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Abstract—Analyzing a huge amount of malware is a major
burden for security analysts. Since emerging malware is often
a variant of existing malware, automatically classifying malware
into known families greatly reduces a part of their burden. Image-
based malware classification with deep learning is an attractive
approach for its simplicity, versatility, and affinity with the latest
technologies. However, the impact of differences in deep learning
models and the degree of transfer learning on the classification
accuracy of malware variants has not been fully studied. In
this paper, we conducted an exhaustive survey of deep learning
models using 24 ImageNet pre-trained models and five fine-tuning
parameters, totaling 120 combinations, on two platforms. As
a result, we found that the highest classification accuracy was
obtained by fine-tuning one of the latest deep learning models
with a relatively low degree of transfer learning, and we achieved
the highest classification accuracy ever in cross-validation on the
Malimg and Drebin datasets. We also confirmed that this trend
holds true for the recent malware variants using the VirusTotal
2020 Windows and Android datasets. The experimental results
suggest that it is effective to periodically explore optimal deep
learning models with the latest models and malware datasets by
gradually reducing the degree of transfer learning from half.

Index Terms—Malware variant classification, Deep learning,
Machine learning, Fine-tuning, Malimg, Drebin, VirusTotal

I. INTRODUCTION

In the field of cybersecurity, security analysts are struggling
with a huge amount of malware. Since recent malware is more
complex and sophisticated than ever before, security analysts
must carefully analyze its structure and behavior based on
their advanced knowledge and insights. Unfortunately, recent
malware often exploits new vulnerabilities and obfuscation
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techniques [1], leaving security analysts with the burden of
studying the latest technologies and performing manual anal-
ysis. Moreover, even novice users can generate new malware
using easily available tools, such as malware generators that
run on smartphones [2] and malware as a service (MaaS) [3],
which is spurring the increase of malware.

One way to reduce the burden of malware analysis is
automatic malware classification. Since attackers tend to create
many malware variants to save time and effort in creating new
ones, automatically classifying malware into known families
helps security analysts to leverage their past knowledge and
experience. Machine learning (ML) is a promising approach to
automatic malware classification, and many ML-based meth-
ods have been proposed [4], [5]. However, most ML-based
methods require security experts to manually define malware
features, which is time-consuming, task-specific, error-prone,
and highly dependent on individual experience and knowl-
edge [6]. Deep learning overcomes this problem by using
a deep hierarchical data model that automatically extracts
nonlinear features at various levels of abstraction without
manual efforts [6].

A convolutional neural network (CNN) is a popular algo-
rithm in deep learning because of the availability of huge
datasets, many properly pre-trained models, and support for
transfer learning. Many studies tried to extract malware fea-
tures suitable for CNNs, such as opcode sequences, control
flow graphs, and API calls [6]. However, manual feature
extraction requires expert knowledge and skills, and its ef-
fectiveness can vary from platform to platform and over
time. Malware images [7], which are generated by converting
malware binaries directly into grayscale images, is a simple yet
versatile approach that is expert-knowledge-free, applicable to
any platform, and highly compatible with image classifica-
tion methods. In addition, since CNNs have been actively
researched and developed for image recognition, the latest
technologies can be easily incorporated. However, previous
studies on applying CNNs to malware image classification [8]-
[16] have limited variations of models and transfer learning
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parameters, and their impact on classification accuracy has
not been fully explored.

In this paper, we conducted an exhaustive study on the
accuracy of image-based malware classification with a number
of CNN models. We used CNN models pre-trained with
ImageNet [17] provided by Keras [18]. ImageNet is an image
database with supervised labels consisting of more than 14
million color photographs of objects that exist in nature, such
as plants, terrain, sports, animals, and so on. Thus, ImageNet
pre-trained models would have some of the visual recognition
capabilities of humans. However, it is unclear how effective
the ability to distinguish objects in nature is in classifying
artificially created malware images. Therefore, we investigated
the effect of ImageNet pre-training on malware classification
accuracy with different degrees of transfer learning. Specifi-
cally, we prepared 24 pre-trained models and five fine-tuning
parameters for each model, 120 combinations in total. To the
best of our knowledge, this is the first study to investigate the
effects of different CNN pre-training models and fine-tuning
parameters on malware classification accuracy in such a wide
variety of combinations.

We conducted our study in two steps. First, to identify
the optimal CNN models to classify malware images, we
used two pre-labeled datasets: Malimg [19] for Windows and
Drebin [20] for Android. As a result, we found that the
EfficientNetB4 model fine-tuned with no frozen parameters,
i.e., forgetting all ImageNet pre-trained knowledge, had the
highest classification accuracy in Mailimg, obtaining 98.96%
with cross-validation. For the top 20 classes of Drebin, the
EfficientNetB4 model fine-tuned with 1/4 of the pre-trained
parameters frozen achieved the highest classification accuracy
of 91.03% with cross-validation. To the best of our knowledge,
these are the highest classification accuracy of Malimg and
Drebin with cross-validation reported so far.

Next, to examine the classification accuracy against recent
real malware, we obtained the VirusTotal [21] May 2020
datasets and trained several models that had relatively high
classification accuracy in Malimg and Drebin with the datasets.
As a result, for Windows malware, EfficientNetB5 with 1/2 of
the pre-trained parameters frozen achieved 98.78% accuracy,
and for Android malware, EfficientNetB3-B5 with no frozen
parameters achieved 100% accuracy.

From the results of these experiments, we found that the
highest malware variant classification accuracy tends to be
obtained by using the latest deep learning models with a
relatively low degree of transfer learning, i.e., freezing the
fine-tuning parameters from 0% to 50%. This suggests that
the ability to recognize natural objects is effective to some
extent, but learning more features of malware images is also
important in classifying malware variants. Since it is not easy
to identify in advance the optimal parameters for each malware
dataset, a realistic approach is to periodically explore the
optimal degree of transfer learning by fine-tuning the latest
model with the latest malware data while gradually lowering
the freezing parameters from 50%.

The contributions of this paper are as follows:

Android malware image
(BaseBridge)

Windows malware image
(C2LOP.gen!g)

Fig. 1. Example of Windows and Android malware images.

o« We conducted an exhaustive study on the impact of
different models and fine-tuning parameters of CNNs,
120 combinations in total, on the classification accuracy
of malware variants.

o We found that the optimal model for malware classifi-
cation of Malimg and Drebin was EfficientNetB4 with
pre-trained parameters unfrozen and 25% frozen, respec-
tively, and achieved the highest classification accuracy to
date with cross-validation.

e We confirmed that fine-tuning the latest models with
lower frozen parameters is effective for classifying mal-
ware variants in VirusTotal; EfficientNetB5 with 50%
frozen for Windows and EfficientNetB3-B5 with no
frozen for Android achieved the highest accuracy.

The rest of this paper is organized as follows: Section II
presents related work. Section III explains background knowl-
edge on CNNs and fine-tuning. Section IV describes our ex-
perimental method to explore the optimal models for malware
variant classification. Section V shows the experimental results
and Section VI concludes the paper.

II. RELATED WORK

Malware image is a concept whereby malware binaries are
converted into visual images to extract malware features [7].
Malware image has the advantage that features can be easily
extracted without expert knowledge and that they can be
applied to different platforms, such as Windows and Android.
Fig. 1 shows the example of malware images.

Many previous studies have attempted to improve the accu-
racy of image-based classification using Malimg as a standard
dataset. Nataraj et al. [7] used GIST and k-nearest neighbors
for classification and obtained an accuracy of 97.18% with
10-fold cross-validation. Kosmidis and Kalloniatis [22] used
several ML techniques such as decision tree, nearest cen-
troid, stochastic gradient, perceptron, multilayer perceptron,
and Random Forest. The best result was Random Forest
with 91.6% average accuracy. Cui et al. [8] used a CNN
and addressed the data imbalance among different malware
families. The classification accuracy of cross-validation was
94.5%. Rezende et al. [9] prepared a ResNet50 model with
all convolutional layer parameters transferred from a model
trained with ImageNet and achieved the classification accuracy
of 98.62% with cross-validation. Mourtaji et al. [10] reported
the VGG16 model with an accuracy of 97.02% using the
hold-out method. Kalash et al. [11] proposed M-CNN based



on VGG16 pre-trained by ImageNet and achieved an accuracy
of 98.52% with hold-out validation. Lo et al. [12] used the
Xception model and its classification accuracy reached 99.03%
using the hold-out method.

Several studies tried to manipulate malware images or
machine learning models to improve classification accuracy.
Vasan et al. [16] converted malware binaries into color images
and had a classification accuracy of 98.82%, although their
evaluation was not cross-validation. Su et al. [23] used a
two-layer shallow convolutional neural network and achieved
94.0% accuracy in classifying goodware and DDoS malware
with 5-fold hold-out validation. Vasan et al. [24] introduced an
ensemble method that used five models and had an accuracy
of 99.50% with hold-out validation. Although their ensemble
method used an argmax function for finding the model with
the highest predicted probability, they did not evaluate which
of the five models was the most important for improving the
classification accuracy.

For image-based classification of Android malware, Singh
et al. [25] classified the top 20 Drebin dataset using images
generated from manifest and certificate of android application.
As a result, they obtained a classification accuracy of 93.24%
using the Feature Fusion-SVM model.

Although all the previous studies have shown good classi-
fication accuracy, there is still room for improvement. Even
a 0.1% improvement in accuracy has a non-negligible impact
when there are tens of thousands of malware variants. More-
over, few studies investigated the impact of different models
and fine-tuning parameters on classification accuracy.

III. BACKGROUND

In this section, we briefly explain the basics of CNNs and
fine-tuning, which are necessary to understand the experiments
described later.

A. CNN

A CNN is a class of deep neural network (DNN), which is
an evolution of an artificial neural network (ANN) [26].

ANNSs are designed to mimic the neural structure of human
brains, where many neurons are connected by synapses. Infor-
mation is transmitted between neurons by electrical signals,
and the amount of information transmitted is determined by
the strength of the synaptic connections. A neuron that receives
signals from multiple neurons produces a single output when
the sum of the signals exceeds a certain threshold. In ANNS,
neurons are called nodes, and synapses are called edges. The
strength of the synaptic connections is represented by the
weight of the edge, and the threshold is determined by the
activation function. An ANN is basically composed of three
layers: an input layer, a hidden layer, and an output layer.
A DNN forms a “deep” layered structure by increasing the
number of hidden layers and succeeds in understanding the
complex structure of the real world.

CNNs are mainly used for image classification. The input
layer of a CNN associates the pixels of input images with
nodes and passes them to the hidden layers. The hidden

layers consist of convolutional layers, pooling layers, and
fully-connected layers. The convolutional layers apply small
filters to the entire image by sliding them gradually to produce
images with a collection of representative values called feature
maps. The fully-connected layers concatenate the features
from the convolutional and pooling layers and pass them to
the output layer.

B. Fine-tuning

Fine-tuning is one way of transfer learning [27]. Transfer
learning is a method to apply knowledge gained from one
domain to another. Transfer learning can create highly accurate
models even in domains with small amounts of data available
by transferring knowledge from domains with large amounts of
high-quality data. Transfer learning can also reduce the model
training time by reusing the edge weights of previously trained
models. On the other hand, transfer learning can cause a
deterioration in accuracy called negative transfer, which occurs
when the transfer method is inappropriate or when the source
and destination domains are relatively unrelated.

In transfer learning of CNN, the network trained in one
domain is reused for another domain. In fine-tuning, the basic
structure of the CNN network is reused. The edge weights
in some layers could be relearned while other layers are
frozen, i.e., fixed. Although relearning is useful for acquiring
knowledge in a new domain, relearning the entire model may
result in overtraining if the dataset is very small. Overtraining
is a problem in which a CNN network closely related to a
specific dataset cannot accurately classify additional data.

In short, in order to achieve high classification accuracy
through fine-tuning, it is crucial to select the appropriate
degree of frozen layers depending on the similarity and size
of the dataset to be classified.

IV. EXPERIMENTAL METHOD

In this section, we explain the experimental method for
this study. We first explain the CNN models and fine-tuning
parameters we used. Next, we describe how we created the
malware image and the characteristics of the dataset we used.
Finally, we describe the evaluation criteria for measuring the
accuracy of malware subspecies classification.

A. CNN Models and Fine-tuning Parameters

We selected 24 models from the ImageNet pre-trained
models provided by Keras as our pre-trained models. The
models were DenseNet121, DenseNet169, DenseNet201 [28],
EfficientNetB0O, EfficientNetB1, EfficientNetB2, Efficient-
NetB3, EfficientNetB4, EfficientNetB5 [29], InceptionRes-
NetV2 [30], InceptionV3 [31], MoblileNet [32], Mo-
bileNetV2 [33], NASNetLarge, NASMobile [34], ResNet101,
ResNet152, ResNet50 [35], ResNetl01V2, ResNetl152V2,
ResNet50V2 [36], VGG16, VGG19 [37], and Xception [38].

As mentioned in Section III-B, it is necessary to pay
attention to the degradation of classification accuracy due to
negative transfer because the malware images do not seem to
resemble pre-trained natural objects. Then, since the number



TABLE I

THE NUMBERS AND NAMES OF FROZEN LAYERS IN THE KERAS IMPLEMENTATION FOR OUR 24 MODELS.

‘ Frozen all Frozen 3/4 Frozen 1/2 Frozen 1/4

DenseNet121 427 (relu) 341 (conv5_block4_concat) 274 (conv4_block19_concat) 162 (conv4_block3_conca
DenseNet169 595 (relu) 495 (conv5_block18_concat) 365 (conv4_block32_concat) 253 (conv4_block16_conc
DenseNet201 707 (relu) 572 (conv5_block13_concat) 449 (conv4_block44_concat) 316 (conv4_block25_conc
EfficientNetB0O 230 (top_activation) 214 (block6d_add) 184 (block6b_add) 156 (block5c_add)
EfficientNetB1 332 (top_activation) 314 (block7a_project_bn) 286 (block6d_add) 241 (block6a_project_bn)
EfficientNetB2 332 (top_activation) 314 (block7a_project_bn) 286 (block6d_add) 241 (blockb6a_project_bn)
EfficientNetB3 377 (top_activation) 359 (block7a_project_bn) 316 (block6d_add) 271 (block6a_project_bn)
EfficientNetB4 467 (top_activation) 449 (block7a_project_bn) 391 (block6e_add) 331 (block6a_project_bn)
EfficientNetB5 569 (top_activation) 551 (block7b_add) 493 (block6g_add) 418 (block6b_add)
InceptionResNetV2 | 780 (conv_7b_ac) 698 (block8_5_ac) 618 (mixed_7a) 419 (block17_9_ac)
InceptionV3 311 (mixed10) 280 (mixed9) 249 (mixed8) 165 (mixed5)
MobileNet 87 (conv_pw_13_relu) 84 (conv_dw_13_relu) 74 (conv_pw_11_relu) 56 (conv_pw_8_relu)
MobileNetV2 155 (out_relu) 144 (block_15_add) 135 (block_14_add) 117 (block_12_add)
NASNetLarge 1039 (activation_259) 948 (normal_concat_16) 858 (normal_concat_14) 711 (normal_concat_12)
NASNetMobile 769 (activation_187) 723 (normal_concat_11) 633 (normal_concat_9) 531 (normal_concat_8)
ResNet101 345 (conv5_block3_out) 325 (conv5_blockl1_out) 253 (conv4_block17_out) 163 (conv4_block8_out)
ResNet152 515 (conv5_block3_out) 483 (conv4_block36_out) 353 (conv4_block23_out) 223 (conv4_block10_out)
ResNet50 175 (conv5_block3_out) 165 (conv5_block2_out) 155 (conv5_blockl1_out) 123 (conv4_block4_out)
ResNet101V2 377 (post_relu) 353 (conv5_blockl1_out) 274 (conv4_block17_out) 175 (conv4_block8_out)
ResNet152V2 564 (post_relu) 528 (conv4_block36_out) 384 (conv4_block23_out) 241 (conv4_block10_out)
ResNet50V2 190 (post_relu) 177 (conv5_block2_out) 166 (conv5_blockl1_out) 131 (conv4_block4_out)
VGG16 19 (block5_pool) 17 (block5_conv2) 15 (block4_pool) 12 (block4_convl)
VGG19 22 (block5_pool) 19 (block5_conv2) 17 (block4_pool) 14 (block4_conv2)
Xception 132 (block14_sepconv2_act) 126 (add_11) 96 (add_8) 66 (add_5)

of malware appearing in a year depends on the trend of attacks, TABLE II

overtraining should be avoided if the number of data is small.
In order to find the right degree of fine-tuning, it is appropriate
to try multiple parameters. we used five different fine-tuning
parameters for each model: the ratio of frozen parameters is
(1) 1 (Frozen_all), (2) 3/4 (Frozen_3/4), (3) 1/2 (Frozen_1/2),
(4) 1/4 (Frozen_1/4), and (5) O (Frozen_none). Table I shows
the number of frozen layers and the name of the border layer
for each model.

Note that the number of layers shown in Table I is based
on the Keras implementation and differs from the number of
layers in the theoretical model (e.g., 16 layers in VGGI16
or 121 layers in DenseNetl21). In addition, the number of
parameters to be frozen is not exactly 1/4, 1/2, or 3/4 of the
total number of parameters because the number of parameters
in a layer is not constant, and if the model has a block
consisting of multiple layers, the layer to be frozen must be
specified at the block boundary.

B. Malware Image Conversion Tool

We developed a tool to convert malware files into images.
This tool is designed to accept files in Portable Executable
(PE) format for Windows malware and Dalvik Executable
(DEX) format for Android malware. The tool checks the
header information of the file to determine the file format and
converts the binary data of the file into a grayscale image with
256 shades per pixel. The width of the image is determined

RULES TO DETERMINE THE IMAGE WIDTH.

File Size Range  Image Width

<10KB 32
10KB - 30KB 64
30KB - 60KB 128
60KB - 100KB 256

100KB - 200KB 384

200KB - 500KB 512

500KB - 1,000KB 768
>=1,000KB 1024

by the file size according to the rule in Table II. This rule
is equivalent to that proposed by Nataraj et al. [7], but we
extended it to be applied to Android malware.

The size of the image generated by the malware file varies,
but it is automatically changed to the standard size of each
model at the time of input by using the nearest-neighbor
algorithm, which is the default method for image resizing in
Keras (for example, for the VGG16 model, the image size is
a 224 x 224 square).

C. Malware Dataset

We used Malimg and Drebin as the malware datasets to
obtain the optimal CNN models for malware image classifi-



TABLE III
THE VIRUSTOTAL MAY 2020 WINDOWS DATASET.

Family Packer / Compiler  Files
Backdoor.Delf tElock 186
Backdoor.Gobot Delphi 43
Backdoor.IRCBot  Visual C++ 55
Backdoor.Wabot ~ Delphi 186
Trojan.Agent Visual C++ 54
Worm.Benjamin ~ ASPack 92
Worm.Picsys UPX 126
Worm.Small Visual C++ 79
StormAttack Visual C++ 50
Dropper.Dinwod  UPX 165
Trojan.Agent MingWin32 66
Trojan.Agent Visual Basic 74
Trojan.Mansabo Visual Basic 53
Trojan.VB Visual Basic 101
Trojan.Agent.VB  Visual Basic 42
AdWare.Gator Visual C++ 57
AdWare.Lollipop LCC Win32 80
CoinMiner Visual C++ 47
Total 1,556
TABLE IV

THE VIRUSTOTAL MAY 2020 ANDROID DATASET.

Family Files
Android.Agent 43
Android. Ewind 72
Android.SMSreg 49
Total 164

cation to compare the classification accuracy of the previous
study. Malimg is a dataset introduced by Nataraj et al. [7]. It
consists of 9,339 images of malware files in the PE32 format,
converted to PNG format images, and labeled with 25 classes
using Windows Security Essential. Drebin is a malware dataset
introduced by D. Arp et al. [39]. It is an Android malware
dataset collected from August 2010 to October 2012, which
contains 5,560 APK files of Android malware and is classified
into 178 classes based on Kaspersky [40]. To compare with
the malware classification experiment of previous research, we
selected the top 20 classes from the Drebin dataset. To make
malware images, we obtained the class.dex file from each APK
file. Note that one file was excluded from our dataset because
it is a compilation of 25 APK files and we could not obtain a
unique class.dex file', so the total number of malware samples
was 4,663.

We also used VirusTotal to validate the classification accu-
racy for recent malware variants. VirusTotal offers two types

IThe SHA256 value of this file is:
df2¢357£513¢270cd1d06418edeaf64acb6b2d947149e83ed4{42c88286b76a7

of data access with an academic account: 1) access to the
Academic API or 2) access to the malware sample folder.
We accessed the malware sample folder and got the recent
malware dataset. Since new malware data is added to the
malware sample folder approximately every six months, we
used the datasets added in May 2020 for our evaluation. From
each dataset, we selected the Win32_EXE category and the
Android category for malware classification. The May 2020
dataset had 38,444 files in the Win32_EXE category and 434
files in the Android category.

Due to many research reports that malware labels of
anti-virus scanners are biased [41]-[45], we determined to
use labels that were matched by at least three scanners for
VirusTotal. However, since VirusTotal uses more than 70
scanners for each malware, it is time-consuming to check all
combinations to extract matching labels. Therefore, we used
one scanner to list base labels and then check if two or more
scanners had the same labels. We used Kaspersky for our base
labels because it supports both Windows and Android.

One problem with the malware image approach, especially
on Windows, is that compilers and packers could drastically
change the binary image, even if the source code of the
malware is the same. Therefore, we decided to add the names
of the compilers and packers used by the malware to the
labels to make the identification easier. To detect compilers
and packers, we used five detectors (PEiD [46], DIE [47],
Exeinfo PE [48], PE Detective [49], and TrID [50]) and used
the name of compilers and packers that were matched by at
least three detectors. If the malware uses a compiler or packer
that cannot be detected, we expect security analysts to analyze
the malware from scratch.

In addition, to reduce the imbalance between malware
classes, we selected classes that contained at least 40 malware
files and excluded malware with non-family name labels such
as “generic” and “gen.”

As a result, we obtained 1,556 Windows malware files in
18 classes from the May 2020 dataset, as shown in Table III,
which we call the ‘VirusTotal May 2020 Windows” dataset.
For Android, we obtained 164 malware files classified into
three classes, as shown in Table IV, which we call the
‘VirusTotal May 2020 Android” dataset.

D. Evaluation Criteria

Each malware file in the dataset is labeled with the name
of the family it belongs to. Based on the label, we trained
our models with the malware images to classify the malware
files. Since there are many types of labels in the dataset,
it is a multi-class classification. Therefore, we evaluated the
classification results using the commonly used metrics defined
by the following equations [51]:



TABLE V
BATCH SIZE FOR EACH MODEL.

1
0.9
0.8

Model

0.7
0.6

MobileNet, MobileNetV2

0.5
0.4

DenseNet121, EfficientNetB0, InceptionV3, NASNetMobile
ResNet101, ResNet101V2, ResNet50, ResNet50V2, VGG16
VGG19

0.3
0.2
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Fig. 2. Classification accuracy of Malimg.
TABLE VI
! TOP FIVE MODELS FOR MALIMG.
Accuracy = 7'2 —
l pat tp; + fn; + fpi +tn; Model Frozen Accuracy Precision Recall F-score
1 l tp; EfficientNetB4 none 0.9896 0.9739 0.9718 0.9714
Precision = 5 > ti EfficientNetBS ~ 1/2 0.9882 09704 09685 0.9676
o tpi + fpi EfficientNetB5  3/4 0.9881 09732 09681  0.9663
1 l tp; NASNetLarge 3/4 0.9877 0.9687 0.9666  0.9662
Recall = S-Y — EfficientNetBS ~ 1/4 09877 09686 09662 09662
I = tpi+ fni
1 <~ 2. Precision - Recall
F-score = .

— Precision + Recall

where tp; is true positive, fp; is false positive, fn; is false
negative, and tn; is true negative, respectively. All the metrics
use macro averaging.

We evaluated all classifications with stratified 10-fold cross-
validation, i.e., for each class, 90% of the data is used for train-
ing and the remaining 10% for testing. The cross-validation
involves multiple rounds of creating training and test data in
order to evaluate the average. The hold-out validation, on the
other hand, does it only once.

V. EVALUATION RESULT

This section presents our evaluation results. We first show
the classification results of Malimg and Drebin, and then show
the results of our attempt to classify malware in the VirusTotal
May 2020 dataset.

A. Setup

We ran Keras 2.4.3 with Python 3.6.9 on Ubuntu 18.04 LTS
64bit on three machines with Nvidia GeForce RTX 2080Ti.
The backend of Keras was TensorFlow 2.2 on CUDA 10.1 and
cuDNN 7.6.5.

We designed the size of the output layer for each model
to match the class size of the dataset. Specifically, we used
softmax as the activation function and set the number of
outputs to 25 for Malimg, 20 for Drebin, 18 for VirusTotal
May 2020 Windows, and 3 for Android, respectively. In the
fully-connected layer, we used Relu as the activation function

and set the number of outputs to 128, which was determined
by referring to a previous study that used a dataset with a
similar number of classes and samples [52].

The hyperparameters of our fine-tuned models were as
follows: the loss function was categorical cross-entropy, the
optimizer was SGD, the learning rate was le-4, the momentum
was 0.9, and the epochs numbered 30. The batch size for each
model was determined to be the value shown in Table V, which
was the highest possible value to shorten the learning time.

Data augmentation, which increases the number of images
by flipping, rotating, scaling, etc., is generally effective in
obtaining high classification accuracy from a limited data set
in machine learning. However, in our preliminary experiments,
the classification accuracy with data augmentation was lower
than that without augmentation, so we did not use it this time.

B. Classification of Malimg

We first classified Malimg. Fig. 2 shows the classification
accuracy of the stratified 10-fold cross-validation for each
model. Most of the models except for the MobileNetV2 and
NASNetMobile achieved over 90% accuracy. Some models
of the MobileNetV2 and NASNetMobile were below 40%.
As the name implies, MobileNetV2 and NASNetMobile are
designed to work with limited system resources and have a
smaller number of training parameters than the other models.
For example, the VGG16 without the fully-connected layers
has 14,714,688 training parameters, while the MobileNetV2
without them has 2,257,984 and the NASNetMobile without
them has 4,269,716. We consider that the small number
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Fig. 3. Confusion matrix of EfficientNetB4 Frozen_none for Malimg. TABLE 1X
TOP 5 MODELS FOR DREBIN.
TABLE VII Model Frozen Accuracy Precision Recall F-score
COMPARISON OF CROSS-VALIDATION FOR MALIMG. -
EfficientNetB4 1/4 0.9103 0.8707 0.8524 0.8536
Method Accuracy  F-score Efﬁc%entNetBS 172 0.9098 0.8777 0.8458 0.8517
EfficientNetB4 12 0.9098 0.8732 0.8449 0.8498
CNN (8] 94.50% N/A EfficientNetB5 ~ 1/4 0.9079 0.8847  0.8371  0.8490
GIST + K-nearest neighbors [7] 97.18% N/A EfficientNetB3  1/2 0.9071 0.8645  0.8365  0.8404
ResNet50 [9] 98.62% N/A
EfficientNetB4 + Frozen_none (ours) 98.96 % 97.14%

TABLE VIII
COMPARISON OF HOLD-OUT VALIDATION FOR MALIMG.

accuracy, even if classes with fewer data are not correctly
classified. However, in this classification, there was no class
with extremely poor accuracy. This indicates that our model
correctly extracted the features of each class.

As shown in Table VII (cross-validation), our method

Method Accuracy F-score

VGGI16 [10] 97.02% N/A

M-CNN [11] 98.52% N/A
IMCEN [16] 98.82% 98.75%

Xception [12] 99.03% N/A
EfficientNetB4 + Frozen_none (ours) 99.13% 97.66%
IMCEC [24] 99.50% 99.48%

obtained the highest accuracy and F-score. Achieving high
classification accuracy and a high F-score is very important
in terms of reducing the burden on security analysts. As
shown in Table VIII (hold-out validation), our method was
the second best. Comparing cross-validation and hold-out val-
idation, cross-validation is more important during evaluation.

of training parameters may have affected the classification
accuracy.

Table VI shows the top five models in classification
accuracy. The model with the highest accuracy was Effi-
cientNetB4 Frozen_none, with a classification accuracy of
98.96%. Looking at the results of the ten tests among the
cross-validation using the EfficientNetB4 Frozen_none, the
maximum accuracy was 0.9913, the minimum accuracy was
0.9869, and the standard deviation was 0.0017. Fig. 3 shows
the confusion matrix when the maximum accuracy was ob-
tained. The number of training data was 8,416, the number of
test data was 923, accuracy was 0.9913, recall was 0.9761,
precision was 0.9773, and F-score was 0.9766. Malimg is
an imbalanced dataset; for example, the Allaple.A family has
294 test data, while the Skintrim.N family has only eight
test data. In general, when classifying imbalanced data sets,
correctly classifying classes with more data may lead to higher

This is because an accuracy obtained by hold-out validation
may decrease substantially depending on how the training and
test data are created.

C. Classification of Drebin

Next, we classified Drebin. Fig. 4 shows the classification
accuracy on closs-validation. Similar to Malimg, we found
MobileNetV2 and NASNetMobile to be less accurate. Table IX
shows the top five models in classification accuracy. The model
with the highest accuracy was the EfficientNetB4 Frozen_1/4
model with a classification accuracy of 91.03%. Looking at
the results of the ten tests among the cross-validation using
EfficientNetB4 Frozen_1/4 model, the maximum accuracy was
0.9365, the minimum accuracy was 0.8781, and the standard
deviation was 0.014. Fig. 5 shows the confusion matrix when
the maximum accuracy was obtained. The number of training
data was 4,206, the number of test data was 457, accuracy
was 0.9365, recall was 0.9096, precision was 0.9016, and
F-score was 0.9055. There was no class with extremely poor
classification accuracy, but the classification accuracy was not
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Fig. 5. Confusion matrix of EfficientNetB4 Frozen_1/4 in Drebin.

TABLE X
COMPARISON OF HOLD-OUT VALIDATION FOR IMAGE-BASED DREBIN.

Method Accuracy F-score
Feature Fusion-SVM [25] 93.24% N/A
EfficientNetB4 + Frozen_1/4 (ours)  93.65% 90.55 %

sufficient for classes with little data, such as Exploit Linux
Lotoor, SMSreg and SendPay.

To the best of our knowledge, no previous study has
evaluated the classification accuracy of image-based Drebin
with cross-validation. As shown in Table X, our classifica-
tion accuracy was higher than that of the previous study
using image-based Drebin with hold-out validation. Since our
method only converts the dex file contained in the APK file
into an image, the pre-processing is very simple. Then, the
features extracted from images work effectively to classify
malware variants.

D. Windows Malware in VirusTotal

To examine the classification accuracy of recent real Win-
dows malware, we used the VirusTotal May 2020 Windows
dataset and the models that had high classification accuracy
for Malimg.

Fig. 6 shows the classification accuracy of the VirusTotal
May 2020 Windows dataset for each model. We selected
EfficientNetB3, B4, and B5 with five fine-tuning parameters.
Most of the models had an accuracy of 96% or better, and
no model had a lower accuracy. Table XI shows the top five
models with the highest classification accuracy. As shown in
the table, the EfficientNetB5 Frozen_1/2 model showed the
highest classification accuracy of 98.78%, which was slightly
lower than Malimg’s best classification accuracy (98.96%).
However, the difference between Accuracy and F-score was
0.0034, which was better than 0.0182 in the best model in
Malimg.

0.9

0.85

0.8

EfficientNetB3 EfficientNetB4 EfficientNetB5

@ Frozen_all @Frozen_3/4 TFrozen_1/2 mFrozen_1/4 mFrozen_none
Fig. 6. Classification accuracy for VirusTotal May 2020 Windows.

TABLE XI
TOP FIVE MODELS FOR VIRUSTOTAL MAY 2020 WINDOWS.

Model Frozen Accuracy Precision Recall F-score
EfficientNetB5 172 0.9878 0.9868 0.9858  0.9844
EfficientNetB4 1/4 0.9874 0.9880 0.9849  0.9851
EfficientNetB4 all 0.9871 0.9893 0.9849  0.9859
EfficientNetB3 1/4 0.9862 0.9887 0.9837  0.9849
EfficientNetB4 172 0.9858 0.9888 0.9838  0.9846

Looking at the results of the ten tests among the cross-
validation using the EfficientNetB5 Frozen_1/2 model, the
maximum accuracy was 0.9932, the minimum accuracy was
0.9662, and the standard deviation was 0.0084. Fig. 7 shows
the confusion matrix at maximum accuracy. The number of
training data was 1,408 and test data was 148, accuracy
was 0.99324, recall was 0.9920, precision was 0.9970, and
F-score was 0.9942. Fortunately, in the confusion matrix,
almost all the classes were fully classified. Overall, our method
correctly classified most of the VirusTotal May 2020 Windows
dataset.

E. Android Malware in VirusTotal

Finally, we performed the same evaluation for the Android
malware. We used EfficientNetB3, B4, and B5 to classify
the Virus Total May 2020 Android dataset. Fig. 8 shows the
classification accuracy of each model. The results show that
the classification accuracy of all models reached 100%.

Since the Android dataset had only three classes, there
was no difference in the classification accuracy even with
different models and degrees of fine-tuning, respectively. In
addition, the number of files in the Android dataset was
146, which was less than the other datasets (Malimg: 9,339,
Drebin: 4663, VirusTotal May 2020 Windows: 1,556), but the
classification accuracy by cross-validation reached 100%. It
indicates no overtraining in EfficientNetB3-B5, even when all
the parameters are not frozen.

F. Discussion and Future Work

We discuss some of the issues regarding our evaluation
results and present some future work. First of all, the eval-
uation result shows that EfficientNetB4 fine-tuned by freezing
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no or only 1/4 of the pre-trained parameters, had the highest
classification accuracy on the Malimg and Drebin datasets.
As for the VirusTotal Windows dataset, we found that Effie-
icnetNetB5 fine-tuned with 1/2 frozen achieved the highest
classification accuracy for the May 2020 Windows dataset,
while the EfficientNetB3-B5 with no fine-tuning achieved
100% accuracy for the May 2020 Android dataset.

These results suggest that the optimal model for malware
classification was obtained by using the latest models and
reducing the degree of transfer learning. By reducing the
degree of transfer learning, it has become possible to use
more layers to learn the features of malware images, which
is thought to have helped improve the classification accuracy.
This is due to the fact that with the continued development of
malware, it has become possible to extract the characteristics
from a large number of malware images. On the other
hand, the classification of Android malware in VirusTotal is
considered to be highly accurate regardless of the degree of
transfer learning because the number of classes to be classified
is small for the period of May 2020.

Based on the experimental results, we expect that the degree
of transfer learning most effective in classifying malware is in
the range of 0-1/2. To search for the optimal deep learning
models, we believe that fine-tuning the latest models while
gradually lowering the number of frozen parameters from 50%

would be effective as a practical approach.

Secondly, in order to address the problem of Windows
malware being widely obfuscated, we added the names of
the compiler or packer used by the malware to the labels. In
Section V-D, we have distinguished recent malware variants
with high accuracy. Experience shows that even obfuscated
malware may still retain some similarity to the original
malware if the same packer and compiler are used. However,
there are many types of obfuscation techniques, and their
number is increasing. Malware variants that apply various
obfuscation techniques to the original are hard to classify into
the same family because their malware image has different
characteristics, which is a limitation of image-based malware
classification. Improving resistance to obfuscation and the
specific evaluation are future works.

Thirdly, we developed an image conversion tool that sup-
ports Windows PE and Android DEX format. The multi-
platform tool has worked well in the evaluations and is
expected to help reduce the burden on security analysts.
Nevertheless, some malware runs on other platforms, such as
10S, macOS, and Linux. We believe our tool can be extended
for other platforms and confirm its effectiveness in the future.

Finally, if an attacker modifies a large part of existing
malware or adds many new features, the malware would no
longer be regarded as a variant. Therefore, it is necessary to
update deep learning models with knowledge of new malware
regularly. Unfortunately, since regular updates typically take
days to weeks, we have a plan to introduce some comple-
mentary applications to detect malware that emerges in the
meantime.

VI. CONCLUSION

We conducted an exhaustive study on the impact of deep
learning models and the degree of transfer learning on the
accuracy of image-based malware classification using 120
combinations with 24 different ImageNet pre-trained CNN
models and five levels of fine-tuning parameters. As a result,
we found that the EfficientNetB4 model fine-tuned by freezing
no or only 1/4 of the pre-trained parameters had the highest
classification accuracy for the Malimg (98.96%) and Drebin
(93.65%) datasets. These are the highest classification accura-
cies ever known to have been validated in cross-validation.

As for recent real malware, we found that the Effieicnet-
NetB5 model fine-tuned with 1/2 frozen parameters achieved
the highest classification accuracy of 98.78% for the May 2020
Windows dataset, while the EfficientNetB3 to B5 models with
no frozen fine-tuning parameters achieved the 100% accuracy
for the VirusTotal Android dataset.

The experimental results show that the classification accu-
racy of malware variants tends to be the highest when using
the latest deep learning models with a relatively low degree
of transfer learning. A practical approach for exploring the
optimal model would be fine-tuning the latest modes while
gradually reducing the number of frozen parameters from half.

Future work includes addressing program obfuscation,
multi-platform development, and knowledge updating.
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