
Unreasonable Effectiveness of Last Hidden Layer
Activations for Adversarial Robustness

Omer Faruk Tuna
Computer Engineering Department

Isik University
Istanbul, Turkey

omer.tuna@isikun.edu.tr

Ferhat Ozgur Catak
Electrical Engineering and Computer Science

University of Stavanger
Rogaland, Norway

f.ozgur.catak@uis.no

M. Taner Eskil
Computer Engineering Department

Isik University
Istanbul, Turkey

taner.eskil@isikun.edu.tr

Abstract—In standard Deep Neural Network (DNN) based
classifiers, the general convention is to omit the activation
function in the last (output) layer and directly apply the softmax
function on the logits to get the probability scores of each class.
In this type of architectures, the loss value of the classifier against
any output class is directly proportional to the difference between
the final probability score and the label value of the associated
class. Standard White-box adversarial evasion attacks, whether
targeted or untargeted, mainly try to exploit the gradient of
the model loss function to craft adversarial samples and fool
the model. In this study, we show both mathematically and
experimentally that using some widely known activation functions
in the output layer of the model with high temperature values
has the effect of zeroing out the gradients for both targeted
and untargeted attack cases, preventing attackers from exploiting
the model’s loss function to craft adversarial samples. We’ve
experimentally verified the efficacy of our approach on MNIST
(Digit), CIFAR10 datasets. Detailed experiments confirmed that
our approach substantially improves robustness against gradient-
based targeted and untargeted attack threats. And, we showed
that the increased non-linearity at the output layer has some ad-
ditional benefits against some other attack methods like Deepfool
attack.

Index Terms—trustworthy AI, adversarial machine learning,
deep neural networks, robustness

I. INTRODUCTION

By the end of 2013, researchers found out that DNN
models are vulnerable to well-crafted malicious perturbations.
Szegedy et al. [1] were the first to recognize the prevalence
of adversarial cases in the context of image classification.
Researchers have shown that a slight alteration in an image can
influence the prediction of a DNN model. It is demonstrated
that even the most advanced classifiers can be fooled by a very
small and practically undetectable change in input, resulting
in inaccurate classification. Since then, a lot of research
studies [2]–[5] were performed in this new discipline known
as Adversarial Machine Learning and these studies were not
limited just to image classification task. To give some example,
Sato et al. [6] showed in the NLP domain that changing just
one word from an input sentence can fool a sentiment analyser
trained with textual data. Another example is in the audio
domain [7],where the authors generated targeted adversarial
audio samples in autonomous speech recognition task by
introducing very little distortion to the original waveform. The

findings of this study indicate that the target model can simply
be exploited to transcribe the input as any desired phrase.

Attacks that take advantage of DNN’s weakness can sub-
stantially compromise the security of these machine learning
(ML)-based systems, often with disastrous results. Adversarial
evasion attacks mainly work by altering the input samples to
increase the likelihood of making wrong predictions. These
attacks can cause the model’s prediction performance to deteri-
orate since the model cannot correctly predict the actual output
for the input instances. In the context of medical applications,
a malicious attack could result in an inaccurate disease diag-
nosis. As a result, it has the potential to impact the patient’s
health, as well as the healthcare industry [8]. Similarly, self-
driving cars employ ML to navigate traffic without the need
for human involvement. A wrong decision for the autonomous
vehicle based on an adversarial attack could result in a tragic
accident. [9], [10]. Hence, defending against malicious evasion
attacks and boosting the robustness of ML models without
sacrificing clean accuracy is critical. Presuming that these ML
models are to be utilized in crucial areas, we should pay
utmost attention to ML models’ performance and the security
problems of these architectures.

In principle, adversarial strategies in evasion attacks can be
classified based on multiple criteria. Based on the attacker’s ul-
timate goal, attacks can be classified as targeted and untargeted
attacks. In the former, the attacker perturbs the input image,
causing the model to predict a class other than the actual class.
Whereas in the latter, the attacker perturbs the input image
so that a particular target class is predicted by the model.
Attacks can also be grouped based on the level of knowledge
that the attacker has. If the attacker has complete knowledge
of the model like architecture, weights, hyper-parameters etc.,
we call this kind of setting as White-Box Settings. However,
if the attacker has no information of the deployed model and
defense strategy, we call this kind of setting as Black-Box
Settings [11].

This research study focused on both targeted and untargeted
attacks in a White-Box setting. We propose an effective
modification to the standard DNN-based classifiers by adding
special kind of non-linear activation functions (sigmoid or
tanh) to the last layer of the model architecture. We showed
that training a model using high temperature value at the

ar
X

iv
:2

20
2.

07
34

2v
2

 [
cs

.L
G

]
 1

6
M

ay
 2

02
2

output layer activations and using the model by discarding
the temperature value at inference time provides a very high
degree of robustness to loss-based White-box targeted and un-
targeted attacks, together with attacks acting like Deepfool. We
hereby name our proposed models as Squeezed Models.
Our codes are released on GitHub 1 for scientific use.

To summarize; our main contributions for this study are:
• We propose an effective modification to standard DNN

based classifiers, which enables natural robustness to
gradient-based White-box targeted and untargeted at-
tacks.

• We show that using a specific type of non-linear activation
functions at the output layer with high temperature values
can actually provide robustness to the model without
impairing the ability to learn.

• We experimentally showed that adding non-linearity to
the last hidden layer provides robustness to other types
of attacks, like Deepfool.

II. RELATED WORKS

Since the uncovering of DNN’s vulnerability to adversarial
attacks [1], a lot of work has gone into inventing new adversar-
ial attack algorithms and defending against them by utilizing
more robust architectures [12]–[15]. We will discuss some of
the noteworthy attack and defense studies separately.

A. Adversarial evasion attacks

DNN models have some vulnerabilities that make them
challenging to defend in adversarial settings. For example,
they are mostly sensitive to slight changes in the input data,
leading to unexpected results in the model’s predictions. Figure
1 depicts how an adversary could take advantage of such
a vulnerability and fool the model using properly crafted
perturbation applied to the input.

+

Chihuahua
 Probability: 0.939

Clean Example

 =

Scaled by 20
 for a better view

Perturbation

sports_car
 Probability: 0.710

Adversarial Example

Fig. 1: The figure depicts an example to adversarial attack. The
original image is subjected to the adversarial perturbation. The
precisely crafted perturbation manipulates the model in such a
way that a ”Dog (Chihuahua)” is wrongly identified as ”Sports
Car” with high confidence.

An important portion of the attack methods are gradient-
based and based on perturbing the input sample in order to

1https://github.com/author-name/xxx

maximize the model’s loss. In recent years, many different
adversarial attack techniques have been suggested in literature.
The most widely known and used adversarial attacks
are Fast-Gradient Sign Method, Iterative
Gradient Sign Method, DeepFool and Carlini-
Wagner. These adversarial attack algorithms are briefly
explained in Section II-A1 - II-A4.

1) Fast-Gradient Sign Method: This method, also known
as FGSM [16], was one of the first and most well-known
adversarial attacks. The derivative of the model’s loss function
with respect to the input sample is exploited in this attack
strategy to determine which direction the pixel values in the
input image should be changed in order to minimize the loss
function of the model. Once this direction is determined, it
changes all pixels in the opposite direction at the same time to
maximize loss. One can craft adversarial samples for a model
with a classification loss function represented as J(θ,x, y) by
utilizing the formula below, where θ denotes the parameters
of the model, x is the benign input, and ytrue is the real label
of our input.

xadv = x+ ε · sign (∇xJ(θ,x, ytrue)) (1)

In [17], the authors presented a targeted variant of FGSM
referred to as the Targeted Gradient Sign Method (TGSM).
This way, they could change the attack to try to convert the
model’s prediction to a particular class. To achieve this, instead
of maximizing the loss with respect to the true class label,
TGSM attempts to minimize the loss with respect to the target
class Jtarget.

xadv = x− ε · sign (∇xJ(θ,x, ytarget)) (2)

Different from Eq. 1, we now subtract the crafted pertur-
bation from the original image as we try to minimize the
loss this time. If we want to increase the efficiency of this
approach, we can modify above equation as in Eq.3.The only
difference is that instead of minimizing the loss of the target
label, we maximize the loss of the loss of the true label and
also minimize the loss for the alternative label.

xadv = x+ ε · sign (∇x(J(θ,x, ytrue)− J(θ,x, ytarget)))
(3)

2) Iterative Gradient Sign Method: Kurakin et al. [17]
proposed a minor but significant enhancement to the FGSM.
Instead of taking one large step ε in the direction of the
gradient sign, we take numerous smaller steps α and utilize
the supplied value ε to clip the output in this method. This
method is also known as the Basic Iterative Method (BIM),
and it is simply FGSM applied to an input sample iteratively.
Equation 4 describes how to generate perturbed images under
the linf norm for a BIM attack.

x∗t = x

x∗t+1 = clipx,ε{xt + α · sign (∇xJ(θ,x
∗
t , ytrue))}

(4)

https://github.com/author-name/xxx

where x is the clean sample input to the model, x∗ is the output
adversarial sample at ith iteration, J is the loss function of the
model, θ denotes model parameters, ytrue is the true label for
the input, ε is a configurable parameter that limits maximum
perturbation amount in given linf norm, and α is the step size.

As in the case of TGSM, we can easily modify Eq. 4 to
produce targeted variant of BIM. At each intermediate step,
we can try to minimize the loss with respect to target class
while at the same time maximizing the loss with respect to
original class as in Eq. 5.

x∗t = x

arxivx∗t+1 = clipx,ε{xt + α · sign(∇x(J(θ,x
∗
t , ytrue)−

J(θ,x∗t , ytarget)))}
(5)

3) Deepfool Attack: This attack method has been intro-
duced by Moosavi-Dezfooli et al. [18] and it is one of the most
strong untargeted attack algorithms in literature. It’s made to
work with several distance norm metrics, including linf and
l2 norms.

The Deepfool attack is formulated on the idea that neu-
ral network models act like linear classifiers with classes
separated by a hyperplane. Starting with the initial input
point xt, the algorithm determines the closest hyperplane and
the smallest perturbation amount, which is the orthogonal
projection to the hyperplane, at each iteration. The algorithm
then computes xt+1 by adding the smallest perturbation to
the xt and checks for misclassification. The illustration of this
attack algorithm is provided in Figure 2. This attack can break
defensive distillation method and achieves higher success rates
than previously mentioned iterative attack approaches. But the
downside is, produced adversarial sample generally lies close
to the decision boundary of the model.

Fig. 2: Illustration of Deepfool attack algorithm

4) Carlini&Wagner Attack: Proposed by Carlini and Wag-
ner [19], and it is one of the strongest attack algorithms so
far. As a result, it’s commonly used as a benchmark for the
adversarial defense research groups, which tries to develop
more robust DNN architectures that can withstand adversarial
attacks. It is shown that, for the most well-known datasets,

the CW attack has a greater success rate than the other attack
types on normally trained models. Like Deepfool, it can also
deceive defensively distilled models, which other attack types
struggle to create adversarial examples for.

In order to generate more effective and strong adversarial
samples under multiple lp norms, the authors reformulate the
attack as an optimization problem which may be solved using
gradient descent. A confidence parameter in the algorithm
can used to change the level of prediction score for the
created adversarial sample. For a normally trained model,
application of CW attack with default setting (confidence set
to 0) would generally yield to adversarial samples close to
decision boundary. And high confident adversaries generally
located further away from decision boundary.

Adversarial machine learning is a burgeoning field of re-
search, and we see a lot of new adversarial attack algorithms
being proposed. Some of the recent remarkable ones are: i)
Square Attack [20] which is a query efficient black-box attack
that is not based on model’s gradient and can break defenses
that utilize gradient masking, ii) HopSkipJumpAttack [21]
which is a decision-based attack algorithm based on an estima-
tion of model’s gradient direction and binary-search procedure
for approaching the decision boundary, iii) Prior Convictions
[3] which utilizes two kinds of gradient estimation (time and
data dependent priors) and propose a bandit optimization based
framework for adversarial sample generation under loss-only
access black-box setting and iv) Uncertainty-Based Attack [2]
which utilizes both the model’s loss function and quantified
epistemic uncertainty to generate more powerful attacks.

B. Adversarial defense

1) Defensive Distillation: Although the idea of knowledge
distillation was previously introduced by Hinton et al. [22]
to compress a large model into a smaller one, the utilization
of this technique for adversarial defense purposes was first
suggested by Papernot et al. [23]. The algorithm starts with
training a teacher model on training data by employing a high
temperature (T) value in the softmax function as in Equation
6, where pi is the probability of ith class and zi’s are the logits.

pi =
exp(ziT)∑
j exp(

zi
T)

(6)

Then, using the previously trained teacher model, each
of the samples in the training data is labeled with soft
labels calculated with temperature (T) in prediction time. The
distilled model is then trained with the soft labels acquired
from the teacher model, again with a high temperature (T)
value in the softmax. When the training of the student model
is over, we use temperature value as 1 during prediction time.
Figure 3 shows the overall steps for this technique.

2) Adversarial Training: Adversarial training is an intuitive
defense method in which the model’s robustness is increased
by training it with adversarial samples. As demonstrated in Eq.
7, this strategy can be mathematically expressed as a Minimax
game.

Fig. 3: Defensive Distillation.

min
θ

max
|δ‖≤ε

J(hθ(x+ δ), y) (7)

where h denotes the model, J denotes the model’s loss
function, θ represents model’s weights and y is the actual
label. δ is the amount of perturbation amount added to input
x and it is constrained by given ε value. The inner objective is
maximized by using the most powerful attack possible, which
is mostly approximated by various adversarial attack types. In
order to reduce the loss resulting from the inner maximization
step, the outside minimization objective is used to train the
model. This whole process produces a model that is expected
to be resistant to adversarial attacks used during the training of
the model. For adversarial training, Goodfellow et al. [16] used
adversarial samples crafted by the FGSM attack. And Madry et
al. used the PGD attack [24] to build more robust models, but
at the expense of consuming more computational resources.
Despite the fact that adversarial training is often regarded as
one of the most effective defenses against adversarial attacks,
adversarially trained models are nevertheless vulnerable to
attacks like CW.

Adversarial ML is a very active field of research, and new
adversarial defense approaches are constantly being presented.
Among the most notable are: i) High-Level Representation
Guided Denoiser (HGD) [25] which avoids the error amplifi-
cation effect of a traditional denoiser by utilizing the error in
the upper layers of a DNN model as loss function and manages
the training of a more efficient image denoiser, ii) APE-GAN
[26] which uses a Generative Adversarial Network (GAN)
trained with adversarial samples to eliminate any adversarial
perturbation of an input image, iii) Certified Defense [27]
which proposes a new differentiable upper bound yielding a
model certificate ensuring that no attack can cause the error
to exceed a specific value and iv) [4] which uses several
uncertainty metrics for detecting adversarial samples.

III. APPROACH

A. Chosen Activation Functions

We used specific type of activation functions (sigmoid and
hyperbolic tangent) whose derivatives can be expressed in
terms of themselves. And the derivative of these activation
functions approaches to 0 when the output of the activation
functions approaches to their maximum and minimum values.

Starting with the sigmoid function; we know that sigmoid
function (σ(x)) can be represented as in Eq. 8 and it squeezes
the input to the range of 0 and 1 as can be seen in Figure 4a.

σ(x) =
1

1 + e−x
(8)

And the derivative of Sigmoid function can be expressed as
in Eq. 9:

d

dx
σ(x) = σ(x).(1− σ(x)) (9)

One can easily derive using above formulation or verify
from Figure 4a that the derivative of sigmoid function ap-
proach to 0 when the output of the sigmoid function ap-
proaches to 0 or 1.

Similarly, we can represent hyperbolic tangent (tanh(x))
function as in Eq. 10. Different from sigmoid, hyperbolic
tangent function squeezes the input to the range of -1 and
1 as can be seen in Figure 4b.

tanhx =
ex − e−x
ex + e−x

(10)

The derivative of hyperbolic tangent function can be ex-
pressed as in Eq. 11. Using Eq. 11 or Figure 4b, we can
verify that the derivative of tanh function approaches to 0
when the output of the tanh function approaches to -1 or
1. So, the pattern is similar to the one we see in sigmoid
function. The derivative of both of these activation functions
yields to 0 when the output of the activation functions are
at their minimum or maximum values. This property will be
quite usefull when use these activation functions at the output
layer of DNN classifiers to zeroing out the gradients.

d

dx
tanhx = 1− tanh2 x (11)

B. Proposed Method

We begin this part by introducing the loss calculation for
a standard deep neural network classifier. Let K denotes the
number of output classes, D = {(xi,yi)}Ni=1 be our dataset,
where xi ∈ Rd and yi ∈ {o1, o2..., ok} are the ith input and
output respectively where ok is the one-hot encoded vector
with the only kth index being one and zero for the other
indices and the probability output score of any output class
with index k ∈ {0, 1...,K − 1} is represented by Pk. Based
on this notation, the loss value (J) of the classifier for any test
input x∗ can be calculated using cross-entropy loss function
as below:

J = −
K−1∑
k=0

ok[k] · log(Pk) = − log(Ptrue) (12)

As can be seen in Figure 5a, in standard DNN-based
classifiers that are widely used today, usage of activation
functions in the output layer is omitted and the prediction
scores of each class is calculated by feeding the output of the

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

x

y

σ(x)

σ′(x)

(a) Sigmoid

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

y

tanh(x)

tanh′(x)

(b) Hyperbolic Tangent

last layer of the network (logits) to the softmax function. If we
denote the logits by Z = {z0, z1..., zK−1}, we can calculate
the derivative of the loss with respect to kth logit using Eq.
13. Formal derivation of the Eq. 13 is provided in Appendix
B.

∂J

∂zk
= Pk − ok[k] (13)

Loss-based adversarial attacks try to exploit the gradient
of the loss function (J) with respect to input sample x, and
what the attacker is trying to do is to use ∂J

∂x to maximize J .
We know from chain rule that ∂J

∂x = ∂J
∂z .

∂z
∂x . Therefore, for

any target class k, the gradient of the model’s loss function
with respect to the input image is directly proportional to
∂J
∂zk

. In response to such kind of attack idea, several defense
approaches have been proposed which mask the gradients
of the models. For example, Defensive Distillation technique
achieves this against untargeted loss-based attacks by enabling
the model to make highly confident predictions. Because,
when the model makes highly confident predictions in favor
of the true class; Ptrue approaches 1, and since the label for
true class is also 1, ∂J∂z and therefore ∂J

∂x approaches to 0 for
the specific untargeted attack case.

However, above approach will not work for targeted attack
case. Because, in order to prevent targeted attacks, we have
to make ∂J

∂z to become 0 for target class. And, the way to
achieve this for standard DNN-based classifiers is to make
target probability (Ptarget) to be very close to 1 (to make
Ptarget−otarget[target] equals to 0) which obviously contra-
dicts with the natural learning task. Therefore, there actually
exists a dilemma between masking the gradient of the model

(a) Standard DNN Classifier

(b) The proposed classifier

Fig. 5: Comparison of standard DNN classifier and the pro-
posed classifier

for targeted attack case and achieving the task of learning
for the model at our hand. This phenomenon is beautifully
explained by Katzir et al. in [28].

To overcome this problem, we propose to use either of the
two commonly known nonlinear activation functions (sigmoid
and tanh) on the logits of the model as depicted in Figure
5b. The important thing is to apply an high temperature value
to these activation functions during learning process (e.g. :
σ(x, T) = 1/(1+exp(−x/T)) and use the model by ignoring
the temperature value at prediction time, just like defensive
distillation technique. After our proposed modification, the
output of the last layer will be Ẑ, where Ẑ = {ẑ0, ẑ1..., ẑK−1}
and Ẑ = tanh (Z) or Ẑ = σ(Z), depending on the cho-
sen activation function. Based on this modified architecture,
derivative of the model’s loss with respect to input image under
gradient-based attack against any class k can be formulated as
below:

∂J

∂x
=

∂J

∂ẑk
.
∂ẑk
∂zk

.
∂zk
∂x

(14)

In case of sigmoid function, the above equation can be
reformulated as below by using Eq. 9 and Eq.13.

∂J

∂x
= (Pk − ok[k]).ẑk.(1− ẑk).

∂zk
∂x

(15)

And in case of tanh function, the Eq.14 can be written as
below Eq. 11 and Eq.13:

∂J

∂x
= (Pk − ok[k]).(1− ẑ2k).

∂zk
∂x

(16)

During the training of the DNN classifier depicted in Figure
5b, we force ẑk to be at it’s maximum possible value for the
true class in order the maximize the final softmax prediction
score. And similarly, we force ẑk to be at it’s minimum
value for the other classes. Therefore, in case of sigmoid
and tanh functions, ẑk will approach to 1 for true class. And
for the classes other than the true class, ẑk will approach to
0 and -1 for sigmoid and tanh functions respectively. Since
we additionally applied a high temperature value to these
activation functions during training time, the output of these
activation functions (ẑk) will be even more close to their
maximum and minimum values at prediction time when we
omit their temperature values. Consequently, Eq. 15 and Eq.
16 will approach to 0 for both targeted and untargeted attack
cases. Because, if we use the proposed model architecture
using sigmoid function, ẑk.(1− ẑk) will be 0 when ẑk is either
0 or 1. And if we use the proposed model architecture using
tanh function, 1− ẑ2k will become 0 when ẑk is either -1 or 1.
This way, we can successfully zero out (mask) the gradients of
the model for loss-based targeted and untargeted attack threats.
To avoid any round-off errors in floating point operations, high
precision should be set for floating point numbers in the ML
calculations.

C. Visual Representations of Loss Surfaces

We know that normally-trained models are vulnerable
to gradient-based white-box targeted and untargeted attack
threats. The main reason for this vulnerability lies in the ability
of the attacker to successfully exploit the loss function of the
model. To illustrate this fact, we made a simple experiment
using a test image from MNIST (Digit) dataset and draw
the loss surfaces of various models against two different
directions (one for loss gradient direction and one for a random
direction). When we check Figures 6a and 6b which display
the loss surfaces of normally-trained model, we see in both
cases that there exists a useful gradient information which
the attacker can exploit to craft both untargeted and targeted
adversarial samples.

To prevent the above vulnerability, various defense meth-
ods has been proposed, including Defensive distillation. This
technique was found to significantly reduce the ability of
traditional gradient-based untargeted attacks to build adver-
sarial samples. Because defense distillation has an effect of
diminishing the gradients down to zero for untargeted attack
case and the usage of standard objective function is not
effective anymore. As depicted in Figure 6c, the gradient
of the distilled model diminishes to zero and thus loss-
based untargeted attacks have difficulty in crafting adversarial
samples for defensively distilled models. However, it was
then demonstrated that attacks, such as the TGSM attack,

could defeat the defensive distillation strategy [29], but with-
out providing a mathematical proof about why these attacks
actually work. And the actual reason of success for these
kind of attacks against defensively distilled model is shown
to lie in the targeted nature of these attacks [28]. Figure 6d
demonstrates the loss surface of a distilled model under a
targeted attack and we can easily see that the gradient of
the model loss does not diminish to zero as in Figure 6c.
The result is not surprising at all, because for a defensively
distilled model under targeted attack, we expect Ptarget to
be almost 0 and otarget[target] is 1. Therefore, we expect ∂J∂z
(equivalent to Ptarget-otarget[target]) approach to -1 which is
more than enough to exploit the gradient of the loss function
for a successful attack.

As a last attempt, we analyze the loss surfaces of one of
our proposed models (model which was trained using tanh
activation function with high temperature value at the output
layer). When we check Figures 6e and 6f, we see that the
gradient of model’s loss function diminishes to 0 for both of
the untargeted and targeted attack cases. And this prevents the
attacker to exploit the gradient information of the model to
craft successful adversarial perturbations.

D. Softmax prediction scores of proposed architectures

For a normally trained standard DNN-based classifiers,
we expect the model to make a prediction in favor of true
class with a prediction score usually close to 1. In case of
a defensively distilled model, we force the model to make
high confident predictions. That is why, we see a prediction
score very close to 1 in favor of the true class. However,
for our proposed model architectures, the softmax prediction
score of the true class is lower compared to a normal or
defensively distilled model. Because the activation functions
in the last layer of the model limits the values for ẑk to
an interval of (0,1) and (-1,1). If we use sigmoid function
in the last layer, maximum prediction score will be 0.232
and if we use tanh function in the last layer, maximum
prediction score will be 0.450. And this will be the case for all
the predictions. Similarly, minimum prediction scores will be
0.085 and 0.061 for models with sigmoid and tanh activation
functions respectively. Softmax prediction score output of a
test sample from MNIST dataset is displayed in Figure 7 for
various models. We believe that this behaviour of our models,
just like the case in defensively distilled models, might also be
quite useful to prevent attackers to infer an information that
is supposed to be private from the output probability scores
of any prediction of the model and might contribute to the
privacy of model as suggested in [30], [31].

IV. EXPERIMENTS

A. Adversarial Assumptions

In this research study, we assume that the attacker can chose
to implement targeted or untargeted attacks towards the target
the model. Our assumption was that the attacker was fully
aware of the architecture and parameters of the target model
as in the case of whitebox setting and use the model as it

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

(a) normal model untargeted

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

(b) normal model targeted

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

0.04

0.02

0.00

0.02

0.04

(c) distilled model untargeted

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

500

600

700

800

900

1000

1100

(d) distilled model targeted

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

(e) our model untargeted

0.15
0.10

0.05
0.00

0.05
0.10

0.15 0.15

0.10

0.05

0.00

0.05
0.10

0.15

2.70

2.75

2.80

2.85

2.90

(f) our model targeted

Fig. 6: Loss surfaces of various models under untargeted and targeted attack scenarios

0 1 2 3 4 5 6 7 8 9
normal model

0.0

0.2

0.4

0.6

0.8

1.0

Scores

0 1 2 3 4 5 6 7 8 9
distilled model

0.0

0.2

0.4

0.6

0.8

1.0

Scores

0 1 2 3 4 5 6 7 8 9
our model (sigmoid)

0.0

0.2

0.4

0.6

0.8

1.0

Scores

0 1 2 3 4 5 6 7 8 9
our model (tanh)

0.0

0.2

0.4

0.6

0.8

1.0

Scores

Fig. 7: Softmax score outputs of various models

is. Another crucial assumption concerns the constraints of the
attacker. Clearly, the attacker should be limited to applying a
perturbation with lp norm up to certain ε value for an attack to
be unrecognizable to the human eye. For this study, we used
l∞ and l2 norm metrics to restrict the maximum perturbation

amount that an adversary can apply on the input sample.
Finally, the error rate of our proposed defense technique is
assessed over the percentage of resulting successful attack
samples which is proposed by Goodfellow et al. [16] and
recommended by Carlini et al. [32].

B. Experimental Setup

For our experiments, we used four sets of models for
each dataset as normal model, defensively distilled(student)
model, proposed model with sigmoid activation and proposed
model with tanh activation function at the output layer. By
using same architectures, we trained our CNN models using
MNIST (Digit) [33] and CIFAR-10 [34] datasets. For MNIST

TABLE I: Attack success rates on MNIST (Digit) - Part 1

Normal
Model

Distilled
Model

Our Model
(Sigmoid)

Our Model
(Tanh)

FGSM (l∞, ε : 0.1) 9.75% 2.13% 0.12% 0.38%
TGSM (l∞, ε : 0.1) 1.77% 1.74% 0.04% 0.03%
BIM (l∞, ε : 0.1) 34.20% 2.31% 0.05% 0.19%
Targeted-BIM (l∞, ε : 0.1) 13.04% 9.31% 0.03% 0.02%
CW (l2, ε : 1.35 conf : 0) 80.94% 59.99% 0.04% 0.07%
Deepfool (l2, ε : 1.35) 29.73% 21.22% 0.06% 0.14%

TABLE II: Attack success rates on MNIST (Digit) - Part 2

Normal
Model

Distilled
Model

Our Model
(Sigmoid)

Our Model
(Tanh)

FGSM (l∞, ε : 0.2) 31.09% 2.23% 0.38% 0.12%
TGSM (l∞, ε : 0.2) 9.86% 8.33% 0.03% 0.04%
BIM (l∞, ε : 0.2) 98.19% 2.71% 0.23% 0.08%
Targeted-BIM (l∞, ε : 0.2) 90.05% 77.77% 0.03% 0.04%
CW (l2, ε : 2.70 conf : 0) 100% 99.96% 0.11% 0.11%
Deepfool (l2, ε : 2.70) 97.69% 87.41% 0.17% 0.06%

(Digit) dataset, our models attained accuracy rates of 99.35%,
99.41%, 98.97% and 99.16% respectively. And, for CIFAR-
10 dataset, our models attained accuracy rates of 83.95%,
84.68%, 82.37% and 80.15% respectively. The architectures
of our CNN models and the hyperparameters used in model
training are listed Appendix A. Finally, we set the temperature
(T) value as 20 and 50 for MNIST and CIFAR datasets
respectively during the training of the defensively distilled
model and our proposed models.

C. Experimental Results

During our tests, we only implemented attack on the test
samples if our models had previously classified them accu-
rately. Because an adversary would have no reason to tamper
with samples that have already been labeled incorrectly. For
the TGSM and Targeted BIM attacks, we regard the attacks
successful only if each the perturbed image is classified by
the model as the chosen target class. We set the target class
to ”2” for MNIST (Digit) dataset, and ”Cars” for CIFAR-
10 dataset. We utilized an open source Python library called
Foolbox [35] to implement the attacks used in this study. The
attack parameters used in BIM and Targeted BIM are provided
in Table VII.

The results of our experiments for MNIST and CIFAR10
datasets are available in Tables I,II and Tables III,IV together
with the amount of perturbations applied and chosen norm
metrics. Just for CW and Deepfool attacks, we used the
l2 norm equivalent of the applied perturbation by using the
formula l2 = linf ×

√
n ×
√
2/
√
πe, where n is the input

sample dimension. When we check the results, we observe
that normally trained models are vulnerable to both targeted
and untargeted attack types, whereas defensively distilled
models are vulnerable to only targeted attack types. And our
proposed models (squeezed models) provides a high degree of
robustness to both targeted (TGSM,Targeted BIM, CW) and
untargeted (FGSM,BIM) attacks. This success results from the
effectiveness of our models in zeroing out the gradients in both
scenarios.

TABLE III: Attack success rates on CIFAR10 - Part 1

Normal
Model

Distilled
Model

Our Model
(Sigmoid)

Our Model
(Tanh)

FGSM (l∞, ε : 3/255) 72.38% 13.88% 4.07% 1.64%
TGSM (l∞, ε : 3/255) 22.84% 21.36% 0.56% 0.23%
BIM (l∞, ε : 3/255) 93.53% 15.01% 2.61% 0.95%
Targeted-BIM (l∞, ε : 3/255) 57.36% 57.22% 0.46% 0.22%
CW (l2, ε :0.798) 100.00% 100.00% 2.93% 1.36%
Deepfool (l2, ε : 0.798) 99.98% 99.76% 2.22% 0.87%

TABLE IV: Attack success rates on CIFAR10 - Part 2

Normal
Model

Distilled
Model

Our Model
(Sigmoid)

Our Model
(Tanh)

FGSM (l∞, ε : 6/255) 80.58% 13.85% 4.04% 1.7%
TGSM (l∞, ε : 6/255) 25.41% 25.58% 0.64% 0.3%
BIM (l∞, ε : 6/255) 96.75% 15.11% 3.07% 1.14%
Targeted-BIM (l∞, ε : 6/255) 68.16% 73.07% 0.6% 0.29%
CW (l2, ε :1.596) 100% 100% 3.08% 1.75%
Deepfool (l2, ε :1.596) 99.98% 100% 2.17% 0.89%

One other thing worth to mention about the result of our
experiments is that, in addition to gradient-based attacks, our
proposed models exhibit excellent performance against Deep-
fool attack as well. Generally, the reason behind the success
of Deepfool attack against standard DNN-based classifiers is
the linear nature of these models as argued by Goodfellow et.
al. [16] and the authors of Deepfool paper formalized their
methods based on this assumption [18]. However, since we
introduce additional non-linearity to the standard DNN clas-
sifiers at the output layer, Deepfool attack algorithm fails to
succeed in crafting adversarial samples compared to normally
or defensively distilled models.

V. CONCLUSION

In this study, we first showed that existing DNN-based
classifiers are vulnerable to gradient-based White-box attacks.
And, even the model owner uses a defensively distilled model,
the attacker can still have a chance to craft successful targeted
attacks. We then proposed a modification to the standard DNN-
based classifiers which helps to mask the gradients of the
model and prevents the attacker to exploit them to craft both
targeted and untargeted adversarial samples. We empirically
verified the effectiveness of our approach on standard datasets
which are heavily used by adversarial ML community. Fi-
nally, we demonstrated that our proposed model variants have
inherent resistance to Deepfool attack thanks to the increased
non-linearity at the output layer.

In this study, we focused on securing DNN based classifiers
against evasion attacks. However, it is shown that previous
defense approaches on adversarial robustness suffer from
privacy preservation issues [31]. In the future, we plan to
evaluate our proposed models against privacy related attack
strategies, specifically membership inference attacks.

VI. APPENDIX - A

Note: The common softmax layers are omitted for simplic-
ity. For our proposed methods, we have applied Sigmoid and
Tanh activation layers just after the final fully connected layers.
The model architectures are available in the shared Github
repository.

TABLE V: Model Architectures used in our experiments

Dataset Layer Type Layer Information

MNIST - Digit

Convolution (padding:1) + ReLU 3× 3× 32
Convolution (padding:1) + ReLU 3× 3× 32

Max Pooling 2× 2
Convolution (padding:1) + ReLU 3× 3× 64
Convolution (padding:1) + ReLU 3× 3× 64

Max Pooling 2× 2
Fully Connected + ReLU 3136× 200

Dropout p : 0.5
Fully Connected + ReLU 200× 200

Dropout p : 0.5
Fully Connected 200× 10

CIFAR10

Convolution (Padding = 1) + ReLU 3× 3× 32
Convolution (Padding = 1) + ReLU 3× 3× 64

Max Pooling (Stride 2) 2× 2
Convolution (Padding = 1) + ReLU 3× 3× 128
Convolution (Padding = 1) + ReLU 3× 3× 128

Max Pooling (Stride 2) 2× 2
Convolution (Padding = 1) + ReLU 3× 3× 256
Convolution (Padding = 1) + ReLU 3× 3× 256

Dropout p : 0.5
Max Pooling (Stride 2) 2× 2

Fully Connected + ReLU 4096× 1024
Dropout p : 0.5

Fully Connected + ReLU 1024× 256
Dropout p : 0.5

Fully Connected 256× 10

VII. APPENDIX - B

The gradient derivation of the cross-entropy loss coupled
with the softmax activation function is described in this part.
This derivation was detailed for the first time in [36]. We will
be using the derivation explained by Katzir et al. in [28] as it
is.

Softmax Function Gradient Derivation:
Let K represents number of classes in training data,

y = (y0, y1,, yK−1) denotes the one-hot encoded label
information, zi denotes the ith component of the logits layer
output given some network input x. The probability estimate of
the ith class associated with the input by the softmax function
is:

Pi =
ezi∑K−1
k=0 ezk

(17)

Pi’s derivative with respect to zk can then be calculated as
below:

∂Pi
∂zj

=
∂
(

ezi∑K−1
k=0 ezk

)
∂zj

(18)

In the case of i = j, we get:

∂Pi
∂zj

=
∂
(

ezi∑K−1
k=0 ezk

)
∂zj

=
ezi
∑K−1
k=0 ezk − eziezj(∑K−1
k=0 ezk

)2
=

ezi∑K−1
k=0 ezk

· (
∑K−1
k=0 ezk)− ezj∑K−1

k=0 ezk
= Pi(1− pj)

(19)

Likewise, when i 6= j, we get:

∂Pi
∂zj

=
∂(ezi∑K−1

k=0 ezk
)

∂zj
=

0− eziezj
(
∑K−1
k=0 ezk)2

=
−ezi∑K−1
k=0 ezk

· ezj∑K−1
k=0 ezk

= −PiPj
(20)

When we combine the two previous results, we get:

∂Pi
∂zj

=

{
Pi(1− Pj), if i = j

−PiPj , i 6= j
(21)

The cross-entropy loss L for any input x is formulated as :

L = −
K−1∑
i=0

yi · log(Pi) (22)

Assuming ‘log’ as natural logarithm (ln) for simplicity, we
may formulate the gradient of the cross-entropy loss with
respect to the ith logit as below:

∂Pi
∂zj

=
∂(−∑K−1

i=0 yi · log(Pi))
∂zi

= −
K−1∑
k=0

yk ·
∂ log(Pk)

∂zi
= −

K−1∑
k=0

yk ·
∂ log(Pk)

∂Pk
· ∂Pk
∂zi

= −
K−1∑
k=0

yk ·
1

Pk
· ∂Pk
∂zi

(23)

Combining Cross-Entropy and Softmax Function Deriva-
tives:

Knowing from Eq. 21 that the softmax derivative equation
for the case when i = j differs from the other cases, we
rearrange the loss derivative equation slightly to differentiate
this case from the others:

∂L

∂zi
= −

K−1∑
k=0

yk ·
1

Pk
· ∂Pk
∂zi

= −yi ·
1

Pi
· ∂Pi
∂zi
−
∑
k 6=i

yk ·
1

Pk
· ∂Pk
∂zi

(24)

We can now apply the derivative of softmax we derived
before to obtain:

−yi ·
Pi(1− Pi)

pi
−
∑
k 6=i

yk · (−PkPi)
Pk

= −yi + yiPi +
∑
k 6=i

ykPi

= Pi

yi +∑
k 6=i

yk

− yi
(25)

Luckily, because Y is the one-hot encoded actual label
vector, we know that:

TABLE VI: CNN model parameters

MNIST (Digit) CIFAR-10
Normal
Model

Distilled
Model

Ours
(Sigmoid)

Ours
(Tanh)

Normal
Model

Distilled
Model

Ours
(Sigmoid)

Ours
(Tanh)

Opt. Adam Adam Adam Adam Adam Adam Adam Adam
LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Batch S. 128 128 128 128 128 128 128 128
Dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.05 0.25
Epochs 20 20 20 20 50 50 50 50
Temp. 1 20 20 20 1 50 50 50

TABLE VII: Parameters that are used in BIM and Targeted
BIM attacks: α denotes the step size and i denotes # of steps
for a perturbation budget ε

Dataset Parameters lp norm
MNIST Digit ε = 0.1 & 0.2, α = ε · 0.1, i = 20 l∞

CIFAR10 ε = 3/255 & 6/255, α = ε · 0.1, i = 20 l∞

yi +
∑
k 6=i

yk =
K−1∑
k=0

yk = 1 (26)

and therefore we finally end up with below expression as
the derivative of the loss with respect to any logit:

∂L

∂zi
= Pi

yi +∑
k 6=i

Yk

− yi = Pi − yi (27)

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2014.

[2] O. F. Tuna, F. O. Catak, and M. T. Eskil, “Exploiting epistemic
uncertainty of the deep learning models to generate adversarial samples,”
Multimedia Tools and Applications, vol. 81, no. 8, pp. 11 479–11 500,
Mar 2022.

[3] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-box
adversarial attacks with bandits and priors,” 2019.

[4] O. F. Tuna, F. O. Catak, and M. T. Eskil, “Closeness and uncertainty
aware adversarial examples detection in adversarial machine learning,”
Computers and Electrical Engineering, vol. 101, p. 107986, 2022.

[5] D. Meng and H. Chen, “Magnet: a two-pronged defense against adver-
sarial examples,” 2017.

[6] M. Sato, J. Suzuki, H. Shindo, and Y. Matsumoto, “Interpretable
adversarial perturbation in input embedding space for text,” 2018.

[7] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks
on speech-to-text,” 2018.

[8] S. G. Finlayson, H. W. Chung, I. S. Kohane, and A. L. Beam,
“Adversarial attacks against medical deep learning systems,” 2019.

[9] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal,
“Darts: Deceiving autonomous cars with toxic signs,” 2018.

[10] N. Morgulis, A. Kreines, S. Mendelowitz, and Y. Weisglass, “Fooling a
real car with adversarial traffic signs,” 2019.

[11] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by
modeling the intrinsic properties of deep neural networks,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[12] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.

[13] F. O. Catak, S. Sivaslioglu, and K. Sahinbas, “A generative model based
adversarial security of deep learning and linear classifier models,” 2020.

[14] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, “Securing con-
nected autonomous vehicles: Challenges posed by adversarial machine
learning and the way forward,” IEEE Communications Surveys Tutorials,
vol. 22, no. 2, pp. 998–1026, 2020.

[15] K. Sadeghi, A. Banerjee, and S. K. S. Gupta, “A system-driven tax-
onomy of attacks and defenses in adversarial machine learning,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 4, pp. 450–467, 2020.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[17] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2017.

[18] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” 2016.

[19] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017.

[20] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: a query-efficient black-box adversarial attack via random search,”
2020.

[21] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1277–1294.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015.

[23] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
2016.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2019.

[25] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against
adversarial attacks using high-level representation guided denoiser,”
2018.

[26] S. Shen, G. Jin, K. Gao, and Y. Zhang, “Ape-gan: Adversarial pertur-
bation elimination with gan,” 2017.

[27] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” 2020.

[28] Z. Katzir and Y. Elovici, “Gradients cannot be tamed: Behind the
impossible paradox of blocking targeted adversarial attacks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 1,
pp. 128–138, 2021.

[29] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients,” 2017.

[30] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” 2017.

[31] L. Song, R. Shokri, and P. Mittal, “Privacy risks of securing machine
learning models against adversarial examples,” Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
Nov 2019.

[32] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” 2019.

[33] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[34] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

[35] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox to
benchmark the robustness of machine learning models,” 2018.

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[36] D. Campbell, R. A. Dunne, and N. A. Campbell, “On the pairing
of the softmax activation and cross–entropy penalty functions and the
derivation of the softmax activation function.”

	I Introduction
	II Related Works
	II-A Adversarial evasion attacks
	II-A1 Fast-Gradient Sign Method
	II-A2 Iterative Gradient Sign Method
	II-A3 Deepfool Attack
	II-A4 Carlini&Wagner Attack

	II-B Adversarial defense
	II-B1 Defensive Distillation
	II-B2 Adversarial Training

	III Approach
	III-A Chosen Activation Functions
	III-B Proposed Method
	III-C Visual Representations of Loss Surfaces
	III-D Softmax prediction scores of proposed architectures

	IV Experiments
	IV-A Adversarial Assumptions
	IV-B Experimental Setup
	IV-C Experimental Results

	V Conclusion
	VI Appendix - A
	VII Appendix - B
	References

