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Abstract—Increasing a ML model accuracy is not enough, we
must also increase its trustworthiness. This is an important step
for building resilient AI systems for safety-critical applications
such as automotive, finance, and healthcare. For that purpose,
we propose a multi-agent system that combines both machine
and human agents. In this system, a checker agent calculates
a trust score of each instance (which penalizes overconfidence
in predictions) using an agreement-based method and ranks it;
then an improver agent filters the anomalous instances based on
a human rule-based procedure (which is considered safe), gets the
human labels, applies geometric data augmentation, and retrains
with the augmented data using transfer learning. We evaluate the
system on corrupted versions of the MNIST and FashionMNIST
datasets. We get an improvement in accuracy and trust score
with just few additional labels compared to a baseline approach.

Index Terms—Trust, multi-agents, robust AI, data centric

I. INTRODUCTION

In Machine Learning (ML), the main focus has been given
to improving the accuracy of ML models, driven by bench-
marks that aim to accelerate the development of new models.
However, this is not enough to have reliable models ready to
be used in real complex situations. In particular, it is not clear
whether one should really trust the predictions of a model in
applications where every decision carries some responsibility
[1]. For example, a model that assists a doctor in a medical
diagnosis based on scanned images can reduce diagnosis
times to serve more patients and also reduce human mistakes.
However, what if the model provides a wrong diagnosis?
Worse yet, what if the wrong prediction delivered has a high
percentage of confidence? Clearly, the model trustworthiness
is a critical point to be analyzed and taken into account.

To improve trust in ML models, many methods opt to first
improve the accuracy of the model, by modifying internally its
structure, and consequently improve the trust. While it is true
that an improvement in accuracy helps to improve trust, it does
not guarantee it (i.e., unbalanced datasets, fraud detection) [2].
A better way is to interact with the model externally in such a
way that, through continuous monitoring and evaluation, small
gains in trust can be achieved with less human effort.

In this paper, we propose a multi-agent system that com-
bines both machine and human agents to improve ML models
trustworthiness. As shown in Fig. 1, a set of agents works
together to quantify the trust on the set of predicted samples,
so that, given new sets of corrupted data to be inferred,
they can detect untrustworthy samples and improve the model
(and the training data) over time. The Supervisor agent is
in charge of obtaining the initial values of the system, e.g.,
the current model, the training set, etc. With these values,
the Checker agent trains a model that calculates a trust score
for each individual instance, and applies a rule to identify
anomalous instances. Those are sent to the Improver agent,
which is assisted by a human agent to label them, applies
data augmentation, and retrains the model using transfer
learning from the weights of the previous model and the new
training set (adding augmented labeled samples). This process
is performed iteratively during the inference stage, so that the
model can face situations similar to those ocurring in real life.

The remainder of this paper is as follows: Section II states
the background and related work. Section III describes the
proposed multi-agent system. In Section IV, we discuss the
evaluation results on two datasets. Finally, the conclusions and
new ideas for future work are presented in Section V.

II. BACKGROUND AND RELATED WORK

A. The role of humans in learning systems

The role of end-users in learning systems is often relegated
to their usage, excluding the participation in their continuous
improvement. A more interesting alternative arises in interac-
tive ML [3], which allows users with little expertise to explore
and adapt the behavior of the model interactively, drastically
reducing the intervention of experts (e.g., data scientists).
Examples of such users’ interaction are given in image seg-
mentation [4], where the user corrects the segmentation made
by the system by painting pixels as foreground or background
in an image. Our work takes this idea and extrapolates the
model-human interaction to an agent-human one.
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Fig. 1. Overview of the proposed multi-agent system.

B. Thinking fast and slow for machine and human agents

Kahneman’s research on reasoning and decision-making
[5], describes two ways in which the brain forms thoughts,
namely System 1 and System 2. These can be applied to AI as
well. System 1 mimics how ML works and System 2 mimics
symbolic AI. That is, System 1 is data-driven and System 2 is
knowledge-driven. System 1 is good at sensing and reading,
i.e., perceptual tasks. Conversely, System 2 is grounded on
planning, logic, search, and explicit knowledge [6].

In our work, we use these ideas to develop a hybrid
approach to improve a model over time using learning (fast)
agents and symbolic (slow) agents. The latter are meant to be
more logical, which allows humans to intervene in workflow
improvement (enabling a human-in-the-loop approach). The
Neuro-Symbolic Concept Learner [7] uses this hybrid ap-
proach to learn images and words by reading paired questions
and answers that are translated into symbolic programs.

C. Agents in production systems

The agent technology has been used for a while for a myriad
of applications such as robotics [8] and automated online
assistants [9]. An agent is an entity that lives in an environment
and has its own goals, knowledge, and actions [10]. A multi-
agent system models agents’ goals and actions directly via
communication or by using the environment. In our work, we
use the structure of a multi-agent system to model a direct
communication between different agents.

Khalil et al. [11] have explored the integration of ML
and multi-agent systems through information sharing and Q-
Learning. However, to maximize the reward, a large space of
scenarios must be explored, requiring a lot of data and com-
putation. Our approach is to have pre-established behaviors to

reduce the overload of states. To implement such a structure,
we take advantage of microservices in contrast to the bunch
of tools and languages that were used for such a goal [12].
Microservices features allow building systems at the scale that
is needed for creating a multi-agent system, thanks to their
commonalities with the characteristics of agents [13].

D. Measuring trust in ML models
To evaluate the overall trustworthiness of a ML model,

similarly as done with the accuracy, we need a scalar value
to compare with. For that purpose, on our evaluation, we
use the NetTrustScore [14]. That calculation needs some
prerequisites, namely, question-answer trust, trust density, and
trust spectrum. Equation (1) quantifies the question-answer
trust, e.g., the trust when predicting whether a picture shows a
cat, by calculating the trustworthiness of an individual instance
x (the question) for one label y (answer) based on its behavior
under correct and incorrect labels z (oracle answers), that is,
where y matches z (Ry=z|M ) or where does not (Ry ̸=z|M )
over the space of all possible questions x given a model M .
Equation (2) measures the trust density, e.g., the distribution
of trust when predicting many pictures of a cat, by calculating
the density distribution of question-answer trust over a set of
instances (e.g., training set), in other words, the trust behavior
of a model M for a specific answer scenario y. Finally,
Equation (3) measures the trust spectrum, e.g., the average
overall trust for class ’cat’, by calculating the average question-
answer trust across all the N instances for a given class z.

Qz(x, y) =

{
C(y | x)α if x ∈ Ry=z|M

(1− C(y | x))β if x ∈ Ry ̸=z|M
(1)

F (Qz) = {q ∈ Qz(x, y),∀x ∈ X, z : answer} (2)

TM (z) =
1

N

N∑
x=1

Qz(x) (3)

Given those, the NetTrustScore, which measures the trust
spectrum over all the L classes (e.g., the overall trust for
classes ’cat’, ’dog’, ...), is formalized as follows:

NetTrustScore =
1

L

L∑
z=1

TM (z) (4)

Other related works explore how to obtain precise prob-
ability estimates for classification problems using calibrated
binary probability estimates [15]. However, this method is used
mainly for classical ML models. Other works have targeted
modern deep networks, like ensembles of neural networks
[16], and proposed to use an Average Early Stopping (AES)
algorithm. However, these approaches are computationally
expensive and yield lower interpretation.

III. MULTI-AGENT SYSTEM FOR TRUSTWORTHY MODELS

This section describes our approach to increase trustworthi-
ness in ML models as a multi-agent microservice system that
combines learning and symbolic agents.



A. Agent properties

In our current design, each agent is reactive with some
limited internal state that is saved in a tracking repository.
This means that the agents lack the deliberation to devise a
long-term plan by themselves; instead, they keep an ongoing
interaction with the environment (new input data and other
agents) to act upon any change in time and respond timely.
Additionally, each agent is rational because it is programmed
to always perform the correct actions, the most appropriate to
reach its objective, as a response to the information perceived
by its sensors (new data and messages from other agents).

Some agents have a learning behavior, for instance, the
Checker, whose mechanism of detecting anomalies (whose
trust score is considered anomalous) requires learning histori-
cal information about training data. Other agents, such as the
Improver, have a symbolic behavior in the form of heuristics
(rules that allow establishing the thresholds of the model trust)
and in the use of human labeling to pick the instances with
high uncertainty (anomalous cases of overconfidence).

Moreover, the agents have a temporal continuity, that is,
the agents are available 24/7 to answer requests. However,
the most important property is the agents’ social ability to
interact with others via some kind of agent-communication
protocol that fulfills the following properties. First, the agents
are cooperative and respect the benevolence assumption. All
the agents share a common goal and there is no conflict
between them. This implies that all that matters is the overall
goal and not the individual one. For instance, in our system,
the global goal is to improve the model trust. Second, the
agents have explicit communication and have the intention to
exchange messages. In our system, they only react to the per-
formative messages, such as QUERY, INFORM, PROPOSE,
etc. Finally, the agent’s interaction is driven by certain meta-
negotiation. Our system implements some limited features
from the Contract Net Protocol (CNP) [17]. Given that we
have some assumptions about each agent’s beliefs (e.g., the
Supervisor agent knows which agents should do the checking),
we can perform direct contracts. As a result, our system sends
simple messages, reducing response times.

B. Agent definition

We assume that the training data increases or improves in
quality, sequentially and in discrete time, as the model receives
requests. Additionally, the agent’s actions, i.e., its conclusions,
influence the future performance of the model. Given those
premises, let sit denote the state of agent i ∈ A (set of agents)
at time t, ait denote the action taken by agent i at time t,
F i
t denote the external flow of information (represented by

messages e that refer to requests τ ) sent by other agents that
affects the behavior of agent i at time t (in particular, its
decision about ait) (F i

t = (em,i
t (τm)),∀m ∈ A \ {i}), sit+1

denote the next state at time t + 1 and rit the reward (in our
case, the net-trust score) at time t, both obtained when agent i
applies ait using the information provided by sit and F i

t at each
time t (((sit, a

i
t, F

i
t ) =⇒ sit+1), ((sit, a

i
t, F

i
t ) =⇒ rit)). Then,

the goal is to find a sequence of actions
{
ait
}

to maximize

the cumulative reward
∑T

t=0 r
i
t given an initial state si0. For

instance, ait can be updating the model, training a Checker to
detect distribution drift, or asking for human labels.

C. Architecture of the multi-agent system

The internal behavior of the agents in this paper builds
on a previous work [18] that considers model debugging
through static nodes in a graph. In a nutshell, we propose to
convert those static nodes into dynamic agents (the Checker
and Improver) and add two agents with new responsibilities
(the Supervisor and Planner). A detailed description of each
of these agents is provided in the following sections.

1) Supervisor (Initializing and starting the MAS): This
agent is in charge of getting the initial metadata, such as latest
model, training data, etc., which are needed to proceed further
in the debugging process. It starts the multi-agent system by
sensing a stimulus (for instance, scheduling time or amount of
inference samples) and exposes the metadata to the Checker.

2) Checker (Untrustworthy points and rule-based thresh-
old): As shown in Fig. 2, the Checker agent performs three
steps, namely reducing the dimensionality of the input data
using an autoencoder (the trust score estimator works best for
low to medium feature space size), modeling a trust estimator
to measure the agreement in the predictions (in the form of
a trust score) between the model and a modified version of a
nearest-neighbor (k-NN) classifier [19], and applying a rule-
based procedure to assess what ranges of trust score values
and prediction probabilities are considered not trustworthy.

As the labels are unknown in the inference stage,
the Checker agent models a complementary unsupervised
trust score estimator. Let be h the model, (X,Y ) =
(x1, y1), ..., (xn, yn) the training data, x′ the inference sample,
and K a k-NN estimator trained on (X,Y ) that estimates a
density set (k-nearest neighbors of a class without outliers),
the trust score of x′ is defined as shown in (5), that is, it is
the ratio between the distance from the inference sample to
the density set of the nearest class different from the predicted
class (K̂), and the distance from the inference sample to the
density set of the class predicted by h.

T (h, x′) = d(x′, K̂(h(x′)))/d(x′,K(h(x′))) (5)

This trust score and the confidence of the predictions are
then used to rank them according to a rule-based procedure
(provided by a human agent) that tries to identify anomalous
predictions that are considered not safe. If the model yields
a prediction with high confidence (e.g., probability between
0.65 and 0.95) but with a low trust score (e.g., lower than
1), then this behavior is considered as overconfident, and the
model should not be trusted despite its high confidence.

3) Improver (Human labeling and data augmentation): A
form of human intervention that has worked very well in su-
pervised learning problems is labeling. This technique allows
business experts or product owners to label data to create
datasets ready for the creation of ML models. Similarly, data
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1. Percept: reactive trigger
2. X_train, y_train = log("latest_version", "train")
3. X_infer = log("latest_version", "inference")
4. model = log("latest_version", "model")
5. data = prepare(X_train, y_train, X_infer)
6. save data
7. Action: send data, model to Checker

1. Percept: X_train, y_train, X_infer, model
2. X_train' = encode(X_train)

3. X_infer' = encode(X_infer)

4. y_pred= predict(X_infer, model)

5. trust_estimator = modeling(X_train', y_train)
6. score = trust_estimator(X_infer', y_pred)

7. X_anom = human_rule(score, y_pred)
8. Action: send X_anom to Improver

1. Percept: new_metrics, new_model
2. Percept: cur_metrics, cur_model
3. Percept: workflow
4. if cur_metrics < new_metrics then
5.   actions = prepare(cur_model, new_model)
6.   Action: apply actions to workflow
7. endif

1. Percept: X_train, y_train, X_anom, model
2. y_anom = human_labels(X_anom, n_labels)
3. X_aug, y_aug = shear_map(X_anom, y_anom)
4. X_new = append(X_train, X_aug)
5. y_new = append(y_train, y_aug)
6. weights = load_from(model)
7. new_model = modeling(X_new, y_new, weights)
8. accuracy, trust = evaluate(new_model)
9. save new_model

10. Action: send metrics, model to Planner

New

Workflow

Fig. 2. High level multi-agent execution. Figure shows the interaction between Supervisor, Checker, Improver, and Planner agents to enhance the model trust.

augmentation came up as a way to artificially augment data in
cases where datasets are small. ML models are susceptible to
the quality of labeling and the number of samples. Therefore,
applying the correct, unambiguous, and consistent labeling
[20] is as important as augmenting data that follows the same
training distribution, without adding noise [21].

As shown in Fig. 2, the Improver agent obtains the anoma-
lous instances from the Checker, which are only a subset of
the many instances that arrive in the inference stage. A human
agent intervenes and labels a given amount of these instances
(n labels). Then, the Improver applies geometric data aug-
mentation (shear mapping), which is a non-intrusive technique
that maintains the same semantics of the training distribution.
The shear mapping is a linear transformation of Rn that
distorts the shape but keeps the same n-dimensional measure
(hypervolume) of any figure. We applied this transformation
to augment new instances that were previously labeled by a
human, allowing the model to have more variety of examples
to be trained, always keeping the same semantics.

At the end, the Improver applies a simple transfer learning
from the current model’s weights (new models fit using past
weights) to retrain a new model after appending the new
augmented data to the training set, thus emerging a more
robust model in each human intervention. Transfer learning
improves a target model on a target domain by transferring
knowledge from a different source domain in order to reduce
the dependence on large amounts of target domain data [22].

4) Planner (Modify the current model in production): This
agent is in charge of getting information from the Improver
agent so that it can apply the required actions to the model
(or workflow) if some conditions are met, for instance, if the
model trustworthiness is greater than the previous one.

IV. EXPERIMENTS AND RESULTS

This section evaluates the effectiveness of using both human
and machine agents to improve the model’s trustworthiness by

comparing two scenarios. Scenario 1 (’Agents’) corresponds
to our proposal to retrain the model using information com-
ing from the Supervisor, Checker, and Improver agents (the
Planner agent is meant for production systems) as described
in Fig. 1. Scenario 2 (’Random’), which is fairly comparable
to the first one, represents a common form of retraining a
model. As shown in Fig. 3, it only performs labeling of
random samples. That is, performs a random choice of the
new instances, asks the human to label them, and retrains with
(X train + X random, y train + y labels random).
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Fig. 3. Pipeline for Scenario 2 (Random approach).

The methodology to compare these scenarios is as follows.
First, we select a testing set from the original dataset and
an inference set with noise for both scenarios. The model
is evaluated on these two sets in order to make accuracy
and NetTrustScore comparable. We also set the number of
instances to be labeled (only 15 instances, even though the
number of anomalous instances can be larger) and the seed
number to have a fair comparison. Second, for each iteration
(time step), we issue a batch of new requests from the
inference set to feed the model and evaluate how scenarios
1 and 2 perform on these new data. We repeat for a number
of iterations while tracking the model improvement.

The testbed used in the experiments is as follows. Platform:
Fedora Linux 35 (64 bits). Hardware: AMD Ryzen 9 5900HS,
NVIDIA RTX 3060, 40 GB RAM. Software: Anaconda3
Python 3.8, Tensorflow 2.5.0, and Pytorch 1.9.0. Datasets:



MNIST [23] (60,000 28×28 pixel grayscale images of hand-
written digits from 0 to 9), MNIST-C [24] (corrupted MNIST
with 4 corruptions: ’contrast’, ’impulse’, ’shot’, and ’gaus-
sian’), FashionMNIST [25] (60,000 28x28 pixel grayscale
images of 10 types of clothing), and FashionMNIST-C [24]
(corrupted FashionMNIST with the same 4 corruptions).

As for the results on the MNIST dataset, Fig. 4 shows the
accuracy on the two scenarios over 20 iterations. We can see
that the model accuracy improves on both scenarios over time,
being the ’Agents’ approach the one that performed better.
Similarly, as shown in Fig. 5, which compares the trust on both
scenarios, the ’Agents’ approach outperforms the ’Random’
method, basically because the set of instances used to retrain
the model (anomalous instances) were more significant in this
scenario, hence, the model generalized better. Moreover, the
’Agents’ approach also behaves better on the FashionMNIST
dataset. As shown in Fig. 6, the accuracy also gets improved
on each iteration. Similarly, as shown in Fig. 7, the trust score
also increases more than in the ’Random’ approach.
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It is also relevant to analyze the improvement in dis-
aggregated form, that is, how each new model behaves in
each class (label). Figs. 8 and 9 show the trust spectrum
for the ’Agents’ approach (blue area) and the method using
random choice (brown area). Regarding MNIST dataset, Fig.
8 shows that the model trust improves slightly in almost
all the classes. Although on average the increase in trust is
not that much, it indicates that certain new instances were
more significant (anomalous instances) and the model can
continuously improve to reduce its overconfidence.

Regarding FashionMNIST dataset, Fig. 9 shows that the
improvement is greater in general, and especially in class 3
and class 5. So, we can say that not only the ’Agents’ approach
provides a higher number of correct answers (accuracy) but
also is very confident about these answers. Due to the higher
complexity of the dataset, the trust could be improved con-
siderably, indicating that it is not the quantity of instances
that matters but the quality of the instances to be labeled.
However, we observe that both methods have low trust in class
6, indicating that further research should be done on this point
for the production deployment of such models.

Finally, as for the execution time, the procedure triggered
on each iteration for scenarios 1 and 2 took about 20 seconds
and 6s in average, respectively, for both MNIST and Fashion-
MNIST. Since the procedure is executed in the background,
the difference is not very relevant.

Fig. 8. Trust Spectrum on MNIST+MNIST-C dataset for ’Agents’ and
’Random’ scenarios for the latest model (timestep=20).



Fig. 9. Trust Spectrum on FashionMNIST+FashionMNIST-C dataset for
’Agents’ and ’Random’ scenarios for the latest model (timestep=20).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed how to iteratively improve
trust in a ML model. For this purpose, we proposed a multi-
agent system that includes human and machine agents that
interact with each other to detect anomalous instances through
a symbolic rule based on the trust score of individual instances,
augments them, and performs a retraining transferring the
knowledge of the previous model. We evaluated this system
using two well-known datasets in the field of computer vision,
but our approach can be extrapolated to other datasets and ML
fields since there is no modification in the model structure.

We showed that the great advantage of our agents is in their
joint work on the model. The feedback that flows in each agent
is the fundamental piece that improves both accuracy and trust.
In contrast, the improvement in the random approach comes
only from the labels that were added to the retraining.

Clearly, continuous intervention in ML models allows im-
proving their behavior fast and efficiently. On the one hand,
monitoring the trust of each instance during the inferences
allows detecting any drift in the confidence of the predictions.
On the other hand, well-defined rules contribute to guarantee
the behavior of the model, in this case, by identifying the
critical instances to be considered unsafe.

As future work, we will consider use cases beyond clas-
sification, such as regression and clustering. We also plan to
create a way of learning agent behaviors. That is, start from
a knowledge base in each agent and enable them to enhance
their behavior through reinforcement learning to increase their
reward using incremental improvements over time.
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