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Abstract—A/B experimentation is a known technique for data-
driven product development and has demonstrated its value in
web-facing businesses. With the digitalisation of the automotive
industry, the focus in the industry is shifting towards software.
For automotive embedded software to continuously improve, A/B
experimentation is considered an important technique. However,
the adoption of such a technique is not without challenge. In
this paper, we present an architecture to enable A/B testing in
automotive embedded software. The design addresses challenges
that are unique to the automotive industry in a systematic
fashion. Going from hypothesis to practice, our architecture was
also applied in practice for running online experiments on a
considerable scale. Furthermore, a case study approach was used
to compare our proposal with state-of-practice in the automotive
industry. We found our architecture design to be relevant and
applicable in the efforts of adopting continuous A/B experiments
in automotive embedded software.

Index Terms—A/B Testing, Automotive Software, Embedded
Software, Software Architecture

I. INTRODUCTION

A/B experimentation or A/B testing is a method for evaluat-
ing software changes in a quantifiable manner. Continuous A/B
testing is an important method in understanding and deliver-
ing measurable customer value. Many web-facing companies
have demonstrated success from A/B experiments, such as
Booking.com [1], Google [2] and Microsoft [3]–[5], just to
list a few. With the digitalisation of the automotive industry,
software is becoming a main differentiator of products [6]. A/B
testing is an effective tool to evaluate software and support
organisations in making data-driven decisions [7]. However,
the adoption of continuous A/B experiments in automotive
embedded software is not without challenges.

Embedded software has hardware constraints. Such con-
straints could manifest as limitations to computational power
[8], long release cycles [6] and often dependency on suppliers
[9]. Data collection and handling is also believed to be
challenging in the automotive specific applications [9], [10].

Although a fair number of publications point out the chal-
lenges in A/B experiment adoption [6], [8]–[10], we identified
a gap in the literature concerning architectural solutions to
enable A/B experiments. Furthermore, there is little to no
reports on concluded or ongoing online A/B experiments in
the automotive domain.

In this paper, we present an architecture that enables A/B
experiments in the automotive domain and aim to address
the challenges that are unique to this industry. We present a
literature review of A/B experiment architecture in embedded
and web-facing environments. Moreover, we conducted a case
study of the architecture applied at scale and to report the
state-of-practice of A/B testing in automotive. Compared to
the existing literature, the contribution of this paper is two-
fold. First, we present an architecture that enables A/B testing
automotive software. We reviewed the literature and did not
find a similar architecture for A/B experiments. Secondly, we
apply this architecture in practice, in fleets of considerable
scale. We present the case study and state-of-practice of two
other automotive companies.

The rest of this paper is organised as following. In section II,
we introduce the unique constraints in automotive industry for
A/B testing. In section III, we present our research method.
We summarise the existing A/B experiment frameworks and
architecture in section IV. In section V, we present our
architecture design along with the case studies. Discussions
and conclusion are presented in section VI and section VII.

II. BACKGROUND AND CONSTRAINTS

In this section, we introduce the background on A/B testing
and list the constraints of adopting the method in automotive
embedded software.

A. Background

A/B testing is a type of continuous experimentation where
users or systems are split into subgroups and issued with
different variants of the same software. By studying the re-
sponse from each cohorts, A/B experiments can guide product
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development in an effective manner [1]–[3]. Typically, eligible
users are split into two groups, the A version (control) and the
B version (treatment). For both user groups, their interactions
with the functions are recorded and evaluated based on a set of
carefully designed metrics reflecting business and/or customer
values [11].

Almost all well-established A/B testing frameworks are for
web-facing businesses. Such frameworks or models cannot be
applied directly in an embedded environment as they do not
address specific challenges. These challenges come from many
aspects, they can be technical, business, and organisational
as demonstrated by Mattos et al. [6]. As embedded software
often has dependency on hardware, fast software release be-
comes difficult to accomplish [8]–[10]. Although challenging
to adopt, many advantages of continuous experiments that
were proven in the web-facing businesses are also expected
in the automotive industry [10].

B. Constraints

In addition to the challenges summarised by relevant litera-
ture [6], [9], [10], we list the specific constraints in automotive
which motivate our architecture design. Automotive embedded
software is distributed to hundreds of Electronics Control
Modules (ECUs). These software are traditionally developed
using the ”V-model” where the OEMs deliver specifications
and suppliers deliver implementations [12]. This model has
exhibited its limitations.

1) Release cycles and speed: Combining the strict stan-
dards with the growing complexity, the automotive software
release process is rigid. First, the development and release
of automotive embedded software is usually strongly de-
pendent on suppliers. Secondly, automotive companies have
traditionally designed software release cycles based on their
hardware release process [13]. This process cannot handle
rapid changes, as all integration and tests are planned at fixed
periods. Moreover, the most commonly adopted automotive
software architecture AUTOSAR 1 lacks flexibility in partial
updates [9]. If the new software is not backwards compatible,
all ECUs in the vehicle need to be updated. Last but not least,
updating software which are governed by legislation might
require renewal of certifications, which will add delays to the
software release process.

2) Sample size and management: Controlling boundary
conditions is impossible for online experiments, as vehicles
can be driven to everywhere and at anytime. Therefore, to
conclude sufficient treatment effects, A/B experiments need
be conducted on large and randomly selected sample groups.
This large group of users needs to be managed as online
experiments require a flexible configuration of A/B or A/B/n
groups. However, the sample groups are difficult to manipulate
when the software needs to be updated through physical
contact with the cars. Same challenge could be experienced
when an A/B test is concluded, and the software needs to be
inverted to the original version.

1https://www.autosar.org/

Managing sample groups longitudinally can be burdensome.
Performance of some automotive functions depends on tem-
poral factors and has seasonality effects, thus experiments
need to be conducted longitudinally. Therefore, the ability to
orchestrate the A/B groups over time is beneficial.

3) Data infrastructure: To conclude a casual effect of the
treatment, data collection for A/B experiments requires certain
level of accuracy. Storing such data locally in each vehicle is
not feasible, as it becomes difficult to access and it will require
a large memory on-board. The success of an A/B experiment
is largely relied on appropriate assumptions when designing an
experiment and fast feedback when conducting one. Sharing
data within a large organisation can be problematic [14]. In
order to maximise the data, all development teams need to
have easy access to relevant data. As a result, companies suffer
from misrepresentation of customer values.

4) Safety requirements and fallback: Automotive software
has high safety requirements. In an A/B test, all alternative
versions can never obstruct such requirements which might
affect road safety and/or legal compliance. The functional
requirements need to be safeguarded while ensuring a contin-
uous release of alternative versions seems impossible today.
Another practice to decrease hazards on the road is to have
built-in fallback for safety critical functions. For instance, one
could install both the A and B alternatives on-board. Then the
A alternative can be used as a fallback when it is thoroughly
tested and validated.

III. RESEARCH METHOD

In this paper, we combine a literature review with case stud-
ies. We studied several existing A/B experiment frameworks
inside and outside of the industry through literature reviews, to
compare our approach to existing frameworks. Furthermore, to
validate the architecture designed, we conducted case studies
based on a series of ongoing efforts in A/B experiments from
three separate automotive manufacturers.

We explore the following research question:
RQ How can we continuously experiment with auto-
motive embedded software providing the challenges and
limitations that are unique to this industry?

A. Literature review

This literature review is done to understand existing A/B
experiment frameworks within and outside of the automotive
domain. To identity and explore work that is relevant for the
research question, we follow the methodology described by
Kitchenham [15].

1) Data collection: We included the following terms in
our search query: (”A/B testing” OR ”A/B experiment” OR
”online experiment” OR ”bucket testing” OR ”continuous
experiment”) AND (”software architecture”) AND (”embed-
ded software” or ”automotive software”). Alternative terms
are included as there is no standard terminology. Keyword
combination with ”automotive software” yield no meaningful
results, thus we expanded the search query to also include
embedded software. The databases included in our search

https://www.autosar.org/


process are IEEE Xplore, ScienceDirect, and Google Scholar,
returning a total of 104 results excluding duplicates. To ensure
the results are relevant today, we limit the publications to the
recent ten years.

2) Inclusion criteria: Each paper resulted from the search
process was reviewed by at least one of the authors. We
examine the keywords, abstracts, and the body of the paper to
identify A/B experiment frameworks and the applicable sector
for said frameworks. We selected publications which focus on
A/B experiment architecture and/or framework from embed-
ded applications. We did not include publications discussing
the benefits or challenges or feasibility of A/B testing. This
inclusion criteria resulted in a total of three papers. Since the
technique is well established in web-facing applications, we
included work on A/B testing framework in the web domain.
A total of 11 publications included in this review are [1]–[5],
[8], [13], [16]–[19].

B. Case study

Following guidelines from Runeson and Höst [20], we con-
ducted two sets of case studies with three separate automotive
companies. In study I, we examine the proposed architecture
in practice on a cloud-based A/B experimentation in a vehicle
fleet at scale. We study the architecture for A/B testing in
a fleet from one of the three companies. The software for
case study I was developed in-house in company A. As online
experiments are not commonly applied in the industry, to the
best of our knowledge, there is a lack of quantitative data to
study from. To understand the state-of-practice, we conducted
semi-structured interviews with two more OEMs as case study
II.

1) Case study attendees: The three companies included
in the case studies are large OEMs. In each company, we
conducted interviews and workshops with at least five dif-
ferent employees from each company, working with varying
aspects of software development. Their roles include software
engineer, software architect, product owner, data engineer and
data scientist.

2) Data collection: One of the authors was actively in-
volved in the experimentation design from ground up and
supported the entire process. We document the process through
meeting notes and design specifications in the project. The
questions from case study II were specifically designed to
understand the current state-or-practice of A/B experiments
in an automotive setting. We also aim to understand the
potential of cloud-based A/B testings in each company. During
the interviews, we presented our architecture design to the
attendees along with questions regarding current practices
adopted in their companies. All the interviews were conducted
by at least one of the authors. The responses were documented
as meeting notes, which were distributed to the interview
participants.

We recognise the limitation of our case study approach,
as the results of our case studies were obtained from three
companies. The outcome can be specific to these companies

A/B experiment environment

Web

[1], [4], [5]

[16], [17], [18], 

[2], [3]
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Fig. 1. Existing A/B experiment framework categorised by environment and
variant generation methods.

and without further investigation, we cannot generalise the
conclusion to the automotive industry.

IV. EXISTING ARCHITECTURES

In this section, we present the results from our literature
review. We included 11 publications [1]–[5], [8], [13], [16]–
[19] that focus on describing A/B experiment architectures,
in both embedded software and online applications. From our
literature review, we have discovered that there is a general
gap in the literature on architectures or frameworks designed
specifically for automotive software. Based on the topic, we
summarise the papers into four overlapping categories. They
are grouped firstly by their environment, i.e., embedded or
web-facing. Paper [5], [18] are applicable for both groups. We
include OS and embedded applications in the same category,
as they share many common challenges for instance, the
devices can be offline [5]. Second, we identified in these
papers how a software variant is shipped to the users. Namely,
if a complete software change is required, or variants can
be introduced through parameter changes. The categories are
presented in Figure 1. As can be seen, variant introduction
through parameter change is not a widely explored method
within embedded software.

Although the design process is vastly different, there are
a numbers of shared components for embedded and web ex-
periment architecture. This includes experiment configuration,
data collection, experiment analysis and metrics evaluation.
Therefore, some experiment models can be employed in
various environments including web, operation systems and
embedded [4], [18]. Tang et al. [2] and Kohavi et al. [3] both
report a multi layered experiment configuration system that
can handle multiple A/B experiments. Users will be assigned
to A or B variant in a consistent manner [4], [19]. In the web
environment, this is achieved by assigning unique IDs when
users visit the web pages.

Data infrastructure is a major component in any experi-
ment framework. All researchers include data infrastructure as
part of their experiment frameworks, particularly focused on
trustworthiness [1]–[4], [18], [19]. Such data collection is also
required in embedded environments, however, is more difficult



due to hardware limitations [13]. An experiment architecture
[16] for automotive software used an on-board data storage
before uploading the data through the vehicle’s telemetry.

Another key element for A/B experiments is rapid software
release. We found that all architectures for rapid experiments
in an embedded environment rely on continuous deployment.
The ”RIGHT Model” discuss that if a function is novel,
continuous deployment might not be necessary [18]. However,
most frameworks in embedded environments [8], [13], [16]
require a well-established continuous deployment process to
achieve rapid experimentation loops. Software variant release
through Over-the-air(OTA) can increase delivery speed in
automotive applications [16]. In the web environment, rapid
experimentation can be achieved more flexibly through an
array of mechanisms. For example, an offline and online
experiment systems in Netflix, as demonstrated by Amatriain
[17]. Existing data can be used to train the models before
they are introduced to an online experiment, which allows
faster and cheaper evaluation of software. Another technique
in increasing experiment speed is using parameter updates
as mentioned by Tang et al. [2]. The A/B variants in target
functions are parameterised and configured through data files.
These parameters are changed more frequently than code,
which enables fast experiments provided the parameters exist.

Furthermore, to fully utilise the benefits of A/B testing, all
papers highlighted the importance of the organisational and
cultural mindset of making data-driven decisions. Kohavi et
al. [3] summarise prerequisites which an organisation needs
to adapt, highlighting the importance of data-driven decision
making mindsets. In the ”Experiment Growth Model” intro-
duced by Fabijan et al. [1], all components of their A/B
experimentation model become more mature as the entire
organisation evolves through different stages.

V. ARCHITECTURE AND CASE STUDIES

In this section, we present a software architecture that
could enable A/B testing in the automotive domain. A hybrid
architecture is presented. The essence of the architecture is
to imitate an online environment for an otherwise offline
application. In doing so, automotive A/B testing can benefit
from the flexibility of online experiments We present the
components of our architecture in Fig.2.

A. System characteristics

We present a hybrid architecture (Fig.2) combining on-
board and cloud functionalities. The system is composed of
six main components. These are parameterised functions, a
release process which most companies have in place. There is
a cloud host that writes parameters to the vehicles and collects
data from the vehicles. Finally, a centralised data storage and
pipeline for distributing the measured data.

The system workflow can be described as follows. First,
a function which characteristics can be defined by a list
of parameters is delivered. There are two sets of parame-
ters embedded in the function, the local set, which is the
default and the cloud set that can receive incoming values

externally. The benefit of parameterisation in A/B testing was
also highlighted by [2]. A set of observables which measure
function performance is also predetermined. The function and
its parameters are delivered to a release process which will
integrate with other functions and release the software to
vehicles. This release and installation of software can be done
through workshop visits or OTA.

Once the software is introduced to the vehicles, users
are identified through Vehicle Identification Numbers (VIN),
which is unique and comprised of vehicle meta-data. This
ensures that although the software is introduced to all cars,
no experiments will be conducted unless the users are deemed
eligible in advance. Upon key-on of a vehicle, a vehicle
will send its VIN to the A/B test cloud. Since the A and
B groups are configured in the cloud, the test cloud will
match the VIN and then return a status indicator to the
vehicle. Ineligible cars will have no match in the cloud and
receive no response. For all eligible vehicles, they can be
partitioned into A and B groups through remote configuration.
The control group will use the functions’ local parameters and
the treatment group will receive cloud parameters. Since the
parameter names are predefined, the vehicle cannot accept any
other values, thus increase security. Furthermore, as the cloud
parameters are blank values in the vehicles, cloud parameter
change can be done remotely. This design enables function
behaviour change through parameters provided the parameters
exist. Development teams can continuously A/B test and adjust
the existing parameters without complete software change
and independently from the company-wide release cadence.
A complete software update is required only when new
parameters need to be added.

Data collection is done through the cloud and it measures a
set of predefined observables. The observables are measured
and temporarily stored on board, then sent to the cloud at
time intervals while driving. This data are collected in a
centralised data lake, cleaned, then distributed to development
teams. During a trip, time series data is collected for dynamic
observables. For stationary observables, only one or a few
snapshots are measured. After analysis of the A/B tests, further
actions can be taken such as adjusting cloud parameters, re-
partitioning A/B groups, or concluding the experiments. When
the experiments are concluded, the connection to the cloud
will be interrupted and vehicles will invert back to the local
parameters automatically. Moreover, the local variant always
serves as a safety fallback in critical situations.

B. Case study

The first case study was performed in company A on an en-
ergy management (EM) function that was developed internally.
The function Energy Management has a local and a cloud
set of parameters which determine the local and cloud energy
management strategy, respectively. By default, the vehicle will
always run the local strategy unless a connection to the cloud is
established and the vehicle is eligible. The development team
delivers the software through the company’s existing release
process. There are 50 vehicles in this fleet of company cars
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Fig. 2. Process of the cloud-based A/B test architecture, illustrating the general work flow of conducting an A/B experiment with parametrised functions.

driven for a total 18 month period, during which, there were
58 observables measured. The experimenters also monitor how
frequently the users manually interrupt the cloud connection.

A number of automated mechanisms were put in place
in the cloud to ensure data quality. The experimenters have
access to the data collected in real-time. The data collected
was post-processed in an automated manner in a database,
while the team can also choose to export the raw data. The
file size of data collected per week averages at 1.7 gigabytes
when exported in CSV format. The EM function software
has dependencies on six ECUs that are mostly supplier parts.
Traditionally, changing the software means rebuilding of all
these ECUs completely through suppliers and downloading
the software to the vehicles physically. The usual lead time for
such changes is anywhere from three month to one year. This
system caters an environment where continuous experiments
are independently from release processes that could be lengthy
at times. In average, the total distance travelled by all eligible
users is over 18.000 kilometres per week and over 80% of the
vehicles are being driven daily. Comparing to any test fleet,
they are generating measurements at a much larger scale.

The second case study is conducted to understand the state-
of-practice in company B and C. Although neither company
has experience with large scale A/B experiments, but there
are commonalities in the components. Through our interviews,
it was apparent that company B and C have adopted some
level of capabilities, specifically the data collection capabil-

ities. Company B has invested intensively in an online data
collection system for their vehicles. A set of observables are
measured, their data collected and distributed to the corre-
sponding development teams through a centralised database.
Each functional team within the company can also request for
more observables to be measured from the fleet. A similar
approach was reported by company C. A centralised database
was built to distribute high quality data in a fast manner. The
teams have the freedom to determine the sampling frequency
accordingly to their measurement requirements.

VI. DISCUSSION

In this paper, we presented a hybrid architecture that enables
continuous A/B experiments in automotive embedded soft-
ware. Comparing to the existing A/B experiment architecture,
our architecture offers the flexibility of being independent
from continuous deployment processes. By allowing parameter
changes, functional changes can be experimented continuously
without a complete software change.

However, we foresee some potential weakness in the de-
sign and they are discussed here. Firstly, the threshold of
functional behaviour change through parameters is low com-
paring to a complete software change. The system enables
A/B experiments for fine tuning of functions but not com-
plete concept changes. Secondly, many parameter changes are
not independent from each other in an automotive setting.
When multiple experiments are running simultaneously, the



configuration of experiments becomes critical as suggested
by [2] and [3] from their experience in online businesses.
Similar to wed-facing applications, we need to consider con-
tradicting and hierarchical functions and their parameters.
Performance of contradicting or hierarchical software variants
cannot be determined individually. Therefore, some centrally
well-established and understood performance metrics need to
be put in place before parallel/multiple experiments can be
conducted. Thirdly, the teams shall coordinate their experiment
design when parameters or observables are shared between
different functions. Such coordination requires organisational
support [1]. As many automotive companies are going through
agile transformation [9], the data-driven development mindsets
and support structure are gradually improving. The speed
of the transformation will influence how quickly an A/B
experiment framework can be implemented at scale.

Finally, receiving cloud parameters requires an active in-
ternet connection. Although functions can be safeguarded by
using local parameters as fallback, functions which require
millisecond response time cannot rely on cloud connection. A
possible setup for time critical functions could be, one embeds
the A and B versions of parameters in the software itself, and
use the cloud to trigger the switch in between them. As a
trade-off, one will lose the freedom of tuning cloud parameters
without complete software updates.

VII. CONCLUSION

In recent years, some research effort was put in the adoption
of A/B experiments in the automotive domain [8]–[10]. In
this paper, we raised a research question on how to enable
continuous experiments in an automotive, and presented an
architecture that demonstrated such capabilities. Through a
literature review, we found that embedded experiment ar-
chitectures share many components with web-facing ones,
however, lack the capability of rapid changes. The architecture
design is a hybrid A/B testing model that address many
challenges in the industry. Comparing to existing frameworks,
our hybrid architecture enable rapid software changes without
compromising the high safety and security standards. Similar
framework for automotive software A/B testing is not previ-
ously discussed in literature. We shared case studies of cloud-
based A/B experiments at scale, which shows high potential of
the parameterised hybrid architecture. The components of our
architecture were compared with the state-of-practice of two
other large automotive manufacturers. We found that the case
study companies have applied many components, thus paving
the way to an A/B experiment capable architecture.
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