑤 − 𝑁𝑤𝑑 , 0);

2. The read queue is not empty, and 𝑁𝑤𝑑 writes have been
served.

As we are envisaging a worst-case scenario where the read
queue is never empty, we can neglect conditions 1 of each case
without any loss of generality. Thus, only parameters 𝑊ℎ𝑖𝑔ℎ and

𝑁𝑤𝑑 are used in our study.

 Watermark policy for read/write switching. Depending on the presence

of enqueued read requests, a different watermark is used to decide when

to switch to serving writes and vice versa.

Lastly, DRAM memories require periodic refreshes to avoid
loss of data, so a refresh timer is used to schedule them. The
controller schedules refreshes whenever the timer fires, after the
current read or write operation is completed.

We focus on bounding from above the maximum delay ex-
perienced by a row miss read request which enqueues at the Nth
position of the read queue, call it 𝑡𝑁. In fact, the curve that joins
points (𝑡𝑁 , 𝑁) is a service curve for the system under study. A
service curve is an NC construct that represents the worst-case
impulse response of a system to a batch of requests. We refer the
interested reader to [1] for a tutorial on NC, and limit ourselves
to mention that the main property of service curves is composa-
bility: given a tandem of devices characterized by service curves
𝑆1 and 𝑆2 , we can compute a service curve for the tandem
𝑆1,2 = 𝑆1⨂𝑆2, where ⨂ denotes the min-plus convolution alge-

braic operator. Modeling a FR-FCFS controller via a service
curve enables the study of the worst-case performance of com-
posite systems involving DRAM memory access, as well as
(say) network-on-chip traversal, in a heterogeneous setting with
multiple masters and several resource contention points.

In order to obtain an upper bound on the maximum delay of
a row miss, we need to envisage a worst-case scenario, possibly
including pejorative assumptions. However, overestimating the
maximum delay inevitably leads to overprovisioning a system,
hence it pays to keep these pejorative assumptions to a minimum
in order to obtain tight upper bounds. In this respect, character-
izing the arrival process of write requests makes a considerable
difference. Lacking any such characterization, in fact, the only

assumption compatible with a worst-case scenario is that writes
are unbounded, i.e., the write queue is always above the water-
mark, so that each read request is always followed by a write
batch. In this case, envisaging the scenario leading to the worst-
case delay of the 𝑁th read is relatively straightforward (we leave
it to the alert reader), but the delay thus obtained is unrealistic
for at least three independent reasons: first, masters do not send
infinite batches of write all the time; second, rate-limiters can be
(and often are) employed at the entrance of a shared NoC to limit
the amount of requests sent by a single (e.g., misbehaving) mas-
ter; third, the NoC itself acts as a rate limiter, hence the write
bandwidth cannot exceed the NoC bandwidth along the path
from the master to the controller. For all the above reasons, we
assume that the process feeding the write queue at the controller
is upper bounded. In fact, ATP masters emit requests at a con-
stant rate. However, since the DRAM is a shared resource, mul-
tiple masters may emit requests at the same time. Compounded
with the NoC traversal, where contentions can lead to increase
of burstiness, we can then assume that multiple requests, possi-
bly from different masters, may arrive at the controller at a
higher peak rate than those at which they were emitted. For these
reasons, we model the arrival process with a token bucket shaper
(Fig. 6), with arbitrary but known parameters burst and rate. The
burst parameter 𝑏 (the vertical offset) models the fact that a
number of concurrent requests may arrive near-simultaneously.
The rate parameter 𝑟 (the slope of the line) is the aggregate av-
erage rate of the masters that are using the DRAM. The fact that
a process 𝑅(𝑡) is upper bounded by a token bucket shaper with
a shaping curve 𝛼(𝜏) = 𝑏 + 𝑟 ∙ 𝜏, 𝜏 > 0, implies that ∀𝜏, 𝑅(𝑡 +
𝜏) ≤ 𝛼(𝜏) + 𝑅(𝑡). In other words, the only legitimate processes
are those that never intersect the shaping curve. Besides being a
useful model for an aggregate traffic process, a token bucket
shaper can be practically implemented in hardware (all it takes
is a buffer and a timer).

 Example of token bucket shaper. The traffic process 𝑅(𝑡) is always

below the shape function 𝛼(𝑡) and its translations along 𝑅(𝑡).

IV. PERFORMANCE EVALUATION

This section reports performance evaluation results. We de-
scribe the tools that were used for the assessment, the configu-
ration of the experiments, and the results.

A. Tools used

We present the two approaches used to study the above sys-
tem. The first one is an analytical approach, where we developed
a mathematical model for the worst-case timing of concurrent
events that would delay the read of interest. The second one is a
simulative approach, where ATP has been used to create request
streams close to the worst-case assumptions of the analytical

 ⁡

 ⁡

 ⁡

 ⁡

0

 ()

 ()

model, observing the behavior of the controller under such sce-
nario.

In the analytical approach, the assumptions are used to de-
velop a mathematical model of the worst-case timing of concur-
rent requests and refresh timer. This is done by focusing on the
time windows in which a concurrent event (arrival of hit reads,
switching to writes, scheduling of a refresh) may add the highest
delay to the servicing of miss reads. We modelled the possible
sequences of such events as a Finite State Machine (FSM),
where each operation is modelled as a state and the transition
cost between states A and B is the “miss read delay” introduced
by scheduling B after A. An example of such FSM is in Fig. 7.
The parameters to construct such model are the timing parame-
ters of the DRAM chip, controller parameters such as 𝑁𝑐𝑎𝑝 and

the write watermark parameters, the target queue position of the
request under study 𝑁.

 Example of Finite State Machine for the possible events occurring

before serving 𝑁 read misses. The number of instances of each type of

node depends on the problem parameters.

We then developed a C++ tool that efficiently computes an up-
per bound to the path of maximum cost that can be followed on
such FSMs to go from the starting point to the execution of the

𝑁𝑡ℎ read, whose worst-case delay we set to obtain. The upper
bound is constructed as follows:

- we assume that, at time 0, the controller has just started
serving a read miss; 𝑁 more reads are enqueued, and all
of them will result in a miss;

- we assume that, at time 0, the write queue contains
𝑊ℎ𝑖𝑔ℎ − 1 requests;

- from time 0 onward, the arrival process of writes is the
maximum allowed by the token bucket constraint, i.e.,
𝑊(𝑡) −𝑊(0) = 𝑏 + 𝑟 ∙ 𝑡, where 𝑊(𝑡) are the writes
arrived by time 𝑡;

- just after time 0, 𝑁𝑐𝑎𝑝 new read requests will arrive,

which will result in hits (hence will overtake read 𝑁,
whose worst-case delay we are assessing); these will be
served all in a batch, to maximize the impact on the de-
lay of read 𝑁;

- by the time the 𝑁𝑡ℎ read is served (call it 𝑡𝑁), ⌈𝑡𝑁/𝑇⌉
refresh cycles will occur, 𝑇 being the refresh period.

Under the above hypotheses, we navigate the FSM accord-
ing to the FR-FCFS controller policy described above. This al-
lows us to compute an upper bound on the delay, counting in all
the overhead induced by every operation and change of state,
quantified based on the timing parameters of the DRAM model
being analyzed and on the FR-FCFS configuration (e.g., values
of 𝑁𝑐𝑎𝑝, 𝑊ℎ𝑖𝑔ℎ, 𝑁𝑤𝑑). We stress that what we obtain is an upper

bound on the worst-case delay. In fact, some of the conditions
in the above bullet list may not be actually possible. We show
this via a simple example.

Assume that the write arrival process is shaped by a token
bucket whose rate is 𝑟. Assume also that 𝑁 is very large, so that
the controller will have to serve many write batches before

scheduling the 𝑁𝑡ℎ read miss. A quick back-of-the-envelope
computation is sufficient to compute the largest interval of time
during which the controller will be serving reads between any
such two time batches, which is Δ = 𝑁𝑤𝑑/𝑟. Among our hy-
potheses, we find that the controller should schedule 𝑁𝑐𝑎𝑝 read

hits back-to-back, since this maximizes the delay of the 𝑁𝑡ℎ
read miss. However, one can always envisage an 𝑁𝑐𝑎𝑝 so large

that the longest read interval Δ⁡is not long enough to serve all the
hits back-to-back. This means that, in order to compute the max-

imum feasible delay for the 𝑁𝑡ℎ read miss, we should try to par-
tition the set of 𝑁𝑐𝑎𝑝 read hits among several read intervals. De-

pending on the timing parameters of the controller, finding such
optimal partitioning may not be straightforward.

In order to obtain the exact worst-case delay, an alternative
algorithm is required, which would exhaustively explore the

FSM to obtain the highest-cost feasible path to the 𝑁𝑡ℎ read
miss. Such an algorithm, which can clearly be expected to have
a much higher computational costs, is being researched at the
time of writing. The advantage of the one presented in this paper
is that it is computationally cheap (few milliseconds, even for
large values of 𝑁, under very broad settings of DRAM and con-
troller parameters). This, together the fact that it does not require
complex operations, means that it could also be used to make
online decisions in a system (e.g., to decide whether or not a new
master should be admitted, based on expected worst-case delays
for reads), possibly implemented in hardware.

In order to benchmark the above analytical approach, we
simulate the system under study using gem5. In the simulative
approach, ATP FIFOs are used as input to a modified gem5

model of a DRAM memory device and controller to recreate a
scenario close to the worst case, as summarized in Fig. 8. The
modifications to the gem5 model include a “locking” mecha-
nism to prevent requests from being served until there are the
required number of packets enqueued, and a manually triggered
refresh to ensure that the time taken by refreshing the memory
at least once is taken into account in the worst-case measure-
ment.

The ATP FIFOs used are set out in Fig. 9, and can be split
into “setup” and “run” profiles. The setup profiles produce the
packets that fill the input queues of the controller to meet the
initial conditions as described above – 𝑁 read-misses in the read
queue and 𝑊ℎ𝑖𝑔ℎ ⁡– ⁡1 write-misses in the write queue. The inter-

fering reads generator produces 𝑁 − 1 packets, as the tagged re-

quest is enqueued in the 𝑁𝑡ℎ position. The run profiles include
one to produce the tagged packet (upon receiving which the con-
troller will start to serve requests), a profile producing read-hits
that overtake the tagged request, and one producing writes at a
variable rate. The controller serves at least one read before
switching to writes even if the write queue is above the water-
mark, so the read-hits address row 101, which is the row of the
first interfering read to be served after the initial set of 𝑁𝑤𝑑
writes.

 ATP FIFO configuration, setup in blue, run in green. Arrows indicate

waited for profiles

B. Experiment description and configuration table

The controller parameters for the write queue are shown in
Table I. Three memory configurations were tested and com-
pared: a DDR3-1600 with timings based on a DDR3-1600 4
Gbit datasheet, a DDR4-2400 based on an 8 Gbit datasheet, and
a LPDDR-3200 based on a 4Gbit per channel datasheet. An
open-adaptive page management policy was used, which means
that the controller keeps a row buffer open once accessed, but
closes it if there are no row hits and there are bank conflicts in
the queue. Address mapping can be varied according to the num-
ber of ranks and the page policy being used. The mapping used
was RoRaBaCoCh, which can be expanded to Row-Rank-Bank-
Column-Channel and determines how the address is decoded.
The memory parameters are reported in Table II. The timing pa-
rameters are given in Table III, and are derived from the Joint
Electron Device Engineering Council (JEDEC) standards for
DDR3, DDR4, and LPDDR4. Experiments were run using val-
ues of 𝑁 between 2 and 55 (higher values of 𝑁 led to the read-
hits being re-sent and were not added to the input queue in time
to be served as hits). The bitrate of the incoming write request
packets was varied from 1 Gbps to 8 Gbps.

TABLE I. WRITE QUEUE PARAMETERS

Maximum entries 64

Whigh 55

Wlow 32

Nwd 16

Fig. 8. Simulation schema, using ATP FIFOs to recreate a quasi-worst-case scenario.

TABLE II. MEMORY PARAMETERS

 DDR3_1600 DDR4_2400 LPDDR4_3200

Device size 512 MB 1 GB 512 MB

Bus width 8 b 4 b 16 b

Burst length 8 8 16

Device row buffer size 1 kB 512 B 2 kB

Banks per rank 8 16 8

Ranks per channel 2 2 1

Page policy Open-adaptive Open-adaptive Open-adaptive

Address mapping RoRaBaCoCh RoRaBaCoCh RoRaBaCoCh

TABLE III. DRAM TIMING PARAMETERS (NS)

 DDR3_1600 DDR4_2400 LPDDR4_3200

tCK 1.25 0.833 0.625

tBURST 5 3.332 5

tRCD 13.75 14.16 18

tCL 13.75 14.16 18

tRP 13.75 14.16 18

tRAS 35 32 42

tRRD 6 3.332 10

tXAW 30 13.328 40

tRFC 260 350 180

tWR 15 15 18

tWTR 7.5 5 10

tRTP 7.5 7.5 7.5

tRTW 2.5 1.666 2.5

tCS 2.5 1.666 1.25

tREFI 7800 7800 3900

tXP 6 6 7.5

tXS 270 340 188

C. Results

We studied the DRAM models described in the previous par-
agraph under different write contention scenarios, comparing
the results from the analytical and simulative approaches.

Fig. 10 reports the DDR3 service curve as a function of the
write bitrate. As can be seen, the worst-case rate (i.e., the slope
of the service curve) is reduced as the “write intervals” become
more frequent, which implies that the “read intervals” get
shorter. Comparing the two approaches, we can verify that the
analytical results are upper bounds to the scenarios produced via
simulation. The distance between the two increases with the
contention, which is likely due to a) pessimism in the upper
bound approach becoming more impactful, and b) simulation
scenarios becoming less capable to capture the worst-case se-
quence of events. Fig. 11 and Fig. 12 show similar results, re-
spectively, for DDR4 and LPDDR4, for which the same reason-
ing applies.

Comparing the results for the DDR3 and DDR4 memories in
Fig. 13, we can see that DDR4 has inferior worst-case perfor-
mance with respect to the DDR3. This counterintuitive result is
due to design trade-offs aimed to improve memory density and
bandwidth, for which the DDR4 model has higher timing pa-
rameters than DDR3, namely the refresh length tRFC (350 ns
vs. 260 ns). This difference is stressed out in a worst-case sce-
nario, since targeting a single bank prevents one from leveraging

the other improvements of the DDR4. This shows that improv-
ing the average performance or the worst-case performance are
different objectives, and one may be achieved at the expenses of
the other.

 Service curve of the DDR3 DRAM under varying write contention.

Continuous lines show the Network Calculus upper bounds, dots are the

gem5 simulative lower bounds.

 Service curve of the DDR4 DRAM under varying write contention.

Continuous lines show the Network Calculus upper bounds, dots are the

gem5 simulative lower bounds.

 Service curve of the LPDDR4 DRAM under varying write contention.
Continuous lines show the Network Calculus upper bounds, dots are the

gem5 simulative lower bounds.

Fig. 14 compares the Low Power DRAM to the others, and
clearly shows the effects on performance of the power-
efficiency tradeoff. Note that the studied LPDDR4 memory has
a different packetization to the other two, since each write
request consists of 256 bits of data, against 512 bits in DDR3
and DDR4. Thus, for the same write rate, the worst-case
contention is further amplified.

 Service curve of DDR3 and DDR4 memories when the write rate is

equal to 6 Gbps.

 Service curve of DDR3, DDR4 and LPDDR4 memories when the write

rate is 2.5 Gbps.

V. CONCLUSIONS

This paper presented an overview of the AMBA ATP pro-
files, a fast prototyping technology, which allows users to model
the dynamic memory behavior of computer system devices
when executing their workloads. ATP profiles can be used either
in a standalone mode, or combined with a host platform (e.g.,
the gem5 simulator), to which they can inject packets (e.g., re-
quests) and from which they obtain the associated responses. We
used ATP modeling to derive the worst-case behavior of a
memory controller through Network Calculus, in the form of a
service curve. ATP modeling allows one to capture the inherent
limitations of interference due to the environment (e.g., the fact
that the amount of write requests per unit of time is limited), in
order to derive tighter characterizations, which can in turn lead
to a higher system utilization. Our analysis allows one to obtain
non-trivial results: for instance, the fact that DDR4 actually ex-
hibits worse performance than a DDR3, as far as worst-case de-
lay is concerned.

ACKNOWLEDGMENTS

Work partially supported by the Italian Ministry of Educa-
tion and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence). The authors would like to
thank Mike Campbell of Arm, for his insight on the DRAM
technology, and Lorenzo Biagini, former MSc student at the
University of Pisa, for fruitful discussion on the worst-case anal-
ysis.

REFERENCES

[1] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume LNCS 2050.
Springer-Verlag, revised version 4, 2019.

[2] YG Bao, S Wang, “Labeled von Neumann architecture for software-
defined cloud”, Journal of Computer Science and Technology 32 (2), 219-
223

[3] Arm® Architecture Reference Manual Supplement Memory System
Resource Partitioning and Monitoring (MPAM), for Armv8-A, available
online at https://developer.arm.com/docs/ddi0598/latest

[4] Intel Cache Allocation Technology, https://software.intel.com/en-
us/articles/introduction-to-cache-allocation-technology

[5] AMBA Adaptive Traffic Profiles,
https://pages.arm.com/amba_adaptive_traffic_profiles_specifications.html

[6] ATP Engine, https://github.com/ARM-software/ATP-Engine

[7] Gem5, http://www.gem5.org

[8] Google Protocol Buffers, https://developers.google.com/protocol-buffers

https://developer.arm.com/docs/ddi0598/latest
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://pages.arm.com/amba_adaptive_traffic_profiles_specifications.html
https://github.com/ARM-software/ATP-Engine
http://www.gem5.org/
https://developers.google.com/protocol-buffers

