
Real-time End-to-End Federated Learning:
An Automotive Case Study

Hongyi Zhang∗, Jan Bosch∗, Helena Holmström Olsson†
∗Chalmers University of Technology, Gothenburg, Sweden.

Email: {hongyiz, jan.bosch}@chalmers.se
†Malmö University, Malmö, Sweden.

Email: helena.holmstrom.olsson@mau.se

Abstract—With the development and the increasing inter-
ests in ML/DL fields, companies are eager to apply Machine
Learning/Deep Learning approaches to increase service quality
and customer experience. Federated Learning was implemented
as an effective model training method for distributing and
accelerating time-consuming model training while protecting user
data privacy. However, common Federated Learning approaches,
on the other hand, use a synchronous protocol to conduct model
aggregation, which is inflexible and unable to adapt to rapidly
changing environments and heterogeneous hardware settings in
real-world scenarios. In this paper, we present an approach
to real-time end-to-end Federated Learning combined with a
novel asynchronous model aggregation protocol. Our method is
validated in an industrial use case in the automotive domain,
focusing on steering wheel angle prediction for autonomous driv-
ing. Our findings show that asynchronous Federated Learning
can significantly improve the prediction performance of local
edge models while maintaining the same level of accuracy as
centralized machine learning. Furthermore, by using a sliding
training window, the approach can minimize communication
overhead, accelerate model training speed and consume real-time
streaming data, proving high efficiency when deploying ML/DL
components to heterogeneous real-world embedded systems.

Index Terms—Federated Learning, Machine learning, Hetero-
geneous computation, Software Engineering

I. INTRODUCTION

With the development of distributed edge computer comput-
ing and storage capabilities, using computation resources on
the edge becomes a viable option [1]. Federated Learning has
been adopted as a cost-effective solution due to its model-
only sharing and parallel training characteristics. A simple
diagram of a Federated Learning system is shown in Figure 1.
Local model training is carried out in this framework, and
data generated by edge devices do not need to be shared.
Weight updates are instead sent to a central aggregation server,
which generates the global model. The method overcomes
the shortcomings of the conventional centralized Machine
Learning approach, which only conducts model training on a
single central server, such as data privacy, massive bandwidth
costs, and long model training time.

This paper builds on our previous research, “End-to-End
Federated Learning for Autonomous Driving Vehicles” [?], in
which we discovered that Federated Learning can significantly
reduce model training time and bandwidth consumption. How-
ever, with the synchronous aggregation protocols used in our

Fig. 1. A typical Federated Learning System is depicted in the diagram. The
light blue components are related to the model, while the red components are
related to the data.

previous research and current Federated Learning applications
and analysis, such as FedAvg [2], we realized that it is difficult
for businesses to incorporate Federated Learning components
into their software products [3]. Until model aggregation, a
synchronous aggregation protocol requires the server to wait
for all of the edge devices to complete their training rounds.
Since real-world systems may include heterogeneous hardware
configurations and network environments [4], the aggregation
server cannot expect all participating edge devices to upload
their local models at the same time. The situation will become
worse and unmanageable with the increasing number of edge
devices. Furthermore, our previous research also identified the
challenges of deploying AI/ML components into a real-world
industrial context. As J. Bosch et al. defined in ”Engineering
AI Systems: A Research Agenda” [5], AI engineering refers to
AI/ML-driven software development and deployment in pro-
duction contexts. We found that the transition from prototype
to the production-quality deployment of ML models proves to
be challenging for many companies [6] [7].

Therefore, in order to put Federated Learning into effect,
in this paper, we present a novel method for consuming real-
time streaming data for Federated Learning and combining it
with the asynchronous aggregation protocol. This paper makes
three contributions. First, we employ Federated Learning, a
distributed machine learning technique, and validate it with
a key automotive use case, steering wheel angle prediction
in the field of autonomous driving, which is also a classic
end-to-end learning problem. Second, we present a real-time

ar
X

iv
:2

10
3.

11
87

9v
2 

 [
cs

.L
G

] 
 1

3 
Se

p 
20

21



end-to-end Federated Learning method for training Machine
Learning models in a distributed context. Third, we empirically
evaluate our approach on the real-world autonomous driving
data sets. Based on our findings, we show the effectiveness
of our method over other methods of learning, including the
common synchronous Federated Learning approach.

The remainder of this paper is structured as follows. Section
III details our research method, including the simulation
testbed, the utilized machine learning method and the eval-
uation metrics. Section IV presents the real-time end-to-end
Federated Learning approach utilized in this paper. Sections
V evaluates our proposed learning method to empirical data
sets. Finally, Section VI presents conclusions and future work.

II. RELATED WORK

A. Steering Wheel Angle Prediction

One of the first pioneer research of utilizing the neural net-
work for steering wheel angle prediction is described in [11].
The author used pixel information from simulated road images
as inputs to predict steering command, which proves that a
neural network is able to perform steering angle prediction
from image pixel values. Recently, more advanced networks
are utilized to predict the steering angles. H. M. Eraqi et al.
propose a convolutional long short-term memory (c-LSTM)
to learn both visual and dynamic temporal dependencies of
driving, which demonstrate more stable steering by 87% [12].
Shuyang et al. [13] designed a 3D-CNN model with LSTM
layers to predict steering wheel angles.

The concept of end-to-end learning was first proposed in
[14], where authors built and constructed a deep convolutional
neural network to directly predict steering wheel angles and
monitor the steering wheel. In this research, ground truth
was directly captured from real-time human behaviour. Their
methods demonstrate that a convolutional neural network can
learn steering wheel angle directly from input video images
without the need for additional road information such as road
marking detection, semantic analysis, and so on. In order
to enhance model prediction accuracy, we use a two-stream
model in our approach. Due to its robustness and lower
training cost as compared to other networks such as DNN
[17], 3D-CNN [13], RNN [12], and LSTM [18], the model was
first proposed in [15] and applied in [16]. However, previous
research for this use case has concentrated primarily on the
training model in a single-vehicle. We will use Federated
Learning in this paper to accelerate model training speed and
boost model quality by forming a global awareness of all edge
vehicles.

B. Federated Learning in Automotive

The automotive industry is a promising platform for imple-
menting Machine Learning in a federated manner. Machine
learning models can be used to forecast traffic conditions,
identify pedestrian behaviour, and assist drivers in making
decisions [19] [20]. However, since vehicles must have an up-
to-date model for safety purposes, Federated Learning has the

potential to accelerate Machine Learning model development
and deployment while protecting user privacy [21].

On top of Federated Learning, Lu et al. [22] test the failure
battery for an electric vehicle. Their methods demonstrate the
efficacy of privacy serving, latency reduction, and security
protection. Saputra et al. [23] forecast the energy demand
for electric vehicle networks. They dramatically minimize
the bandwidth consumption and efficiently protect sensitive
user information for electric vehicle users by using Feder-
ated Learning. Samarakoon et al. [24] propose a distributed
approach to joint transmit power and resource allocation in
vehicular networks that enable low-latency communication.
When compared to a centralized approach, the proposed
method can reduce waiting queue length without increasing
power consumption and achieve comparable model prediction
efficiency. Doomra et al. [25] present a Federated Learning-
trained long short-term memory (LSTM)-based turn signal
prediction (on or off) model. All of these approaches, however,
are faced with synchronous aggregation protocols that are
unsuitable for real-world heterogeneous hardware. As a result,
in this paper, we present an asynchronous aggregation protocol
combined with Federated Learning and validate it with one of
the most essential use cases in the automotive industry.

III. METHOD

The analytical technique and research method mentioned
in [26] were used in this study to conduct a quantitative mea-
surement and comparison of real-time Federated Learning and
conventional centralized learning methods. The article presents
some recommendations for applying machine learning meth-
ods to software engineering activities, as well as methods
for demonstrating how they can be conceived as learning
problems and addressed in terms of learning algorithms. The
mathematical notations, testbed and hardware configuration,
convolutional neural network, and evaluation metrics used
to solve the problem of steering wheel angle prediction are
presented in the following sections.

A. Mathematical Notations

The mathematical notations that will be used in the paper
are introduced here first:

At An image frame matrix at time t

Ot = f(At, At−1) An optical-flow matrix at time t

θt Steering wheel angle at time t

θ̂t Predicted steering wheel angle at
time t

B. Data Traces and Testbed

The datasets used in this paper are from the SullyChen
collection of labelled car driving data sets, which can be found
on Github under the tag [27]. To conduct our experiments, we
chose Dataset 2018 from this collection. The dataset contains
various driving data such as road video clips, steering angle on
roads, and so on. Dataset 2018 is 3.1 GB in size and contains
approximately 63,000 files. This dataset tracks a 6-kilometer



(a) Vehicle 1: Highway & City (b) Vehicle 2: Highway & City

(c) Vehicle 3: Hill (d) Vehicle 4: Hill & City

Fig. 2. Driving scenarios in each edge vehicle.

path along the Palos Verdes Peninsula in Los Angeles. Our
experiment datasets were chosen from the first 40,000 image
frames.

The data streams were simulated on four edge vehicles to
provide a comprehensive evaluation. The data was divided
into four sections and distributed to edge vehicles prior to
our simulation. In each edge vehicle, the first 70% of data
are considered input streaming driving information that was
used for model training, while the remaining 30% are potential
stream information. As shown in Figure 2, training datasets
for each edge vehicle in our experiment include a variety of
driving scenarios.

The data distribution in each edge vehicle is depicted in
Figure 3. When driving on a hill, the steering wheel angles
have a greater range than when driving on a highway or
in a neighbourhood. The majority of driving angles in edge
vehicles 1 and 2 falls within the range [−50°, 50°], while in
edge vehicles 3 and 4, the range is [−100°, 100°]. The graph
shows that when driving on a hill, vehicles may encounter
more turns than when driving on a highway or in a city.

The models were continuously trained based on the recorded
data and used future streaming driving data to perform predic-
tion and validation on the steering wheel angle information.

The hardware information for all of the servers is given
in table I. To simulate aggregation and edge functions, one
of the five servers was designated as the aggregation server,
while the others operated as edge vehicles. In order to simulate

(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Fig. 3. Data distribution in each edge vehicle.

a heterogeneous edge area, GPU settings were only available
in Vehicles 1, 3, and 4 (Vehicle 1: Tesla V100, Vehicle 3, 4:
Tesla T4).

C. Machine Learning Method

In this paper, steering wheel angle prediction is per-
formed using a two-stream deep Convolutional Neural Net-
work (CNN) [15] [16]. The architecture is described in detail



Fig. 4. The two input branches each have two 3x3 convolution layers in a convolutional neural network. The first layer has 12 output channels that are
enabled with the ELU function, while the second layer has 24, which is then followed by 4x4 max pooling. All with stride values of 2 or higher. With the
ReLu activation, there are two completely linked layers with 250 and 10 units after concatenating two branches.

TABLE I
HARDWARE SETUP FOR TESTBED SERVERS

CPU Intel(R) Xeon(R) Gold 6226R
Cores 8

Frequency 2.90 GHz
Memory 32 GB

OS Linux 4.15.0-106-generic

GPU Nvidia Tesla V100 GPU (Edge vehicle 1)
Nvidia Tesla T4 GPU (Edge vehicle 3, 4)

in Figure 4. Each stream in our implementation has two convo-
lutional layers and a max-pooling layer. After concatenating,
there are two fully-connected layers activated by the ReLU
function.

The model has two distinct neural branches that take spatial
and temporal information as inputs to two streams and then
output the expected steering angle. The model consumes three
frames of RGB images for the first stream, which can be
denoted as {At−2, At−1, At}. The second stream is a two-
frame optical flow measured from two consecutive frames
Ot−1 = f({At−2, At−1}) and Ot = f({At−1, At}).

Optical flow is a typical temporal representation in video
streams that captures the motion differences between two
frames [28]. The optical flow calculation method used in this
paper is based on Gunnar Farneback’s algorithm, which is
implemented in OpenCV [29]. Figure 5 shows an example
optical flow matrix created by two consecutive image frames.

The aim of training a local convolutional neural network
is to find the model parameters that result in the smallest
difference between the prediction and ground truth steering
angles. As a result, we choose mean square error as the local
model training loss function in this case:

Loss =
1

N

N∑
t=1

(θt − θ̂t)2 (1)

Here, N represents the batch size while θt and θ̂t represent
the ground truth and the predicted steering wheel angle value

at time t. During the process of model training in each edge
vehicle, all the image frames will be firstly normalized to
[−1, 1]. The batch size is 16 while the learning rate is set to
10−5. The optimizer utilized is Adam [30], with parameters
β1 = 0.6, β2 = 0.99 and ε = 10−8.

D. Evaluation Metrics and Baseline Model

We chose three metrics and three baseline models in order
to provide fruitful outcomes and assessment. The three metrics
include angle prediction performance, model training time and
bandwidth cost:

• Angle prediction performance: Root mean square error
(RMSE), a common metric for measuring the difference
between prediction results and ground truth. The metrics
will provide a reasonable estimate of the trained model’s
quality in each edge vehicle.

• Model training time: The total time cost for training
a model at the edge vehicles is known as this metric.
As a consequence, the average of four edge vehicles
is obtained. This metric shows the pace at which local
edge devices update their model, which is critical for
systems that need to evolve quickly in order to adapt
to a rapidly changing environment. By testing the model
deployment timestamp, the metrics were calculated in all
of the vehicles.

• Bandwidth cost: The total number of bytes transmitted
during the entire training procedure is known as this met-
ric. This metric shows the overall cost of communication
resources needed to achieve an applicable convolutional
neural model.

The three baseline models include models trained by ap-
plying the traditional centralized learning approach, the lo-
cally trained model without model sharing and the Federated
Learning with the synchronous aggregation protocol:

• Traditional Centralized Learning model (ML): This
baseline model was trained using a centralized learning
method, which is still widely used in current machine



learning research and software applications. All data from
edge vehicles is collected to a single server prior to model
training. The hyper-parameters of this model training are
identical to those of Federated Learning, as described in
section III-C. The results can then be compared to models
trained using Federated Learning techniques.

• Locally trained model without model sharing (Local
ML):
Each edge vehicle is used to train this baseline model.
In contrast to Federated Learning, no models will be
exchanged during the training process. The prediction
accuracy can be applied to the Federated Learning model
to see if Federated Learning outperforms those indepen-
dently trained local models.

• Synchronous Federated Learning (FL): FedAvg is the
algorithm applied here. It is a synchronous method that
is widely used in Federated Learning research. Before
aggregating global models, the server has to wait for all
participants to finish updating their local models.

IV. REAL-TIME END-TO-END FEDERATED LEARNING

This section describes the algorithm and method used in this
article. The diagram of the learning process in a single edge
vehicle is shown in Figure 6. Images are firstly stored in a
fixed-sized storage window in order to conduct real-time end-
to-end learning based on the continuous image stream. When
the storage window reaches its size limit, the most recent
picture frames are moved into the training window, while an
equivalent number of old frames are dropped. (In our case, the
storage window is 100 images wide and the training window
is 2,000 wide. These values provide us with the highest
model prediction accuracy.) The optical flow information is
measured at the same time. Inside the training window, image
frames and optical flow frames are fed into a convolutional
neural network. The network’s performance is compared to
the ground truth for that picture frame, which is the human
driver’s recorded steering wheel angle. Back-propagation is
used to adjust the weights of the convolutional neural network
in order to enforce the model output as close to the target
output as possible.

Following the completion of each training epoch, local
models in edge vehicles will be updated to the aggregation
server, forming a continuous global awareness among all

Algorithm 1: Asynchronous Federated Learning: In
the system, total K edge vehicles are indexed by k; B
is the local mini-batch size; E represents the number
of local epochs, and γ is the learning rate.

Function Server_Function():
initialize w0

initialize ver ←− al
while True do

wk
t+1, verk ←− Client Update(wt, ver);

wt+1 ←− (1− α)× wt + α× wk
t+1

where α = 1
ver−verk+1 ;

ver ←− ver + 1;
end

End Function

Function Client_Update(w, ver):
β ←−(split Pk into batches of size B);
while True do

for each local epoch i from 1 to E do
for batch b ∈ β do

w ←− w − γ∇l(w; b);
end

end
When ready for an update, pull global model
version ver from the server

if ver − verk > au then
// Client version is too old
Fetch w, ver from the server
continue

else if ver − verk < al then
// Client version is too close to the global
continue

else
return w, ver to server

end
End Function

(a) At−1 (b) At (c) Ot = f({At−1, At})

Fig. 5. Example of the optical flow (a) Previous Frame (b) Current Frame (c) Optical flow of current vision frame.



Fig. 6. Diagram of real-time end-to-end Federated Learning in a single vehicle.

participating edge vehicles. The following are the steps of the
algorithm used in this paper (Algorithm 1):

Step 1: Edge vehicles compute the model locally; after com-
pleting each local training epoch, they retrieve the
global model version and compare it to their local
version. The decision is based on the frequency bound
limits (al and au) and the model version difference
ver (global model version) and verk (local model
version of edge vehicle k). The upper limit of the
model version difference is represented by au, while
the lower limit is represented by al. There are three
conditions:

• If the local version is out of date (the client version is too
old), the edge vehicle can retrieve the most recent model
and conduct local training again.

• If the local version is too similar to the latest version
(Client is too active), it should stop upgrading and re-
train locally.

• Clients should then submit modified model results to the
aggregation server if the local version is between the
upper and lower limits.

Step 2: In order to form a global awareness of all local
models, the central server performs aggregation based
on the ratio determined by the global and local model
versions.

Step 3: The aggregation server returns the aggregated result to
the edge vehicles that request the most recent model.

Since the algorithm is push-based, the aggregation server
only deploys the global model if the edge vehicles request it.
When the edge vehicles update their local models, the server
aggregates them based on the local model version. The older
the model version, the lower the ratio when shaping the global
model. Furthermore, although the model update frequency is
entirely dependent on local hardware settings, there are two

bound limits in place to ensure that the update frequency of
local clients is within a reasonable range [al, au]. (In our case,
based on the number of the participated vehicles, the lower
frequency bound al we set equals to 2 while the upper bound
au is 6.)

V. RESULTS

We present the experiment results of the real-time end-
to-end Federated Learning approach to steering wheel angle
prediction in this section. The device output is evaluated
based on three factors, as defined in Section III. (The metrics
are described in III-D.) - (1) Angle prediction performance
(2) Model Training Time (3) Bandwidth cost. The results
are compared with other three baseline models which are
trained by - 1) Traditional Centralized Learning (ML) 2) Local
training without model sharing (Local ML) 3) Synchronous
Federated Learning (FL)

Figure 7 compares the angle prediction output of the model
trained by asynchronous Federated Learning (Async FL) to
the other baseline models. The results show that the Feder-
ated Learning models (synchronous and asynchronous) may
achieve the same or even better prediction accuracy than the
traditional centralized trained model. The Federated Learning
model reacts faster than other learning approaches, particularly
at the timestamps that require rapid changes in steering wheel
angle. Furthermore, when compared to independently trained
models, Federated Learning approaches can provide a much
better prediction that is much closer to the ground truth.

To provide a clear view of model output with different
approaches, we accumulated the square error between ex-
pected angle and ground truth (calculated by (θt − θ̂t)2) and
demonstrate it in Figure 8. The results provide the same
information as Figure 7. We find that asynchronous Federated
Learning outperforms centralized learning and local machine
learning. In addition, as compared to synchronous Federated
Learning, our method achieves higher prediction accuracy in
edge vehicles 3 and 4. Table II displays detailed numerical



(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Fig. 7. The comparison of angle prediction performance on four local vehicle test set with Federated Learning and three baseline models.

results, including the regression error (RMSE) on each test
dataset in each vehicle and the overall average accuracy among
the test datasets of all participating edge vehicles.

TABLE II
STEERING WHEEL ANGLE REGRESSION ERROR (RMSE) ON TEST SET OF

EACH EDGE VEHICLE (4 VEHICLES IN TOTAL)

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Overall

Async FL 4.077 10.358 18.629 6.129 11.275
FL 3.758 9.933 22.967 6.795 12.754
ML 6.422 10.118 21.985 8.264 13.183

Local ML 6.416 16.749 26.196 11.788 16.954

The findings show that asynchronous Federated Learning
outperforms other baseline models in vehicles 3 and 4. In
vehicle 1 and 2, models trained by asynchronous Federated
Learning only perform about 0.2 and 0.4 worse than the syn-
chronous Federated learning method. Based on our findings,
we may conclude that the asynchronous Federated Learning
model can provide better prediction performance than the local
independently trained model, and its behaviour can achieve
the same or even higher accuracy level when compared to

TABLE III
TOTAL TRAINING TIME AND BANDWIDTH COST WITH DIFFERENT MODEL

TRAINING METHODS (4 VEHICLES IN TOTAL)

Async FL FL ML Local ML

Training Time (sec) 669.2 5,982.8 2143.7 5,903.4
Bytes Transferred (GB) 0.78 0.78 2.02 -

centralized learning and the synchronous Federated Learning
model.

Furthermore, Figure 9 illustrates the shift in regression error
with model training time in order to evaluate model training
efficiency. The results show that the asynchronous Federated
Learning method outperforms all of the baseline approaches
in terms of model training efficiency. With the same training
period, our approach can achieve better prediction efficiency
(with approximately 50% less regression error) and converge
approximately 70% faster than other baseline models.

The comparison of total training time and bytes transferred
between Federated Learning and three baseline models is
shown in table III. For all the models, the total number of
training epochs is 50. With async FL, FL, and Local ML



(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Fig. 8. Accumulated error on test dataset in 4 edge vehicles with asynchronous
Federated Learning and other baseline models.

learning approaches, model training is accelerated by Nvidia
Tesla V100 GPU in edge vehicle 1, while model training
is accelerated by Nvidia Tesla T4 GPU in edge vehicle 3,
4. The ML method completes training on a single server
with Nvidia Tesla T4 GPU acceleration. As compared to the
traditional centralized learning approach, the bandwidth cost of
both Federated Learning methods is reduced by approximately
60%. The results for model training time indicate that asyn-
chronous Federated Learning needs significantly less training
time than other baseline methods. However, since there is no
GPU available for synchronous Federated Learning and local
learning, edge vehicle 2 becomes the burden of the entire
system. Other vehicles must wait for vehicle 2 to complete its
local training round before performing model aggregation and
further training tasks, which is inflexible and time-consuming.
The performance of these two methods is even lower than that
of the centralized learning system with GPU acceleration. In
summary, as compared to the traditional centralized learning
process, asynchronous Federated Learning reduces training
time by approximately 70% and saves approximately 60%
bandwidth. Since our method consumes real-time streaming
data, there is no need to store and train on a large dataset
in a single edge unit, making it cost-effective and relevant to
real-world systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel approach to real-time end-
to-end Federated Learning using a version-based asynchronous
aggregation protocol. We validate our approach using a critical
use case, steering wheel angle prediction in self-driving cars.
Our findings show the model’s strength and advantages when
trained using our proposed method. In our case, the model
achieves the same or even better prediction accuracy than
widely used centralized learning methods and other Federated
Learning algorithms while reducing training time by 70% and

bandwidth cost by 60%. Note that the decrease would be
more visible if the number of participating devices is expanded
more, which proves to be cost-effective and relevant to real-
world systems.

In the future, we plan to further analyze our algorithm
with different combinations of hyper-parameters, such as the
aggregation frequency bound al and au. As the parameter
settings become more important with the number of partici-
pating learning vehicles increases, we would like to add more
federated edge users in order to test device output that may
differ with these bounds. In addition, we will test our approach
in additional use cases and investigate more sophisticated
neural networks combined with our approach. In addition,
we plan to develop more appropriate aggregation algorithms
and protocols in order to increase model training performance
on resource-constrained edge devices in real-world embedded
systems.

ACKNOWLEDGEMENT

This work was funded by the Chalmers AI Research Center.
The computations were enabled by resources provided by
the Swedish National Infrastructure for Computing (SNIC) at
Chalmers Centre for Computational Science and Engineering
(C3SE), which is partially funded by the Swedish Research
Council through grant agreement no. 2018-05973. The authors
would also like to express their gratitude for all the support
and suggestions provided by colleagues from Volvo Cars.

REFERENCES

[1] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: A taxonomy,” in Proc. of the Sixth International Conference
on Advances in Future Internet. Citeseer, 2014, pp. 48–55.

[2] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[4] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in
the internet of things: Finite resources and heterogeneity,” arXiv preprint
arXiv:1610.01586, 2016.

[5] J. Bosch, I. Crnkovic, and H. H. Olsson, “Engineering ai systems: A
research agenda,” arXiv preprint arXiv:2001.07522, 2020.

[6] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz,
“Machine learning with big data: Challenges and approaches,” IEEE
Access, vol. 5, pp. 7776–7797, 2017.

[7] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic,
“A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation,” in International Conference on
Agile Software Development. Springer, Cham, 2019, pp. 227–243.

[8] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[9] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[10] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” arXiv preprint
arXiv:1906.04329, 2019.

[11] D. Pomerleau, “An autonomous land vehicle in a neural network,”
Advances in neural information processing systems’(Morgan Kaufmann
Publishers Inc., 1989), vol. 1, 1998.

[12] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-end deep learning
for steering autonomous vehicles considering temporal dependencies,”
arXiv preprint arXiv:1710.03804, 2017.



(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Fig. 9. The comparison between angle prediction performance and the model training time on four local vehicle test set with asynchronous Federated Learning
and three baseline models.

[13] S. Du, H. Guo, and A. Simpson, “Self-driving car steering angle pre-
diction based on image recognition,” arXiv preprint arXiv:1912.05440,
2019.

[14] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[15] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[16] N. Fernandez, “Two-stream convolutional networks for end-to-end learn-
ing of self-driving cars,” arXiv preprint arXiv:1811.05785, 2018.

[17] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand, “Comparing offline
and online testing of deep neural networks: An autonomous car case
study,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2020, pp. 85–95.

[18] R. Valiente, M. Zaman, S. Ozer, and Y. P. Fallah, “Controlling steering
angle for cooperative self-driving vehicles utilizing cnn and lstm-based
deep networks,” in 2019 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2019, pp. 2423–2428.

[19] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art,” arXiv
preprint arXiv:1704.05519, 2017.

[20] P. J. Navarro, C. Fernandez, R. Borraz, and D. Alonso, “A machine
learning approach to pedestrian detection for autonomous vehicles using
high-definition 3d range data,” Sensors, vol. 17, no. 1, p. 18, 2017.

[21] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[22] S. Lu, Y. Yao, and W. Shi, “Collaborative learning on the edges: A
case study on connected vehicles,” in 2nd {USENIX} Workshop on Hot
Topics in Edge Computing (HotEdge 19), 2019.

[23] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D.
Mueck, and S. Srikanteswara, “Energy demand prediction with federated
learning for electric vehicle networks,” arXiv preprint arXiv:1909.00907,
2019.

[24] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency v2v communications,” in 2018

IEEE Global Communications Conference (GLOBECOM). IEEE, 2018,
pp. 1–7.

[25] S. Doomra, N. Kohli, and S. Athavale, “Turn signal prediction: A
federated learning case study,” arXiv preprint arXiv:2012.12401, 2020.

[26] D. Zhang and J. J. Tsai, “Machine learning and software engineering,”
Software Quality Journal, vol. 11, no. 2, pp. 87–119, 2003.

[27] SullyChen. (2018) Collection of labeled car driving datasets. [Online].
Available: https://github.com/SullyChen/driving-datasets

[28] B. K. Horn and B. G. Schunck, “Determining optical flow,” in Tech-
niques and Applications of Image Understanding, vol. 281. Interna-
tional Society for Optics and Photonics, 1981, pp. 319–331.

[29] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis. Springer,
2003, pp. 363–370.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

https://github.com/SullyChen/driving-datasets

	I Introduction
	II Related Work
	II-A Steering Wheel Angle Prediction
	II-B Federated Learning in Automotive

	III Method
	III-A Mathematical Notations
	III-B Data Traces and Testbed
	III-C Machine Learning Method
	III-D Evaluation Metrics and Baseline Model

	IV Real-time End-to-End Federated Learning
	V Results
	VI Conclusion and Future Work
	References

