
 Quantum Machine Learning for Software
Supply Chain Attacks: How Far Can We

Go?

 Abstract— Quantum Computing (QC) has gained
immense popularity as a potential solution to deal with
the ever-increasing size of data and associated challenges
leveraging the concept of quantum random access
memory (QRAM). QC promises- quadratic or
exponential increases in computational time with
quantum parallelism and thus offer a huge leap forward
in the computation of Machine Learning algorithms.
This paper analyzes speed up performance of QC when
applied to machine learning algorithms, known as
Quantum Machine Learning (QML). We applied QML
methods such as Quantum Support Vector Machine
(QSVM), and Quantum Neural Network (QNN) to detect
Software Supply Chain (SSC) attacks. Due to the access
limitations of real quantum computers, the QML
methods were implemented on open-source quantum
simulators such as IBM Qiskit and TensorFlow
Quantum. We evaluated the performance of QML in
terms of processing speed and accuracy and finally,
compared with its classical counterparts. Interestingly,
the experimental results differ to the speed up promises
of QC by demonstrating higher computational time and
lower accuracy in comparison to the classical approaches
for SSC attacks.

Keywords—Quantum Computing, Quantum
Machine Learning, Software Supply Chain, Software
Security, Source Code Vulnerability, Quantum Support
Vector Machine, Quantum Neural Network

I. INTRODUCTION

A Software Supply Chain (SSC) attack occurs
when a cyber threat actor, who locates and attacks
technological vulnerabilities, infiltrates a software

vendor’s network and employs malicious code to
compromise the software [1]. Hence, the customer’s
data or system become compromised as attackers
break in and implant malwares into the software
before the vendor distributes it to its customers. As a
result, a newly developed software may be
compromised from the start. On the other hand,
customers system may also become compromised
during a patch or hotfix as attackers breach these in the
vendors’ network [1]. These sorts of assaults affect all
users and can have far-reaching effects on software
consumers at all levels. Hijacking software updates by
infiltrating malwares and compromising open-source
code are two techniques, frequently employed by
threat actors for executing SSC attacks.

First, most software vendors distribute routine
updates to patch bugs and security issues via
centralized servers to clients as routinary product
maintenance. Attackers can hijack the updates and
insert malware into the outgoing update, or alter the
update and eventually, control over the software’s
normal functionality. Therefore, this infiltration may
cause major disruptions in crucial industries, including
international shipping, financial services, and
healthcare [5]. As a result, the detection malware is
important to prevent unlawful, illegal, unauthorized
attacks or access. Traditional anti-malware systems
are not capable to combat newly created sophisticated
malware [6, 7]. Hence, there is an increasing need for
the solutions of automatic malware detection in order
to reduce the risks of malicious activities.

Mohammad Masum
Analytics and Data Science

Institute
Kennesaw State University

Kennesaw, USA
mmasum@kennesaw.edu

Hossain Shahriar, Maria Valero
Department of Information

Technology
Kennesaw State University

Marietta, USA
{hshahria,mvalero2}@kennesa

w.edu

Md Jobair Hossain Faruk
Department of Software

Engineering
Kennesaw State University

Marietta, Georgia, USA
mhossa21@students.kennesaw.edu

Mohammad Nazim
Department of Computer

Science
Kennesaw State University

Marietta, Georgia, USA
mnazim@students.kennesaw.edu

Md Abdullah Hafiz Khan
Department of Computer

Science
Kennesaw State University

Marietta, USA
mkhan74@kennesaw.edu

Akond Rahman
Department of Computer

Science
Tennessee Tech

University
Tennessee, USA

Sheikh Iqbal Ahamed
Department of Computer

Science
Marquette University

Wisconsin, USA
sheikh.ahamed@marquette.

Gias Uddin, Shabir Barzanjeh, Erhan
Saglamyurek

Electrical and Software Engineering, Institute
for Quantum Science and Technology,

University of Calgary, Canada
{gias.uddin, shabir.barzanjeh,

esaglamy}@ucalgary.ca

mailto:mmasum@kennesaw.edu
mailto:hshahria@kennesaw.edu
mailto:hshahria@kennesaw.edu
mailto:mkhan74@kennesaw.edu
mailto:arahman@tntech.edu
mailto:sheikh.ahamed@marquette.edu
mailto:sheikh.ahamed@marquette.edu

Second, reusing crowd-sourced code snippets
(e.g., Stack overflow & GitHub) is common practice
among software developers to facilitate and expedite
the implementation of software applications.
However, due to the potential existence of
vulnerabilities in such shared code snippets, an SSC
attack may occur by compromising the software
before the vendor sends it to their customers, which, in
turn, affect all compromised software users. As a
result, such vulnerabilities could have far-reaching
ramifications for government, critical infrastructure,
and private sector software users.

Open-source code environments may contain
different Common Weakness Enumeration (CWE)
vulnerabilities such as Buffer Overflow, Improper
Restriction of Operations within the Bounds of a
Memory Buffer, Null Pointer Deference, Use of
Pointer subtraction to Determine Size, and Improper
Input Validation from the abovementioned datasets
[3]. Figure 1 displays an example of vulnerable code
snippets- a buffer overflow vulnerability example of
Linux kernel due to a logic flaw in the packet
processor [4]. In-depth semantic reasoning among
different components of the code snippets such as
variables and functions, is necessary for detecting the
code vulnerability, though the fix is simple. Thus, a
potential solution is to manually assess and resolve
such vulnerable code snippet. However, manually
assessing each code is labor-intensive and time-
consuming. Therefore, automatic detection of
vulnerabilities is crucial for software security.

In recent years, advancements in Machine
Learning (ML) and Deep Learning (DL) have
facilitated many successful real-world applications
ranging from natural language processing to
cybersecurity to cancer diagnosis, while achieving
better accuracy and performance. However, training
ML and DL algorithms encounter challenges, such as
high-cost learning and kernel estimation, due to
several restrictive factors, including enormous data
increase in software supply chain, current
computational resources, and high demand to deliver
real-time solutions [2]. Meanwhile, Quantum
Computing (QC) has gained immense popularity
among researchers all over the world as a near-future
solution for dealing with the massive amount of data
and associated challenges leveraging the concept of
quantum random access memory (QRAM) [11]. This
paradigm leads to the field of Quantum Machine
Learning (QML), promising to overcome the
limitations of classical ML and DL. Encoding classical
data for QC is an important step in Quantum State
preparation and has a significant impact on the overall
design and performance of the QML [12]. For

instance, amplitude encoding is one of the encoding
techniques that requires only 𝛰𝛰(log𝑑𝑑) qubits in
comparison to 𝑂𝑂(𝑑𝑑) bits for classical computing-
leading to an exponential compression in the
representation of data, which is considered to be the
premise for speedup in the quantum version of the
methods in Table 1 [12].

Table 1: Time Complexity Analysis for Quantum and Classical

Computing

 Methods Classical
Computing

Quantum
Computing

Fast Fourier
Transformation (FFT)

𝛰𝛰(𝑑𝑑 log𝑑𝑑) 𝛰𝛰((log𝑑𝑑)2)

Eigenvectors and
Eigenvalues

𝛰𝛰(𝑑𝑑3) 𝛰𝛰(𝑠𝑠𝑠𝑠2) 𝛰𝛰((log𝑑𝑑)2)

Matrix Inversion 𝛰𝛰(𝑑𝑑 log𝑑𝑑) 𝛰𝛰((log𝑑𝑑)2)

Figure 1: Buffer overflow vulnerability in Linux point to point

protocol daemon (PPPD)

Therefore, in this study, we explore the promises
of QML in comparison to classical ML approaches
primarily in the cybersecurity space for malware
detection and source code vulnerabilities analysis. We
demonstrate a comparative analysis by applying SVM
and NN as well as their Quantum version QSVM, and
QNN on two real-world datasets: ClaMP dataset for
Malware classification and Reveal dataset for source
code vulnerability detection.

The rest of the paper is organized as follows: In

Section II, we introduce Quantum Machine Learning
and existing quantum simulators. Section III includes
related work of Quantum Machine Learning. Section
IV describes the methodologies: Quantum Neural
Network and Quantum Support Vector Machine along
with the framework that are implemented in this paper.
The experimental setting and results are explained in
Section V. Finally, Section VI concludes the paper.

II. QUANTUM MACHINE LEARNING

Data is stored with Boolean bits at the lowest level
in classical computing, where each bit can take only
one of two possible values (0 or 1) depending on the
existence of electron charge: the existence of electron
charge indicates 1, otherwise 0 [13]. On the other
hand, the basic unit in quantum computing is quantum
bit, referred to Qubit, that can take both the values 0
and 1 simultaneously. Mathematically, qubit state is a
vector in two-dimensional (Hilbert) space, described
by the linear combination of the two basis states (|0⟩,
and |1⟩) in a quantum system: |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩,
where 𝛼𝛼,𝛽𝛽 ∈ ℂ are probability amplitudes that need to
satisfy |𝛼𝛼|2 + |𝛽𝛽|2 = 1 [14]. A qubit state
corresponding to such combination of basis states is
also called quantum superposition. Furthermore, two
qubits can have certain correlations via a quantum
phenomenon known as entanglement, which does not
have a classical counterpart. When two qubits are
entangled, their quantum state cannot be described
independently of the state of others. These main
principles of quantum machines (superposition and
entanglement), give quantum computers enormous
power in handling and manipulating many quantum
states simultaneously (quantum parallelism), as well
as the potential to solve problems that are considered
unsolvable in classical computation- leading towards
the notion of quantum supremacy [15, 16].

The supremacy of QC promises quadratic or
exponential increases in computational time with
quantum parallelism for only certain classes of
problems. The computation of machine learning
algorithms is one of these problems that QC promises
to deliver a huge leap. Therefore, in this study, we
explored speed up performance of QC when combined
with machine learning, known as Quantum Machine
Learning (QML). In addition, we investigated
comparative analysis of QML and their counterparts
classical machine learning in terms of computational
time and accuracy. Based on the availability of
algorithms both in quantum and classical domains, we
selected two existing QML algorithms which are the
quantum version of traditional methods: Quantum
Support Vector Machine (QSVM), and Quantum
Neural Network (QNN).

Executing QML requires access to quantum
computers, which unfortunately are rare devices.
However, we can leverage publicly available open-
source QC frameworks such as IBM Qiskit,
TensorFlow Quantum from Google, Amazon’s AWS
Bracket, Q# and Azure Quantum from Microsoft, and
Pennylane from Xanadu that provide simulators to run
QML on classical computer. Due to the limitations the
state-of-the-art quantum devices and lack of

sufficiently large number of qubits, we applied
selected QML on the simulator platforms: IBM Qiskit
for QSVM and TensorFlow Q for QNN.

IBM Qiskit (Quantum information software kit) is
a free and open-source IBM’s quantum software
development framework, consists of four parts:
QASM- operates at the hardware level, Terra- low-
level API allows the formation of quantum gates,
Aqua- higher-level API that supports machine
learning, and Aer- high performance simulator for
quantum circuits. Although IBM offers free IBM
cloud for computing quantum circuits, waiting time in
the queue on the server is extremely long and comes
with limited number of qubits (approximately 5
qubits) [10]. On the other hand, Qiskit local simulator
comes with much faster processing power as well as a
higher number of qubits.

TensorFlow Quantum (TFQ), an extension of
open-source python framework Google Cirq, is used
for developing QML applications. TensorFlow
Quantum integrates with TensorFlow and allows the
construction of quantum datasets, quantum models,
and classical control parameters as tensors in a single
computational graph. In addition, TFQ maintains
native integration with the core TensorFlow,
principally with Keras model and optimizers. This
integration delivers more options towards developing
neural network-based architectures, including hybrid
quantum-classical neural networks.

III. RELATED WORK

Big data processing requires huge amounts of time,

and its classification suffers from this limitation as
well, rendering quantum computing based
classification a suitable option to manage such data
[18, 19, 20]. One of the explored quantum-inspired
classifications is the Quantum Least Square Support
Vector Machine (Quantum LS-SVM) [18]. Quantum
LS-SVM has average values and standard deviations
of classification rates of 91.45 % in low-rank datasets
and 89.82% in low-rank approximate datasets while
the classical computer’s Library for Support Vector
Machine (LIBSVM) have 86.46% and 84.90%
classification rates respectively. Furthermore,
implementation on a quantum computer utilizing a
quantum big data algorithm (i.e., non-sparse matrix
exponentiation for matrix inversion of the training data
inner-product matrix) and quantum evaluation can be
done directly in a higher-dimensional space using a
quantum kernel machine [20]. Another approach is
Quantum Multiclass SVM, which is based on quantum
matrix inversion algorithm and one-against-all
strategy. This approach maps datasets to quantum

states, and uses of QRAM for accessing data in
quantum parallel, and finally, performs memory
access incoherent quantum supposition, which results
in quadratic speed gain in comparison to existing
approaches in classical computers [19].

Binary classification on remote sensing (RS) of

multispectral images can be achieved on D_WAVE
2000Q Quantum Annealer machine using Quantum
SVM [17]. This method formulates the classification
as a Quadratic Unconstrained Binary Optimization
(QUBO) and implements the RBF kernel method on
two ID datasets: Im16, and Im40. The method
achieved AUROC score of 0.886 and AUPRC score of
0.930 for Im16 dataset, respectively. AURCOC of
0.882 and AURPC of 0.870 were achieved for the
other dataset Im40, respectively [17]. Similar RS
testing for image classification on 50 samples from
SemCity Toulouse dataset on an upgraded quantum
machine- D-WAVE Advantage- produced an overall
accuracy of 0.874 with 0.734 F1 score which were
comparable to classical SVM models and outshone the
IBM quantum machines that lagged with 0.609 and
0.569 scores respectively [21]. QSVM with RBF
kernel and SVM (the classical counterpart) were
applied to the Wisconsin breast cancer dataset [24].
The QSVM was implemented on Qiskit aqua with a
real backend quantum-chip (ibmqx4) and obtained an
accuracy of 80%, whereas the classical SVM
performed better with an accuracy of 85%. However,
the study found that using QSVM on a simulator
surpassed the traditional approach by reaching near-
perfect accuracy. The same study conducted a
Quantum multiclass variational SVM on the UCI ML
Wine dataset to achieve 93.33% accuracy on the
iqmqx4 and 100% accuracy on StateVector simulator
while the local CPU environment can reach 90%
accuracy with classical SVM.[8]. Quantum neural
networks (QNN) was applied to various datasets,
including Fisher’s Iris dataset, modified Iris dataset,
Sonar dataset, and Wisconsin’s Breast Cancer dataset,
using the single-shot training scheme, which allows
input samples can be trained in a single qubit quantum
system [22]. The QNN producing accuracy of 83.26%,
96.96%, 41.25% and 90.19%, respectively,
outperforming a classical NN with zero hidden layer
[22]. However, when two more hidden layers were
added to architecture, the classical NN outperformed
the QNN.

In the application of Field-programmable gate

arrays (FPGAs), a data structure, referred to as n-BQ-
NN which contains the learning framework of n-bit
QNNs can attain an almost exact accuracy of full-
precision models while being 68.7% energy efficient
and 2.9 times higher performance than SVPE (shift-

vector processing element) by replacing multiply
operations with SHIFT operations on ResNet,
DenseNet, and AlexNet network structures [25].
Additionally, a variation of Grover’s quantum search
algorithm (called BBHT optimization), finds the
optimal weights of a neural network and train a QNN
more efficiently for data classification [23]. This
model is constructed by stimulation of a Perceptron
with a step activation function when the first qubit of
the inner product result of input and weights of neuron
is measured by the usage of quantum Fourier
transformation [23].

Dynamic traffic routing can be determined by

extracting live data from devices on GPS landmarks
which are preprocessed in Spark SQL and further
processed by a combination of Decision tree and
Random Forest before being fed to QNN to accurately
show the best route from a specific source to
destination [26]. Testing accuracy of QNN with single
hidden layer of 97.3%, 97.5% and 85.5% for
corresponding training pairs of 75, 30,12 respectively
on Iris Dataset which was comparable to both classical
neural networks of CVNN and RVNN with single
hidden layer [27]. However, the computational speed
for QNN ran 100 epochs were as compared with
CVNN ran for 1000 epochs and RVNN for 5000.
Furthermore, quantum feature maps based on
Quantum Random Access Coding (QRAC) has been
used on Variational Quantum Classifiers (VQC) that
resulted in better performance and efficiency by
utilizing small number of qubits on Breast Cancer
(BC) dataset and Titanic Survival (TS) dataset with a
test accuracy and f1 score of 0.682 and 0.483 for BC
and 0.772 and 0.707 for TS dataset [28]. Earth
Observation (EO) dataset called EuroSat had CNN and
QNN4EO (QNN for EO), which formed of three
convolutional 2D layers used for image classification
showed QNN4EO and reached an accuracy of 94.73%,
outperforming the 93.63% accuracy of CNN [29].

IV. METHODOLOGY

We applied classical ML classifiers such as
Support Vector Machine and Neural Network and
their quantum versions- Quantum Support Vector
Machine (QSVM) and Quantum Neural Network
(QNN), respectively. We implemented the methods
on two SSC attack datasets: ClaMP and ReVeal.
Figure 2 displays the framework describing the
process of implementation. After collecting the raw
data, data pre-processing techniques were used to
prepare the data to input to the methods. In the
preprocessing step for ClaMP data: categorical data
were converted into numerical features and later all the

features were normalized to maintain a similar scale.
In the preprocessing step for ReVeal data: each of the
code snippet were embedded into an identical sized
vector using some pre-trained model. Since the
accessibility to large number of quantum bits is
limited, we reduced the dimension of both datasets. On
one hand, the reduced data is directly input to the
classical version of the classifiers. On the other hand,
the reduced features were encoded into quantum states
before feeding to the quantum classifiers: QSVM and
QNN.

Figure 2: Architecture of the Framework

Quantum Neural Network (QNN) emerges from
the theory of neurocomputing that intersect novel
concepts including machine learning algorithm,
quantum computing, and artificial neural networks
[30]. Considering the size, depth, and precision
complexity, QNN framework can be applied for vast
levels of information processing capacity of neural
computing that can provide enormous potential in
solving various combinatorial optimization problems.

The input data is encoded into the relevant qubit
state of an appropriate number of qubits, and the
Quantum Neural Network (QNN) processes it [31].
The qubit state is then modified for a specified number
of layers using parameterized rotation gates and
entangling gates where the predicted value of a
Hamiltonian operator, (for instance- Pauli gates), is
used to determine the altered qubit state. These results
are decoded and converted into useful output data. An
optimizer, such as Adam optimizer, then updates the
parameters while a Variational Quantum Circuits
(VQC)-based neural network plays a variety of
functions in many forms in quantum neural networks
(QNN). The complexity-theoretic measurements of
size, depth, and accuracy characterize distinct features

of computations where the number of steps, requiring
to solve an issue is measured in depth. The size of the
equipment typically corresponds to the magnitude of
the problem; precision also describes the apparatus
required to solve the problem.

Figure 3: depicts the QNN with the input parameter and linear

entanglement structure [31]

A quantum neural network consists of input,
output, and L hidden layers. Quantum circuit of
quantum perceptron is structured into L hidden layers
of qubits that acts on an initial state of the input qubits
and produces an, in general, a mixed state for the
output qubits. QNNs' ability to do universal quantum
computation, even for two-input one-output qubit
perceptron, is a direct result of the quantum-circuit
construction that considers quantum perceptron on 4-
level qubits. The most generic version of the quantum
perceptron may implement any quantum channel on
the input qubits. The precision of p(n) is denoted by {s
(n), d(n)}, whereas size and depth are denoted by s(n)
and d(n), respectively, which are created from the
gates D and U of precision p(n). The number of qubits
in the circuit is measured in size, while the longest
sequence of gates from input to output is measured in
depth. To eliminate the problem of localization, the
reversible U gate is usually followed by the
irreversible D gate. The accuracy of the circuits is
usually O{s(n)}.

Quantum Support Vector Machine (QSVM) is a
high-performance version of an important machine
learning technique that provides data privacy
advantages and utilizes as a component in a larger
quantum neural network [32, 33].

QSVM can be adopted for training data to classify
complex problems and a quantum computing
processor has the potential of conducting experiments
in larger datasets than those of current computing
system. Such advancement is due to more qubits and
higher connectivity (up to 15 connections per qubit,
instead of up to 6 connections per qubit) which pave
to classify experiments with a QSVM implementation
on the quantum circuit model. In both the training and
classification stages, a quantum support vector
machine can be developed with a various run times,

including O (log NM) [33]. Binary classification
problems can be addressed using QSVM where
various methods can be applied including variational
method and the quantum kernel-based method [34].

The primary advantage of quantum variational
approach is that it can process multiple classification
for the response variable while requiring to run two
sequential quantum algorithms that lead to more
computationally intensive than the quantum kernel-
based method. After the support vectors have been
created with a classical computer, classification may
begin to predict the labels for the test data set using the
conventional computing. By adopting the QSVM
approach, different methods are used to train data and
estimate the result with the quantum computer.

V. EXPERIMENTS AND RESULTS

A. Dataset specification
We applied ML algorithms: SVM and NN as well

as their Quantum version QSVM, and QNN on two
real-world datasets: ClaMP dataset for Malware
classification and Reveal dataset for source code
vulnerability detection.

There are two versions of ClaMP: 1. ClaMP_Raw-
contains only raw features and 2. ClaMP_Integrated-
contains both raw and extracted features. We used the
ClaMP_Integrated version. The raw malware samples
were collected from VirusShare, while the benign
samples were collected from Windows files. From
both malware and benign samples, features were
collected from Portable Executable (PE) headers,
since the PE header contains all the required
information that OS needs to run executables.
Additionally, the PE header contains useful
information regarding malware functionality and the
interactive nature between malware and OS. Thus,
several raw features (55 features) were extracted using
the rule-based method from PE headers of the samples
including DOS header (19 features), File Header (7
features), and Optional Header (29 features.
Meaningful features are derived using raw features
such as entropy, compilation time, section name, etc.
In addition, a set of raw features were expanded from
the File header to extract more information about the
PE file. Finally, a set of raw, derived, and expanded
features were selected to form the ClaMP_Integrated
dataset, containing in total 68 features, where the
number of raw, expanded, derived features are 28, 26,
and 14, respectively [8].

ReVeal is a real-world source code dataset where
vulnerabilities are tracked from Linux Debian Kernel
and Chromium open-source projects [9]. Large
evolutionary history, program domains containing

diverse security issues, and publicly available
vulnerability reports made the dataset a more robust
and comprehensive compared to other existing
datasets in source code vulnerability such as STATE
IV, SARD, and Draper datasets. Readily fixed issues
with publicly available patches were collected using
Bugzilla for Chromium and Debian security tracker
for Linux Debian Kernel. Vulnerability issues
associated with each of the patches were identified by
filtering out commits that do not have security related
keywords. The dataset contains a vulnerable version
(annotated as vulnerable) of C/C++ source and header
file as well as the fixed version (annotated as clean)
corresponding to the vulnerable version. In addition,
other functions, not involved with the patch were
remained unchanged and annotated as a clean source
code. Figure 4 displays an example of such data
collection process [9], where two versions of func.c
(version k-1 and version k) are included. The red
function ham_0 in the previous version (version k-1)
was fixed to ham_1 function. The dataset would
contain both versions with annotating ham_0
vulnerable and ham_1 as non-vulnerable code snippet.
Other two functions: spam() & egg() would remain
unchanged and labeled as non-vulnerable.

Figure 4: ReVeal Data collection process: Green indicates non-

vulnerable code, while red indicates vulnerability [9].

 The ReVeal dataset contains a total of 22,734
samples, with 2240 non-vulnerable and 20,494
vulnerable samples, respectively. We randomly
selected 2240 samples without replacement from the
non-vulnerable samples to balance the dataset.

B. Data Preprocessing
We applied SVM, NN and their quantum

counterparts QSVM, and QNN on ClaMP and ReVeal
datasets. We vary the size of the data to examine the
comparative performance of the methods when a
lesser size of data is used. For the ClaMP dataset, we
first considered the entire dataset, which included

5210 samples. Thereafter, we randomly selected 75
percent and 50 percent of the dataset without replacing
any samples and constructed two smaller datasets with
3907 and 2605 samples, respectively, while preserving
the class proportion. Similarly, we created two smaller
datasets from the ReVeal dataset, with 3360 and 2240
samples, respectively, encompassing 75% and 50% of
the original dataset. We divided the six datasets into
70 percent training data and 30 percent test data, with
techniques being trained on the training and evaluated
on the test datasets, respectively.

Categorical values cannot be entered directly into
the model. The ClaMP data comprises one categorical
variable, 'packer type,' which was converted into a
numerical variable while avoiding the dummy variable
trap by removing one random category from all of
them. As a result, (40-1) = 39 dummy variables were
added to the dataset, resulting in a total of 108 columns
including one target variable. Because the features in
the dataset are on different scales, we used a
normalizing approach (standardization) to transform
all the features to the same scale with a mean of zero
and a standard deviation of one. In addition, to avoid
data leakage issues, we fit the standardization
technique to the training data and then transform both
the training and test data.

C. Experimental Setting
Doc2Vec model was applied to the samples of the

ReVeal dataset for converting the text into a numerical
vector of size 100. We set the window size (maximum
distance between the current and predicted word
within a sentence) to 10, alpha (initial learning rate) to
0.01, minimum alpha (linear decay rate) to 0.0001,
minimum count (ignore all words with total frequency
lower than a threshold) to 2 and epoch 50. We used a
vector size of 100 to capture more context from the
data. However, the present quantum simulator cannot
accept such a dimension as an input. As a result, we
used another dimension reduction strategy on this.

A dimension reduction technique, Principal
Component Analysis (PCA), was applied to the vector
of size 100 of the ReVeal dataset and to the 108
features of the CLaMP dataset for reducing the
dimension. Due to the limitation of qubit numbers in
the existing simulator, we selected first 16 principal
component that contains 98%, 99%, and 75% of the
variation of the three datasets, respectively. The
classical SVM and NN were directly applied to all the
reduced datasets.

Next step is to encode the classical data as quantum
circuits, i.e., converting each of the features’ value into
qubit for further processing it in the quantum computer
or simulator. Figure 5 displays the circuit created for a
random sample. These circuits (Cirq) were then
converted into TFQ. Next, we developed model circuit
layer for the QNN (Figure 6). We built a two-layer
model, matching the data-circuit size and finally
wrapped the model-circuit in a TFQ-Keras model,
where the converted quantum data were fed, and
Parametrized Quantum Layer (PQC) was used to train
the model circuit on the quantum data. In training,
hinge loss was used as an optimization function. Thus,
we converted the labels to [-1, 1]. Finally, we trained
the QNN for 20 epochs. We applied classical neural
networks-based architecture containing single and
multiple hidden layers to compare the results with
QNN, where 51, and 177 parameters were included in
the single- and two-hidden layers classical NN. We
applied the single hidden layer NN to offer a fair
comparison to the QNN. In addition, we developed
two hybrid QNN models (Hybrid-QNN_V1 &
Hybrid-QNN_V2), each containing 45 and 63
parameters, respectively. The hybrid models contain
one PQC and one classical Keras layer, where the
Keras layer contains 4 and 10 nodes in the hidden layer
for Hybrid-QNN_V1 & Hybrid-QNN_V2,
respectively.

Figure 5: Conversion to quantum data point

Figure 6: An example of circuit layer of Quantum Neural Network

For ClaMP dataset, we followed a similar pre-
processing step: PCA was applied, and 16 reduced
features were fed to the QNN classifier as well as its’
classical version NN containing two hidden layers
with 177 parameters. In addition, a classical NN-fair
version was applied, including one hidden layer with
73 parameters for providing a fair comparison between
the QNN and NN.

D. Results
Table 1 displays Comparative results analysis of

Classical and Quantum Machine Learning Classifiers
on CLaMP DataSet. Both the Quantum classifiers
perform poorly in comperison to their counterparts
classical approaches in terms of accuracy and total
execution time. The QNN produces only 52.1
accuracy, while taking a large amount of execution
time: 2698 seconds. On the other hand, Classical NN
and Classical NN-Fair version produces much higher
accuracy 92.7% and 90.5%, respectively, while taking
extremely lower execution time: 22 and 19 seconds,
respectively. Support Vector Machine, as well, shows
similar patters in terms of accuracy and total time. The
QSVM provides 73.5% accuracy, whereas the
classical SVM provides 93.5% accuracy. The QSVM
consume significantly higher execution time (10000
seconds) than the Classical SVM, showing the
efficiency of classifcal computing.

Table 2: Comparative results analysis of Classical and Quantum
Machine Learning Classifiers on Entire CLaMP DataSet

Model Parameters Accuracy
(%)

Time
(s)

QNN 32 52.1 2698
Hybrid-QNN_V1 45 52.27 2581
Hybrid-QNN_V2 63 52.27 2507
Classical NN 177 92.7 22
Classical NN-Fair 73 90.5 19
QSVM 73.5 10000
Classical SVM 93.5 1

The application of QML on the ReVeal dataset
demonstrates the ineffectiveness by producing
significantly lower performance in terms of execution
time, though the accuracy provided by both systems is
approximately similar. All versions of QNN, including
the Hybrid methodologies, provide 52.71% accuracy,
while the execution time is considerably higher than
the classical counterparts. The quantum versions took
approximately 60-fold longer times to execute the
program compared to the classical methods. Similarly,
the classical SVM outperformed the QSVM both in

terms of accuracy and speed, though difference in
accuracy was not significant enough. The SVM
achieved 60.34 percent accuracy with a very short
execution time, whereas the quantum version achieved
58.26 percent accuracy with a significantly longer
execution time (16682 seconds). The lower
performance of the simulated quantum computing
may be attributed to the limited number of qubits for
producing better accuracy and accessibility of open-
source quantum simulators.

Table 3: Comparative results analysis of Classical and Quantum
Machine Learning Classifiers on Entire ReVeal Dataset

Model Parameters Accuracy
(%)

Time
(s)

QNN 32 52.71 3006
Hybrid-QNN_V1 45 52.71 2999
Hybrid-QNN_V2 63 52.71 2563
Classical NN 177 55.7 41
Classical NN-Fair 51 52.74 20
QSVM - 58.26 16682
Classical SVM - 60.34 2

E. Discussion
QML has limitations because its applicability is

entire dependent on quantum hardware, and quantum
hardwire (simulator) necessitate a considerable
amount of computational capacity to study a large
number of events and qubits. In addition, the number
of quantum operations often limited by the increasing
errors from decoherence that can be performed on a
noisy quantum computer [35]. This was evident in our
analysis, as we had long queuing time and execution
time with a larger number of observations. The time
required to initialize qubits and measure them in the
current simulator may result in a lengthy execution
time for QML algorithms. Furthermore, due to the
simulator's constraint of existing qubits, we used a
limited qubit, which may result in poor performance
for the QML methods. This raises the important
question of how many qubits are required to exhibit
quantum advantages in the analysis of software supply
chain attacks.

Although there are limitations of current quantum
computing and accessibility in quantum devices, this
study shows that QML can leverage high
dimensionality of quantum state space to deal with real
world big cybersecurity data.

VI. CONCLUSION
Quantum Computing (QC) has gained immense

popularity among researchers and promised to deliver
a huge leap forward in the computation of Machine
Learning algorithms. This paper analyzes speed up

performance Quantum Machine Learning such as
Quantum Support Vector Machine (QSVM), and
Quantum Neural Network (QNN) to detect software
supply chain attacks. The QML methods were applied
on open-source quantum simulators such as IBM
Qiskit and TensorFlow Quantum. We evaluated the
performance of QML in terms of processing speed and
accuracy. The experimental results differ to the speed
up promises of QC by producing significantly lower
accuracy and taking higher execution time in
comparison to their classical counterparts. Though the
QC has the potential to revolutionize computation,
current versions with limited number of qubits are not
advanced enough to produce rewarding performance,
specifically, in software supply chain attacks.
However, QML algorithms that use an advanced
quantum computer or simulator with a large number
of qubits may surpass their classical machine learning
equivalents in terms of classification performance and
computational time.

REFERENCES

1. Defending against software supply chain security
attacks, cybersecurity, and infrastructure security
agency. (2021) http://www.cisa.gov/tlp/.

2. Abohashima, Z., Elhosen, M., Houssein, E. H., &
Mohamed, W. M. (2020). Classification with quantum
machine learning: A survey. arXiv preprint
arXiv:2006.12270.

3. R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, and M. McConley,
“Automated vulnerability detection in source code
using deep representation learning,” in Proceedings of
the 17th IEEE International Conference on Machine
Learning and Applications (ICMLA 2018). IEEE,
2018, pp. 757– 762

4. Tang, G., Yang, L., Ren, S., Meng, L., Yang, F., &
Wang, H. (2021). An Automatic Source Code
Vulnerability Detection Approach Based on
KELM. Security and Communication Networks, 2021.

5. Kakavand, Mohsen & Dabbagh, Mohammad &
Dehghantanha, Ali. (2018). Application of Machine
Learning Algorithms for Android Malware Detection.
32-36. 10.1145/3293475.3293489.

6. Masum, M., & Shahriar, H. (2019, December). Droid-
NNet: Deep learning neural network for android
malware detection. In 2019 IEEE International
Conference on Big Data (Big Data) (pp. 5789-5793).
IEEE.

7. Masum, M., & Shahriar, H. (2020, December). Tl-nid:
Deep neural network with transfer learning for network
intrusion detection. In 2020 15th International
Conference for Internet Technology and Secured
Transactions (ICITST) (pp. 1-7). IEEE.

8. Kumar, A., Kuppusamy, K. S., & Aghila, G. (2019). A
learning model to detect maliciousness of portable
executable using integrated feature set. Journal of King

Saud University-Computer and Information Sciences,
31(2), 252-265.

9. Chakraborty, S., Krishna, R., Ding, Y., & Ray, B.
(2021). Deep learning-based vulnerability detection:
Are we there yet. IEEE Transactions on Software
Engineering.

10. https://quantum-computing.ibm.com/
11. V. Giovannetti, S. Lloyd and L. Maccone, Quantum

Random Access Memory, Phys. Rev. Lett. 100, 160501
(2008).

12. Kariya, A., & Behera, B. K. (2021). Investigation of
Quantum Support Vector Machine for Classification in
NISQ era. arXiv preprint arXiv:2112.06912.

13. David Deutsch. Quantum theory, the church {turing
principle and the universal quantum computer. Proc. R.
Soc. Lond. A, 400(1818):97{117, 1985.

14. M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2011.

15. P. A.M. Dirac, “The Principles of Quantum
Mechanics,” 4th edition, Oxford University Press,
(1930/1958)

16. Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F.,
Riedel, M., & Michielsen, K. (2021, July). Quantum
Support Vector Machine Algorithms for Remote
Sensing Data Classification. In 2021 IEEE
International Geoscience and Remote Sensing
Symposium IGARSS (pp. 2608-2611). IEEE.

17. Cavallaro, G., Willsch, D., Willsch, M., Michielsen, K.,
& Riedel, M. (2020, September). Approaching remote
sensing image classification with ensembles of support
vector machines on the d-wave quantum annealer.
In IGARSS 2020-2020 IEEE International Geoscience
and Remote Sensing Symposium (pp. 1973-1976).
IEEE.

18. Ding, C., Bao, T. Y., & Huang, H. L. (2021). Quantum-
inspired support vector machine. IEEE Transactions on
Neural Networks and Learning Systems.

19. Bishwas, A. K., Mani, A., & Palade, V. (2016,
December). Big data classification with quantum
multiclass SVM and quantum one-against-all approach.
In 2016 2nd International Conference on
Contemporary Computing and Informatics (IC3I) (pp.
875-880). IEEE.

20. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014).
Quantum support vector machine for big data
classification. Physical review letters, 113(13),
130503.

21. Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F.,
Riedel, M., & Michielsen, K. (2021, July). Quantum
Support Vector Machine Algorithms for Remote
Sensing Data Classification. In 2021 IEEE
International Geoscience and Remote Sensing
Symposium IGARSS (pp. 2608-2611). IEEE.

22. Adhikary, S., Dangwal, S., & Bhowmik, D. (2020).
Supervised learning with a quantum classifier using
multi-level systems. Quantum Information
Processing, 19(3), 1-12.

23. de Paula Neto, F. M., Ludermir, T. B., & de Oliveira,
W. R. (2019, October). Quantum neural networks
learning algorithm based on a global search. In 2019

8th Brazilian Conference on Intelligent Systems
(BRACIS) (pp. 842-847). IEEE.

24. Havenstein, C., Thomas, D., & Chandrasekaran, S.
(2018). Comparisons of performance between quantum
and classical machine learning. SMU Data Science
Review, 1(4), 11.

25. Chen, J., Liu, L., Liu, Y., & Zeng, X. (2020). A learning
framework for n-bit quantized neural networks toward
FPGAs. IEEE Transactions on Neural Networks and
Learning Systems, 32(3), 1067-1081.

26. S. Boyapati, S. R. Swarna and A. Kumar, "Quantum
Neural Networks for Dynamic Route Identification to
avoid traffic," 2020 Fourth International Conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
(I-SMAC), 2020, pp. 1018-1022, doi: 10.1109/I-
SMAC49090.2020.9243322.

27. N. H. Nguyen, E. C. Behrman, M. A. Moustafa and J.
E. Steck, "Benchmarking Neural Networks For
Quantum Computations," in IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 7,
pp. 2522-2531, July 2020, doi:
10.1109/TNNLS.2019.2933394.

28. N. Thumwanit, C. Lortaraprasert, H. Yano and R.
Raymond, "Trainable Discrete Feature Embeddings for
Quantum Machine Learning," 2021 IEEE International
Conference on Quantum Computing and Engineering
(QCE), 2021, pp. 479-480, doi:
10.1109/QCE52317.2021.00087.

29. D. A. Zaidenberg, A. Sebastianelli, D. Spiller, B. Le
Saux and S. L. Ullo, "Advantages and Bottlenecks of
Quantum Machine Learning for Remote Sensing,"
2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, 2021, pp. 5680-5683,
doi: 10.1109/IGARSS47720.2021.9553133.

30. A. A. Ezhov and D. Ventura, “Quantum neural
networks,” in Future Directions for Intelligent Systems
and Information Sciences, 2000, pp. 213–235.

31. Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum
Neural Networks: Concepts, Applications, and
Challenges,” in International Conference on
Ubiquitous and Future Networks, ICUFN, 2021, vol.
2021-August, pp. 413–416, doi:
10.1109/ICUFN49451.2021.9528698.

32. A. Kariya and B. K. Behera, “Investigation of Quantum
Support Vector Machine for Classification in NISQ
era,” 2021, [Online]. Available:
http://arxiv.org/abs/2112.06912.

33. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum
support vector machine for big data classification,”
Phys. Rev. Lett., vol. 113, no. 3, 2014, doi:
10.1103/PhysRevLett.113.130503.

34. C. Havenstein, D. Thomas, S. Chandrasekaran, C. L.
Havenstein, and D. T. Thomas, “Comparisons of
Performance between Quantum and Classical Machine
Learning,” SMU Data Sci. Rev., vol. 1, no. 4, p. 11,
2018, [Online]. Available:
https://scholar.smu.edu/datasciencereviewhttp://digital
repository.smu.edu.Availableat:https://scholar.smu.ed
u/datasciencereview/vol1/iss4/11.

35. Wu, S. L., & Yoo, S. (2022). Challenges and
opportunities in quantum machine learning for high-
energy physics. Nature Reviews Physics, 1-2.

https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11
https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11
https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11

	I. Introduction
	II. Quantum Machine Learning
	III. Related work
	IV. Methodology
	V. Experiments and results
	A. Dataset specification
	B. Data Preprocessing
	C. Experimental Setting
	D. Results
	E. Discussion

	VI. Conclusion
	References

