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    Abstract— Quantum Computing (QC) has gained 
immense popularity as a potential solution to deal with 
the ever-increasing size of data and associated challenges 
leveraging the concept of quantum random access 
memory (QRAM). QC promises- quadratic or 
exponential increases in computational time with 
quantum parallelism and thus offer a huge leap forward 
in the computation of Machine Learning algorithms. 
This paper analyzes speed up performance of QC when 
applied to machine learning algorithms, known as 
Quantum Machine Learning (QML).  We applied QML 
methods such as Quantum Support Vector Machine 
(QSVM), and Quantum Neural Network (QNN) to detect 
Software Supply Chain (SSC) attacks. Due to the access 
limitations of real quantum computers, the QML 
methods were implemented on open-source quantum 
simulators such as IBM Qiskit and TensorFlow 
Quantum. We evaluated the performance of QML in 
terms of processing speed and accuracy and finally, 
compared with its classical counterparts. Interestingly, 
the experimental results differ to the speed up promises 
of QC by demonstrating higher computational time and 
lower accuracy in comparison to the classical approaches 
for SSC attacks.   

Keywords—Quantum Computing, Quantum 
Machine Learning, Software Supply Chain, Software 
Security, Source Code Vulnerability, Quantum Support 
Vector Machine, Quantum Neural Network 

I. INTRODUCTION  

A Software Supply Chain (SSC) attack occurs 
when a cyber threat actor, who locates and attacks 
technological vulnerabilities, infiltrates a software 

vendor’s network and employs malicious code to 
compromise the software [1]. Hence, the customer’s 
data or system become compromised as attackers 
break in and implant malwares into the software 
before the vendor distributes it to its customers. As a 
result, a newly developed software may be 
compromised from the start. On the other hand, 
customers system may also become compromised 
during a patch or hotfix as attackers breach these in the 
vendors’ network [1]. These sorts of assaults affect all 
users and can have far-reaching effects on software 
consumers at all levels. Hijacking software updates by 
infiltrating malwares and compromising open-source 
code are two techniques, frequently employed by 
threat actors for executing SSC attacks.  
 

First, most software vendors distribute routine 
updates to patch bugs and security issues via 
centralized servers to clients as routinary product 
maintenance. Attackers can hijack the updates and 
insert malware into the outgoing update, or alter the 
update and eventually, control over the software’s 
normal functionality. Therefore, this infiltration may 
cause major disruptions in crucial industries, including 
international shipping, financial services, and 
healthcare [5]. As a result, the detection malware is 
important to prevent unlawful, illegal, unauthorized 
attacks or access. Traditional anti-malware systems 
are not capable to combat newly created sophisticated 
malware [6, 7]. Hence, there is an increasing need for 
the solutions of automatic malware detection in order 
to reduce the risks of malicious activities.   
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Second, reusing crowd-sourced code snippets 
(e.g., Stack overflow & GitHub) is common practice 
among software developers to facilitate and expedite 
the implementation of software applications. 
However, due to the potential existence of 
vulnerabilities in such shared code snippets, an SSC 
attack may occur by compromising the software 
before the vendor sends it to their customers, which, in 
turn, affect all compromised software users. As a 
result, such vulnerabilities could have far-reaching 
ramifications for government, critical infrastructure, 
and private sector software users.  
 

Open-source code environments may contain 
different Common Weakness Enumeration (CWE) 
vulnerabilities such as Buffer Overflow, Improper 
Restriction of Operations within the Bounds of a 
Memory Buffer, Null Pointer Deference, Use of 
Pointer subtraction to Determine Size, and Improper 
Input Validation from the abovementioned datasets 
[3].  Figure 1 displays an example of vulnerable code 
snippets- a buffer overflow vulnerability example of 
Linux kernel due to a logic flaw in the packet 
processor [4]. In-depth semantic reasoning among 
different components of the code snippets such as 
variables and functions, is necessary for detecting the 
code vulnerability, though the fix is simple. Thus, a 
potential solution is to manually assess and resolve 
such vulnerable code snippet. However, manually 
assessing each code is labor-intensive and time-
consuming. Therefore, automatic detection of 
vulnerabilities is crucial for software security.  
 

In recent years, advancements in Machine 
Learning (ML) and Deep Learning (DL) have 
facilitated many successful real-world applications 
ranging from natural language processing to 
cybersecurity to cancer diagnosis, while achieving 
better accuracy and performance. However, training 
ML and DL algorithms encounter challenges, such as 
high-cost learning and kernel estimation, due to 
several restrictive factors, including enormous data 
increase in software supply chain, current 
computational resources, and high demand to deliver 
real-time solutions [2]. Meanwhile, Quantum 
Computing (QC) has gained immense popularity 
among researchers all over the world as a near-future 
solution for dealing with the massive amount of data 
and associated challenges leveraging the concept of 
quantum random access memory (QRAM) [11]. This 
paradigm leads to the field of Quantum Machine 
Learning (QML), promising to overcome the 
limitations of classical ML and DL. Encoding classical 
data for QC is an important step in Quantum State 
preparation and has a significant impact on the overall 
design and performance of the QML [12]. For 

instance, amplitude encoding is one of the encoding 
techniques that requires only 𝛰𝛰(log𝑑𝑑) qubits in 
comparison to 𝑂𝑂(𝑑𝑑) bits for classical computing- 
leading to an exponential compression in the 
representation of data, which is considered to be the 
premise for speedup in the quantum version of the 
methods in Table 1 [12].  

 
Table 1: Time Complexity Analysis for Quantum and Classical 

Computing 

 Methods Classical 
Computing  

Quantum 
Computing  

Fast Fourier 
Transformation (FFT) 

𝛰𝛰(𝑑𝑑 log𝑑𝑑) 𝛰𝛰((log𝑑𝑑)2) 

Eigenvectors and 
Eigenvalues  

𝛰𝛰(𝑑𝑑3) 𝛰𝛰(𝑠𝑠𝑠𝑠2) 𝛰𝛰((log𝑑𝑑)2) 

Matrix Inversion 𝛰𝛰(𝑑𝑑 log𝑑𝑑) 𝛰𝛰((log𝑑𝑑)2) 
 

 

 
Figure 1: Buffer overflow vulnerability in Linux point to point 

protocol daemon (PPPD) 

Therefore, in this study, we explore the promises 
of QML in comparison to classical ML approaches 
primarily in the cybersecurity space for malware 
detection and source code vulnerabilities analysis. We 
demonstrate a comparative analysis by applying SVM 
and NN as well as their Quantum version QSVM, and 
QNN on two real-world datasets: ClaMP dataset for 
Malware classification and Reveal dataset for source 
code vulnerability detection. 

  
The rest of the paper is organized as follows: In 

Section II, we introduce Quantum Machine Learning 
and existing quantum simulators. Section III includes 
related work of Quantum Machine Learning. Section 
IV describes the methodologies: Quantum Neural 
Network and Quantum Support Vector Machine along 
with the framework that are implemented in this paper. 
The experimental setting and results are explained in 
Section V. Finally, Section VI concludes the paper.    

 
 



 
 

II. QUANTUM MACHINE LEARNING  

Data is stored with Boolean bits at the lowest level 
in classical computing, where each bit can take only 
one of two possible values (0 or 1) depending on the 
existence of electron charge: the existence of electron 
charge indicates 1, otherwise 0 [13]. On the other 
hand, the basic unit in quantum computing is quantum 
bit, referred to Qubit, that can take both the values 0 
and 1 simultaneously. Mathematically, qubit state is a 
vector in two-dimensional (Hilbert) space, described 
by the linear combination of the two basis states (|0⟩,
and |1⟩) in a quantum system: |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩, 
where 𝛼𝛼,𝛽𝛽 ∈ ℂ are probability amplitudes that need to 
satisfy |𝛼𝛼|2 + |𝛽𝛽|2 = 1 [14]. A qubit state 
corresponding to such combination of basis states is 
also called quantum superposition. Furthermore, two 
qubits can have certain correlations via a quantum 
phenomenon known as entanglement, which does not 
have a classical counterpart. When two qubits are 
entangled, their quantum state cannot be described 
independently of the state of others. These main 
principles of quantum machines (superposition and 
entanglement), give quantum computers enormous 
power in handling and manipulating many quantum 
states simultaneously (quantum parallelism), as well 
as the potential to solve problems that are considered 
unsolvable in classical computation- leading towards 
the notion of quantum supremacy [15, 16]. 

The supremacy of QC promises quadratic or 
exponential increases in computational time with 
quantum parallelism for only certain classes of 
problems.  The computation of machine learning 
algorithms is one of these problems that QC promises 
to deliver a huge leap. Therefore, in this study, we 
explored speed up performance of QC when combined 
with machine learning, known as Quantum Machine 
Learning (QML). In addition, we investigated 
comparative analysis of QML and their counterparts 
classical machine learning in terms of computational 
time and accuracy. Based on the availability of 
algorithms both in quantum and classical domains, we 
selected two existing QML algorithms which are the 
quantum version of traditional methods: Quantum 
Support Vector Machine (QSVM), and Quantum 
Neural Network (QNN).  

Executing QML requires access to quantum 
computers, which unfortunately are rare devices. 
However, we can leverage publicly available open-
source QC frameworks such as IBM Qiskit, 
TensorFlow Quantum from Google, Amazon’s AWS 
Bracket, Q# and Azure Quantum from Microsoft, and 
Pennylane from Xanadu that provide simulators to run 
QML on classical computer. Due to the limitations the 
state-of-the-art quantum devices and lack of 

sufficiently large number of qubits, we applied 
selected QML on the simulator platforms: IBM Qiskit 
for QSVM and TensorFlow Q for QNN.  

IBM Qiskit (Quantum information software kit) is 
a free and open-source IBM’s quantum software 
development framework, consists of four parts: 
QASM- operates at the hardware level, Terra- low-
level API allows the formation of quantum gates, 
Aqua- higher-level API that supports machine 
learning, and Aer- high performance simulator for 
quantum circuits. Although IBM offers free IBM 
cloud for computing quantum circuits, waiting time in 
the queue on the server is extremely long and comes 
with limited number of qubits (approximately 5 
qubits) [10]. On the other hand, Qiskit local simulator 
comes with much faster processing power as well as a 
higher number of qubits.  

TensorFlow Quantum (TFQ), an extension of 
open-source python framework Google Cirq, is used 
for developing QML applications. TensorFlow 
Quantum integrates with TensorFlow and allows the 
construction of quantum datasets, quantum models, 
and classical control parameters as tensors in a single 
computational graph. In addition, TFQ maintains 
native integration with the core TensorFlow, 
principally with Keras model and optimizers. This 
integration delivers more options towards developing 
neural network-based architectures, including hybrid 
quantum-classical neural networks.  

III. RELATED WORK 
 
Big data processing requires huge amounts of time, 

and its classification suffers from this limitation as 
well, rendering quantum computing based 
classification a suitable option to manage such data 
[18, 19, 20]. One of the explored quantum-inspired 
classifications is the Quantum Least Square Support 
Vector Machine (Quantum LS-SVM) [18]. Quantum 
LS-SVM has average values and standard deviations 
of classification rates of 91.45 % in low-rank datasets 
and 89.82% in low-rank approximate datasets while 
the classical computer’s Library for Support Vector 
Machine (LIBSVM) have 86.46% and 84.90% 
classification rates respectively. Furthermore, 
implementation on a quantum computer utilizing a 
quantum big data algorithm (i.e., non-sparse matrix 
exponentiation for matrix inversion of the training data 
inner-product matrix) and quantum evaluation can be 
done directly in a higher-dimensional space using a 
quantum kernel machine [20]. Another approach is 
Quantum Multiclass SVM, which is based on quantum 
matrix inversion algorithm and one-against-all 
strategy. This approach maps datasets to quantum 



 
 

states, and uses of QRAM for accessing data in 
quantum parallel, and finally, performs memory 
access incoherent quantum supposition, which results 
in quadratic speed gain in comparison to existing 
approaches in classical computers [19].  

 
Binary classification on remote sensing (RS) of 

multispectral images can be achieved on D_WAVE 
2000Q Quantum Annealer machine using Quantum 
SVM [17]. This method formulates the classification 
as a Quadratic Unconstrained Binary Optimization 
(QUBO) and implements the RBF kernel method on 
two ID datasets: Im16, and Im40. The method 
achieved AUROC score of 0.886 and AUPRC score of 
0.930 for Im16 dataset, respectively. AURCOC of 
0.882 and AURPC of 0.870 were achieved for the 
other dataset Im40, respectively [17]. Similar RS 
testing for image classification on 50 samples from 
SemCity Toulouse dataset on an upgraded quantum 
machine- D-WAVE Advantage- produced an overall 
accuracy of 0.874 with 0.734 F1 score which were 
comparable to classical SVM models and outshone the 
IBM quantum machines that lagged with 0.609 and 
0.569 scores respectively [21]. QSVM with RBF 
kernel and SVM (the classical counterpart) were 
applied to the Wisconsin breast cancer dataset [24]. 
The QSVM was implemented on Qiskit aqua with a 
real backend quantum-chip (ibmqx4) and obtained an 
accuracy of 80%, whereas the classical SVM 
performed better with an accuracy of 85%. However, 
the study found that using QSVM on a simulator 
surpassed the traditional approach by reaching near-
perfect accuracy. The same study conducted a 
Quantum multiclass variational SVM on the UCI ML 
Wine dataset to achieve 93.33% accuracy on the 
iqmqx4 and 100% accuracy on StateVector simulator 
while the local CPU environment can reach 90% 
accuracy with classical SVM.[8]. Quantum neural 
networks (QNN) was applied to various datasets, 
including Fisher’s Iris dataset, modified Iris dataset, 
Sonar dataset, and Wisconsin’s Breast Cancer dataset, 
using the single-shot training scheme, which allows 
input samples can be trained in a single qubit quantum 
system [22]. The QNN producing accuracy of 83.26%, 
96.96%, 41.25% and 90.19%, respectively, 
outperforming a classical NN with zero hidden layer 
[22]. However, when two more hidden layers were 
added to architecture, the classical NN outperformed 
the QNN. 

 
In the application of Field-programmable gate 

arrays (FPGAs), a data structure, referred to as n-BQ-
NN which contains the learning framework of n-bit 
QNNs can attain an almost exact accuracy of full-
precision models while being 68.7% energy efficient 
and 2.9 times higher performance than SVPE (shift-

vector processing element) by replacing multiply 
operations with SHIFT operations on ResNet, 
DenseNet, and AlexNet network structures [25]. 
Additionally, a variation of Grover’s quantum search 
algorithm (called BBHT optimization), finds the 
optimal weights of a neural network and train a QNN 
more efficiently for data classification [23]. This 
model is constructed by stimulation of a Perceptron 
with a step activation function when the first qubit of 
the inner product result of input and weights of neuron 
is measured by the usage of quantum Fourier 
transformation [23]. 

 
Dynamic traffic routing can be determined by 

extracting live data from devices on GPS landmarks 
which are preprocessed in Spark SQL and further 
processed by a combination of Decision tree and 
Random Forest before being fed to QNN to accurately 
show the best route from a specific source to 
destination [26]. Testing accuracy of QNN with single 
hidden layer of 97.3%, 97.5% and 85.5% for 
corresponding training pairs of 75, 30,12 respectively 
on Iris Dataset which was comparable to both classical 
neural networks of CVNN and RVNN with single 
hidden layer [27]. However, the computational speed 
for QNN ran 100 epochs were as compared with 
CVNN ran for 1000 epochs and RVNN for 5000. 
Furthermore, quantum feature maps based on 
Quantum Random Access Coding (QRAC) has been 
used on Variational Quantum Classifiers (VQC) that 
resulted in better performance and efficiency by 
utilizing small number of qubits on Breast Cancer 
(BC) dataset and Titanic Survival (TS) dataset with a 
test accuracy and f1 score of 0.682 and 0.483 for BC 
and 0.772 and 0.707 for TS dataset [28]. Earth 
Observation (EO) dataset called EuroSat had CNN and 
QNN4EO (QNN for EO), which formed of three 
convolutional 2D layers used for image classification 
showed QNN4EO and reached an accuracy of 94.73%, 
outperforming the 93.63% accuracy of CNN [29].  

IV. METHODOLOGY 

We applied classical ML classifiers such as 
Support Vector Machine and Neural Network and 
their quantum versions- Quantum Support Vector 
Machine (QSVM) and Quantum Neural Network 
(QNN), respectively.  We implemented the methods 
on two SSC attack datasets: ClaMP and ReVeal. 
Figure 2 displays the framework describing the 
process of implementation. After collecting the raw 
data, data pre-processing techniques were used to 
prepare the data to input to the methods. In the 
preprocessing step for ClaMP data: categorical data 
were converted into numerical features and later all the 



 
 

features were normalized to maintain a similar scale. 
In the preprocessing step for ReVeal data: each of the 
code snippet were embedded into an identical sized 
vector using some pre-trained model. Since the 
accessibility to large number of quantum bits is 
limited, we reduced the dimension of both datasets. On 
one hand, the reduced data is directly input to the 
classical version of the classifiers. On the other hand, 
the reduced features were encoded into quantum states 
before feeding to the quantum classifiers: QSVM and 
QNN.  

 
Figure 2: Architecture of the Framework 

Quantum Neural Network (QNN) emerges from 
the theory of neurocomputing that intersect novel 
concepts including machine learning algorithm, 
quantum computing, and artificial neural networks 
[30]. Considering the size, depth, and precision 
complexity, QNN framework can be applied for vast 
levels of information processing capacity of neural 
computing that can provide enormous potential in 
solving various combinatorial optimization problems.  

The input data is encoded into the relevant qubit 
state of an appropriate number of qubits, and the 
Quantum Neural Network (QNN) processes it [31]. 
The qubit state is then modified for a specified number 
of layers using parameterized rotation gates and 
entangling gates where the predicted value of a 
Hamiltonian operator, (for instance- Pauli gates), is 
used to determine the altered qubit state. These results 
are decoded and converted into useful output data. An 
optimizer, such as Adam optimizer, then updates the 
parameters while a Variational Quantum Circuits 
(VQC)-based neural network plays a variety of 
functions in many forms in quantum neural networks 
(QNN). The complexity-theoretic measurements of 
size, depth, and accuracy characterize distinct features 

of computations where the number of steps, requiring 
to solve an issue is measured in depth. The size of the 
equipment typically corresponds to the magnitude of 
the problem; precision also describes the apparatus 
required to solve the problem. 

 
Figure 3: depicts the QNN with the input parameter and linear 

entanglement structure [31] 

A quantum neural network consists of input, 
output, and L hidden layers. Quantum circuit of 
quantum perceptron is structured into L hidden layers 
of qubits that acts on an initial state of the input qubits 
and produces an, in general, a mixed state for the 
output qubits. QNNs' ability to do universal quantum 
computation, even for two-input one-output qubit 
perceptron, is a direct result of the quantum-circuit 
construction that considers quantum perceptron on 4-
level qubits. The most generic version of the quantum 
perceptron may implement any quantum channel on 
the input qubits. The precision of p(n) is denoted by {s 
(n), d(n)}, whereas size and depth are denoted by s(n) 
and d(n), respectively, which are created from the 
gates D and U of precision p(n). The number of qubits 
in the circuit is measured in size, while the longest 
sequence of gates from input to output is measured in 
depth. To eliminate the problem of localization, the 
reversible U gate is usually followed by the 
irreversible D gate. The accuracy of the circuits is 
usually O{s(n)}.  

Quantum Support Vector Machine (QSVM) is a 
high-performance version of an important machine 
learning technique that provides data privacy 
advantages and utilizes as a component in a larger 
quantum neural network [32, 33].  

QSVM can be adopted for training data to classify 
complex problems and a quantum computing 
processor has the potential of conducting experiments 
in larger datasets than those of current computing 
system. Such advancement is due to more qubits and 
higher connectivity (up to 15 connections per qubit, 
instead of up to 6 connections per qubit) which pave 
to classify experiments with a QSVM implementation 
on the quantum circuit model. In both the training and 
classification stages, a quantum support vector 
machine can be developed with a various run times, 



 
 

including O (log NM) [33]. Binary classification 
problems can be addressed using QSVM where 
various methods can be applied including variational 
method and the quantum kernel-based method [34].  

The primary advantage of quantum variational 
approach is that it can process multiple classification 
for the response variable while requiring to run two 
sequential quantum algorithms that lead to more 
computationally intensive than the quantum kernel-
based method. After the support vectors have been 
created with a classical computer, classification may 
begin to predict the labels for the test data set using the 
conventional computing. By adopting the QSVM 
approach, different methods are used to train data and 
estimate the result with the quantum computer. 

V. EXPERIMENTS AND RESULTS 

A. Dataset specification 
We applied ML algorithms: SVM and NN as well 

as their Quantum version QSVM, and QNN on two 
real-world datasets: ClaMP dataset for Malware 
classification and Reveal dataset for source code 
vulnerability detection.  

There are two versions of ClaMP: 1. ClaMP_Raw- 
contains only raw features and 2. ClaMP_Integrated- 
contains both raw and extracted features. We used the 
ClaMP_Integrated version. The raw malware samples 
were collected from VirusShare, while the benign 
samples were collected from Windows files. From 
both malware and benign samples, features were 
collected from Portable Executable (PE) headers, 
since the PE header contains all the required 
information that OS needs to run executables. 
Additionally, the PE header contains useful 
information regarding malware functionality and the 
interactive nature between malware and OS. Thus, 
several raw features (55 features) were extracted using 
the rule-based method from PE headers of the samples 
including DOS header (19 features), File Header (7 
features), and Optional Header (29 features. 
Meaningful features are derived using raw features 
such as entropy, compilation time, section name, etc. 
In addition, a set of raw features were expanded from 
the File header to extract more information about the 
PE file. Finally, a set of raw, derived, and expanded 
features were selected to form the ClaMP_Integrated 
dataset, containing in total 68 features, where the 
number of raw, expanded, derived features are 28, 26, 
and 14, respectively [8]. 

ReVeal is a real-world source code dataset where 
vulnerabilities are tracked from Linux Debian Kernel 
and Chromium open-source projects [9]. Large 
evolutionary history, program domains containing 

diverse security issues, and publicly available 
vulnerability reports made the dataset a more robust 
and comprehensive compared to other existing 
datasets in source code vulnerability such as STATE 
IV, SARD, and Draper datasets. Readily fixed issues 
with publicly available patches were collected using 
Bugzilla for Chromium and Debian security tracker 
for Linux Debian Kernel. Vulnerability issues 
associated with each of the patches were identified by 
filtering out commits that do not have security related 
keywords. The dataset contains a vulnerable version 
(annotated as vulnerable) of C/C++ source and header 
file as well as the fixed version (annotated as clean) 
corresponding to the vulnerable version. In addition, 
other functions, not involved with the patch were 
remained unchanged and annotated as a clean source 
code. Figure 4 displays an example of such data 
collection process [9], where two versions of func.c 
(version k-1 and version k) are included. The red 
function ham_0 in the previous version (version k-1) 
was fixed to ham_1 function. The dataset would 
contain both versions with annotating ham_0 
vulnerable and ham_1 as non-vulnerable code snippet. 
Other two functions: spam() & egg() would remain 
unchanged and labeled as non-vulnerable.  

 
Figure 4: ReVeal Data collection process: Green indicates non-

vulnerable code, while red indicates vulnerability [9]. 

 The ReVeal dataset contains a total of 22,734 
samples, with 2240 non-vulnerable and 20,494 
vulnerable samples, respectively. We randomly 
selected 2240 samples without replacement from the 
non-vulnerable samples to balance the dataset.   

B. Data Preprocessing 
We applied SVM, NN and their quantum 

counterparts QSVM, and QNN on ClaMP and ReVeal 
datasets. We vary the size of the data to examine the 
comparative performance of the methods when a 
lesser size of data is used. For the ClaMP dataset, we 
first considered the entire dataset, which included 



 
 

5210 samples. Thereafter, we randomly selected 75 
percent and 50 percent of the dataset without replacing 
any samples and constructed two smaller datasets with 
3907 and 2605 samples, respectively, while preserving 
the class proportion. Similarly, we created two smaller 
datasets from the ReVeal dataset, with 3360 and 2240 
samples, respectively, encompassing 75% and 50% of 
the original dataset. We divided the six datasets into 
70 percent training data and 30 percent test data, with 
techniques being trained on the training and evaluated 
on the test datasets, respectively. 

Categorical values cannot be entered directly into 
the model. The ClaMP data comprises one categorical 
variable, 'packer type,' which was converted into a 
numerical variable while avoiding the dummy variable 
trap by removing one random category from all of 
them. As a result, (40-1) = 39 dummy variables were 
added to the dataset, resulting in a total of 108 columns 
including one target variable. Because the features in 
the dataset are on different scales, we used a 
normalizing approach (standardization) to transform 
all the features to the same scale with a mean of zero 
and a standard deviation of one. In addition, to avoid 
data leakage issues, we fit the standardization 
technique to the training data and then transform both 
the training and test data. 

 

C. Experimental Setting 
Doc2Vec model was applied to the samples of the 

ReVeal dataset for converting the text into a numerical 
vector of size 100. We set the window size (maximum 
distance between the current and predicted word 
within a sentence) to 10, alpha (initial learning rate) to 
0.01, minimum alpha (linear decay rate) to 0.0001, 
minimum count (ignore all words with total frequency 
lower than a threshold) to 2 and epoch 50. We used a 
vector size of 100 to capture more context from the 
data. However, the present quantum simulator cannot 
accept such a dimension as an input. As a result, we 
used another dimension reduction strategy on this. 

A dimension reduction technique, Principal 
Component Analysis (PCA), was applied to the vector 
of size 100 of the ReVeal dataset and to the 108 
features of the CLaMP dataset for reducing the 
dimension. Due to the limitation of qubit numbers in 
the existing simulator, we selected first 16 principal 
component that contains 98%, 99%, and 75% of the 
variation of the three datasets, respectively. The 
classical SVM and NN were directly applied to all the 
reduced datasets.  

Next step is to encode the classical data as quantum 
circuits, i.e., converting each of the features’ value into 
qubit for further processing it in the quantum computer 
or simulator. Figure 5 displays the circuit created for a 
random sample. These circuits (Cirq) were then 
converted into TFQ. Next, we developed model circuit 
layer for the QNN (Figure 6). We built a two-layer 
model, matching the data-circuit size and finally 
wrapped the model-circuit in a TFQ-Keras model, 
where the converted quantum data were fed, and 
Parametrized Quantum Layer (PQC) was used to train 
the model circuit on the quantum data. In training, 
hinge loss was used as an optimization function. Thus, 
we converted the labels to [-1, 1]. Finally, we trained 
the QNN for 20 epochs. We applied classical neural 
networks-based architecture containing single and 
multiple hidden layers to compare the results with 
QNN, where 51, and 177 parameters were included in 
the single- and two-hidden layers classical NN. We 
applied the single hidden layer NN to offer a fair 
comparison to the QNN. In addition, we developed 
two hybrid QNN models (Hybrid-QNN_V1 & 
Hybrid-QNN_V2), each containing 45 and 63 
parameters, respectively. The hybrid models contain 
one PQC and one classical Keras layer, where the 
Keras layer contains 4 and 10 nodes in the hidden layer 
for Hybrid-QNN_V1 & Hybrid-QNN_V2, 
respectively.  

 
Figure 5: Conversion to quantum data point 

 
Figure 6: An example of circuit layer of Quantum Neural Network 



 
 

For ClaMP dataset, we followed a similar pre-
processing step: PCA was applied, and 16 reduced 
features were fed to the QNN classifier as well as its’ 
classical version NN containing two hidden layers 
with 177 parameters. In addition, a classical NN-fair 
version was applied, including one hidden layer with 
73 parameters for providing a fair comparison between 
the QNN and NN.  

D. Results 
Table 1 displays Comparative results analysis of 

Classical and Quantum Machine Learning Classifiers 
on CLaMP DataSet. Both the Quantum classifiers 
perform poorly in comperison to their counterparts 
classical approaches in terms of accuracy and total 
execution time. The QNN produces only 52.1 
accuracy, while taking a large amount of execution 
time: 2698 seconds. On the other hand, Classical NN 
and Classical NN-Fair version produces much higher 
accuracy 92.7% and 90.5%, respectively, while taking 
extremely lower execution time: 22 and 19 seconds, 
respectively. Support Vector Machine, as well, shows 
similar patters in terms of accuracy and total time. The 
QSVM provides 73.5% accuracy, whereas the 
classical SVM provides 93.5% accuracy. The QSVM 
consume significantly higher execution time (10000 
seconds) than the Classical SVM, showing the 
efficiency of classifcal computing.  

Table 2: Comparative results analysis of Classical and Quantum 
Machine Learning Classifiers on Entire CLaMP DataSet 

Model Parameters Accuracy 
(%) 

Time 
(s) 

QNN 32 52.1 2698 
Hybrid-QNN_V1 45 52.27 2581 
Hybrid-QNN_V2 63 52.27 2507 
Classical NN  177 92.7 22 
Classical NN-Fair 73 90.5 19 
QSVM 73.5 10000 
Classical SVM  93.5 1 

 

The application of QML on the ReVeal dataset 
demonstrates the ineffectiveness by producing 
significantly lower performance in terms of execution 
time, though the accuracy provided by both systems is 
approximately similar. All versions of QNN, including 
the Hybrid methodologies, provide 52.71% accuracy, 
while the execution time is considerably higher than 
the classical counterparts. The quantum versions took 
approximately 60-fold longer times to execute the 
program compared to the classical methods. Similarly, 
the classical SVM outperformed the QSVM both in 

terms of accuracy and speed, though difference in 
accuracy was not significant enough. The SVM 
achieved 60.34 percent accuracy with a very short 
execution time, whereas the quantum version achieved 
58.26 percent accuracy with a significantly longer 
execution time (16682 seconds). The lower 
performance of the simulated quantum computing 
may be attributed to the limited number of qubits for 
producing better accuracy and accessibility of open-
source quantum simulators.  

Table 3: Comparative results analysis of Classical and Quantum 
Machine Learning Classifiers on Entire ReVeal Dataset 

Model Parameters Accuracy 
(%) 

Time 
(s) 

QNN 32 52.71 3006 
Hybrid-QNN_V1 45 52.71 2999 
Hybrid-QNN_V2 63 52.71 2563 
Classical NN  177 55.7 41 
Classical NN-Fair 51 52.74 20 
QSVM -  58.26 16682 
Classical SVM -  60.34 2 

E. Discussion 
QML has limitations because its applicability is 

entire dependent on quantum hardware, and quantum 
hardwire (simulator) necessitate a considerable 
amount of computational capacity to study a large 
number of events and qubits. In addition, the number 
of quantum operations often limited by the increasing 
errors from decoherence that can be performed on a 
noisy quantum computer [35]. This was evident in our 
analysis, as we had long queuing time and execution 
time with a larger number of observations. The time 
required to initialize qubits and measure them in the 
current simulator may result in a lengthy execution 
time for QML algorithms. Furthermore, due to the 
simulator's constraint of existing qubits, we used a 
limited qubit, which may result in poor performance 
for the QML methods. This raises the important 
question of how many qubits are required to exhibit 
quantum advantages in the analysis of software supply 
chain attacks. 

Although there are limitations of current quantum 
computing and accessibility in quantum devices, this 
study shows that QML can leverage high 
dimensionality of quantum state space to deal with real 
world big cybersecurity data.  

VI. CONCLUSION   
Quantum Computing (QC) has gained immense 

popularity among researchers and promised to deliver 
a huge leap forward in the computation of Machine 
Learning algorithms. This paper analyzes speed up 



 
 

performance Quantum Machine Learning such as 
Quantum Support Vector Machine (QSVM), and 
Quantum Neural Network (QNN) to detect software 
supply chain attacks. The QML methods were applied 
on open-source quantum simulators such as IBM 
Qiskit and TensorFlow Quantum. We evaluated the 
performance of QML in terms of processing speed and 
accuracy. The experimental results differ to the speed 
up promises of QC by producing significantly lower 
accuracy and taking higher execution time in 
comparison to their classical counterparts. Though the 
QC has the potential to revolutionize computation, 
current versions with limited number of qubits are not 
advanced enough to produce rewarding performance, 
specifically, in software supply chain attacks. 
However, QML algorithms that use an advanced 
quantum computer or simulator with a large number 
of qubits may surpass their classical machine learning 
equivalents in terms of classification performance and 
computational time. 

REFERENCES  
 

1. Defending against software supply chain security 
attacks, cybersecurity, and infrastructure security 
agency. (2021) http://www.cisa.gov/tlp/. 

2. Abohashima, Z., Elhosen, M., Houssein, E. H., & 
Mohamed, W. M. (2020). Classification with quantum 
machine learning: A survey. arXiv preprint 
arXiv:2006.12270. 

3. R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, 
O. Ozdemir, P. Ellingwood, and M. McConley, 
“Automated vulnerability detection in source code 
using deep representation learning,” in Proceedings of 
the 17th IEEE International Conference on Machine 
Learning and Applications (ICMLA 2018). IEEE, 
2018, pp. 757– 762 

4. Tang, G., Yang, L., Ren, S., Meng, L., Yang, F., & 
Wang, H. (2021). An Automatic Source Code 
Vulnerability Detection Approach Based on 
KELM. Security and Communication Networks, 2021. 

5. Kakavand, Mohsen & Dabbagh, Mohammad & 
Dehghantanha, Ali. (2018). Application of Machine 
Learning Algorithms for Android Malware Detection. 
32-36. 10.1145/3293475.3293489. 

6. Masum, M., & Shahriar, H. (2019, December). Droid-
NNet: Deep learning neural network for android 
malware detection. In 2019 IEEE International 
Conference on Big Data (Big Data) (pp. 5789-5793). 
IEEE. 

7. Masum, M., & Shahriar, H. (2020, December). Tl-nid: 
Deep neural network with transfer learning for network 
intrusion detection. In 2020 15th International 
Conference for Internet Technology and Secured 
Transactions (ICITST) (pp. 1-7). IEEE. 

8. Kumar, A., Kuppusamy, K. S., & Aghila, G. (2019). A 
learning model to detect maliciousness of portable 
executable using integrated feature set. Journal of King 

Saud University-Computer and Information Sciences, 
31(2), 252-265. 

9. Chakraborty, S., Krishna, R., Ding, Y., & Ray, B. 
(2021). Deep learning-based vulnerability detection: 
Are we there yet. IEEE Transactions on Software 
Engineering. 

10. https://quantum-computing.ibm.com/ 
11. V. Giovannetti, S. Lloyd and L. Maccone, Quantum 

Random Access Memory, Phys. Rev. Lett. 100, 160501 
(2008). 

12. Kariya, A., & Behera, B. K. (2021). Investigation of 
Quantum Support Vector Machine for Classification in 
NISQ era. arXiv preprint arXiv:2112.06912. 

13. David Deutsch. Quantum theory, the church {turing 
principle and the universal quantum computer. Proc. R. 
Soc. Lond. A, 400(1818):97{117, 1985. 

14. M. A. Nielsen and I. L. Chuang, Quantum Computation 
and Quantum Information: 10th Anniversary Edition. 
Cambridge University Press, 2011. 

15. P. A.M. Dirac, “The Principles of Quantum 
Mechanics,” 4th edition, Oxford University Press, 
(1930/1958) 

16. Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., 
Riedel, M., & Michielsen, K. (2021, July). Quantum 
Support Vector Machine Algorithms for Remote 
Sensing Data Classification. In 2021 IEEE 
International Geoscience and Remote Sensing 
Symposium IGARSS (pp. 2608-2611). IEEE. 

17. Cavallaro, G., Willsch, D., Willsch, M., Michielsen, K., 
& Riedel, M. (2020, September). Approaching remote 
sensing image classification with ensembles of support 
vector machines on the d-wave quantum annealer. 
In IGARSS 2020-2020 IEEE International Geoscience 
and Remote Sensing Symposium (pp. 1973-1976). 
IEEE. 

18. Ding, C., Bao, T. Y., & Huang, H. L. (2021). Quantum-
inspired support vector machine. IEEE Transactions on 
Neural Networks and Learning Systems. 

19. Bishwas, A. K., Mani, A., & Palade, V. (2016, 
December). Big data classification with quantum 
multiclass SVM and quantum one-against-all approach. 
In 2016 2nd International Conference on 
Contemporary Computing and Informatics (IC3I) (pp. 
875-880). IEEE. 

20. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). 
Quantum support vector machine for big data 
classification. Physical review letters, 113(13), 
130503. 

21. Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., 
Riedel, M., & Michielsen, K. (2021, July). Quantum 
Support Vector Machine Algorithms for Remote 
Sensing Data Classification. In 2021 IEEE 
International Geoscience and Remote Sensing 
Symposium IGARSS (pp. 2608-2611). IEEE. 

22. Adhikary, S., Dangwal, S., & Bhowmik, D. (2020). 
Supervised learning with a quantum classifier using 
multi-level systems. Quantum Information 
Processing, 19(3), 1-12. 

23. de Paula Neto, F. M., Ludermir, T. B., & de Oliveira, 
W. R. (2019, October). Quantum neural networks 
learning algorithm based on a global search. In 2019 



 
 

8th Brazilian Conference on Intelligent Systems 
(BRACIS) (pp. 842-847). IEEE. 

24. Havenstein, C., Thomas, D., & Chandrasekaran, S. 
(2018). Comparisons of performance between quantum 
and classical machine learning. SMU Data Science 
Review, 1(4), 11. 

25. Chen, J., Liu, L., Liu, Y., & Zeng, X. (2020). A learning 
framework for n-bit quantized neural networks toward 
FPGAs. IEEE Transactions on Neural Networks and 
Learning Systems, 32(3), 1067-1081. 

26. S. Boyapati, S. R. Swarna and A. Kumar, "Quantum 
Neural Networks for Dynamic Route Identification to 
avoid traffic," 2020 Fourth International Conference on 
I-SMAC (IoT in Social, Mobile, Analytics and Cloud) 
(I-SMAC), 2020, pp. 1018-1022, doi: 10.1109/I-
SMAC49090.2020.9243322. 

27. N. H. Nguyen, E. C. Behrman, M. A. Moustafa and J. 
E. Steck, "Benchmarking Neural Networks For 
Quantum Computations," in IEEE Transactions on 
Neural Networks and Learning Systems, vol. 31, no. 7, 
pp. 2522-2531, July 2020, doi: 
10.1109/TNNLS.2019.2933394. 

28. N. Thumwanit, C. Lortaraprasert, H. Yano and R. 
Raymond, "Trainable Discrete Feature Embeddings for 
Quantum Machine Learning," 2021 IEEE International 
Conference on Quantum Computing and Engineering 
(QCE), 2021, pp. 479-480, doi: 
10.1109/QCE52317.2021.00087. 

29. D. A. Zaidenberg, A. Sebastianelli, D. Spiller, B. Le 
Saux and S. L. Ullo, "Advantages and Bottlenecks of 
Quantum Machine Learning for Remote Sensing," 
2021 IEEE International Geoscience and Remote 
Sensing Symposium IGARSS, 2021, pp. 5680-5683, 
doi: 10.1109/IGARSS47720.2021.9553133. 

30. A. A. Ezhov and D. Ventura, “Quantum neural 
networks,” in Future Directions for Intelligent Systems 
and Information Sciences, 2000, pp. 213–235. 

31. Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum 
Neural Networks: Concepts, Applications, and 
Challenges,” in International Conference on 
Ubiquitous and Future Networks, ICUFN, 2021, vol. 
2021-August, pp. 413–416, doi: 
10.1109/ICUFN49451.2021.9528698. 

32. A. Kariya and B. K. Behera, “Investigation of Quantum 
Support Vector Machine for Classification in NISQ 
era,” 2021, [Online]. Available: 
http://arxiv.org/abs/2112.06912. 

33. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum 
support vector machine for big data classification,” 
Phys. Rev. Lett., vol. 113, no. 3, 2014, doi: 
10.1103/PhysRevLett.113.130503. 

34. C. Havenstein, D. Thomas, S. Chandrasekaran, C. L. 
Havenstein, and D. T. Thomas, “Comparisons of 
Performance between Quantum and Classical Machine 
Learning,” SMU Data Sci. Rev., vol. 1, no. 4, p. 11, 
2018, [Online]. Available: 
https://scholar.smu.edu/datasciencereviewhttp://digital
repository.smu.edu.Availableat:https://scholar.smu.ed
u/datasciencereview/vol1/iss4/11. 

35. Wu, S. L., & Yoo, S. (2022). Challenges and 
opportunities in quantum machine learning for high-
energy physics. Nature Reviews Physics, 1-2. 

 

https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11
https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11
https://scholar.smu.edu/datasciencereviewhttp:/digitalrepository.smu.edu.Availableat:https:/scholar.smu.edu/datasciencereview/vol1/iss4/11

	I. Introduction
	II. Quantum Machine Learning
	III. Related work
	IV. Methodology
	V. Experiments and results
	A. Dataset specification
	B. Data Preprocessing
	C. Experimental Setting
	D. Results
	E. Discussion

	VI. Conclusion
	References

