University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

1-1-2010

Using coverage information to guide test case selection in Adaptive
Random Testing

Zhiquan Zhou
University of Wollongong, zhiquan@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

6‘ Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Zhou, Zhiquan: Using coverage information to guide test case selection in Adaptive Random Testing
2010, 208-213.
https://ro.uow.edu.au/infopapers/1723

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1723&utm_medium=PDF&utm_campaign=PDFCoverPages

Using coverage information to guide test case selection in Adaptive Random
Testing

Abstract

Random Testing (RT) is a fundamental software testing technique. Adaptive Random Testing (ART)
improves the fault-detection capability of RT by employing the location information of previously executed
test cases. Compared with RT, test cases generated in ART are more evenly spread across the input
domain. ART has conventionally been applied to programs that have only numerical input types, because
the distance between numerical inputs is readily measurable. The vast majority of computer programs,
however, involve non-numerical inputs. To apply ART to these programs requires the development of
effective new distance measures. Different from those measures that focus on the concrete values of
program inputs, in this paper we propose a method to measure the distance using coverage information.
The proposed method enables ART to be applied to all kinds of programs regardless of their input types.
Empirical studies are further conducted for the branch coverage Manhattan distance measure using the
replace and space programs. Experimental results show that, compared with RT, the proposed method
significantly reduces the number of test cases required to detect the first failure. This method can be
directly applied to prioritize regression test cases, and can also be incorporated into code-based and
model-based test case generation tools.

Keywords
era2015

Disciplines
Physical Sciences and Mathematics

Publication Details

Zhou, Z. (2010). Using coverage information to guide test case selection in Adaptive Random Testing.
34th Annual IEEE International Computer Software and Applications Conference Workshops, COMPSACW
2010 (pp. 208-213). Piscataway, New Jersey, USA: IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/1723

https://ro.uow.edu.au/infopapers/1723

2010 34th Annual IEEE Computer Software and Applications Conference Workshops

Using Coverage Information to Guide Test Case Selection
in Adaptive Random Testing

Zhi Quan Zhou
School of Computer Science and Software Engineering
University of Wollongong
Wollongong, NSW 2522, Australia
Email: zhiquan@uow.edu.au

Abstract—Random Testing (RT) is a fundamental software
testing technique. Adaptive Random Testing (ART) improves
the fault-detection capability of RT by employing the location
information of previously executed test cases. Compared with
RT, test cases generated in ART are more evenly spread across
the input domain. ART has conventionally been applied to
programs that have only numerical input types, because the
distance between numerical inputs is readily measurable.

The vast majority of computer programs, however, involve
non-numerical inputs. To apply ART to these programs re-
quires the development of effective new distance measures.
Different from those measures that focus on the concrete values
of program inputs, in this paper we propese a method to
measure the distance using coverage information. The proposed
method enables ART to be applied to all kinds of programs
regardless of their input types.

Empirical studies are further conducted for the branch
coverage Manhattan distance measure using the replace and
space programs. Experimental results show that, compared
with RT, the proposed method significantly reduces the number
of test cases required to detect the first failure. This method
can be directly applied to prioritize regression test cases, and
can also be incorporated into code-based and model-based test
case generation tools.

Keywords-software testing; adaptive random testing; adap-
tive random sequence; test case prioritization; distance mea-
sure.

[. INTRODUCTION

Testing is a critical activity in software development
and evolution, and accounts for over fifty percent of the
development cost in a typical commercial organization [1],
[2]. Testing, however, is an imperfect process and is always
conducted under time and resource constraints. It is therefore
important to know how to perform testing in a more effective
way at a lower cost.

Random Testing (RT) is a fundamental testing method [3],
[4]. As pointed out by Chen et al. [5], [6], RT is simple in
concept, often easy to implement, has been demonstrated to
be effective in detecting failures, and is good at exercising
systems in a way that may not be expected by human testers.
When the source code and the specifications of the program
under test are not available or incomplete, RT may be the
only practical choice. RT has been popularly applied to test
real-world software for decades, and forms a core part of
many other testing methods [2], {7], [8], [9], [10].

978-0-7695-4105-1/10 $26.00 © 2010 IEEE
DOI 10.1109/COMPSACW .2010.43

208

On the other hand, since RT does not use any available
information to guide test case selection, it is often argued
that RT is inefficient. To reduce the number of test cases
required to detect a failure, Malaiya [11] introduced an
antirandom testing method, in which the first test case is
selected randomly, and each subsequent test case is selected
by choosing the one whose total distance to all the previously
executed test cases is maximum. Antirandom testing has a
limited degree of randomness: the first test case is selected
randomly; whereas the sequence of all the subsequent test
cases is deterministic. In antirandom testing, the total num-
ber of test cases also needs to be known in advance.

An Adaptive Random Testing (ART) method has been
examined by a growing body of research [5], [6], [12],
[13], [14], [15], [16], [17]. As noted by Jaygarl et al.
[18], ART “became one of the most effective approaches
in the automatic test generation area.” ART improves the
fault-detection capability of RT in terms of using fewer
test cases to detect the first failure. ART is based on the
observations that many program faults result in failures in
contiguous regions of the input domain (in other words,
failure-causing inputs are often clustered). In such situa-
tions, if previously executed test cases have not revealed
a failure then, intuitively, selecting an input close to them
will also be less likely to detect a failure. ART therefore
systematically guides the generation or selection of random
test cases by making them evenly spread over the input
domain. Based on this principle, several ART algorithms
(or methods) have been proposed, all of which make use
of the location information of previously executed test
cases that have not revealed a failure. Since the location
information and pass/fail information is a kind of feedback
from previous tests, it is reasonable to consider ART an
instance of software cybernetics [19]. In general, software
cybernetics explores the interplay between software and
control. It should be noted that ART differs from antirandom
testing in that ART preserves the randomness of RT and
that ART does not require the predetermination of the total
number of test cases.

ART has conventionally been applied to programs that
have only numerical input types because it calculates the
distance between test cases using the Euclidean measure.
Merkel [20] and Kuo [21] proposed a distance measure

IEEE
computer
® psoqety

based on the concepts of categories and choices proposed by
Ostrand and Balcer [22] for the category-partition method.
Ciupa et al. [16] applied ART to object-oriented software
by proposing a new measure for calculating the distance
between objects, and this work was further enhanced by
Jaygarl et al. [18] for the purpose of testing object-oriented
software. Chen et al. [6] presented a synthesis of significant
research results and insights into ART. In particular, Chen et
al. pointed out the potential of using ART to order a given
test suite, such as for regression test case prioritization. Such
an order is called an adaptive random sequence.

In this paper we propose a method to measure the
distance! between test cases based on coverage informa-
tion, and conduct empirical evaluation to investigate the
effectiveness of the proposed method. This method enables
ART to be applied to any types of programs without any
requirements on their input types. Specifications of the
program under test are not required either.

The rest of this paper is organized as follows: Section II
introduces an ART algorithm, namely FSCS-ART, that we
will adopt for this study. Section III proposes a coverage-
based distance measure for use with the FSCS-ART algo-
rithm. Section IV describes the design of experiments for
empirical evaluation, and Section V presents the exper-
imental results. Section VI briefly reviews some related
work. Section VII discusses related issues, points out future
research directions, and concludes the paper.

[I. THE ART ALGORITHM

Following the previous practices [13], [17], F-measure is
adopted as a metric to compare the fault-detection capabil-
ities of different testing methods. F-measure refers to the
number of test cases needed to be run to reveal the first
failure.

The principle of ART is to evenly spread test cases.
This principle can be implemented in different ways and,
therefore, several ART algorithms have been developed.
The first ART algorithm proposed is known as the Fixed
Size Candidate Set ART (FSCS-ART) [12], [14]. In this
algorithm, an initial test case is randomly chosen and run.
Then, to choose a new test case, a fixed number of candi-
dates are randomly generated (the recommended number of
candidates is 10 [12], [14]). For each candidate ¢;, the closest
previously executed test case is located and the distance d; is
recorded. In other words, d; is the closest distance between
¢; and the set of all the previously executed test cases. The
candidate with the maximum d; is selected as the next test
case, and all the other candidates are discarded. This process
is repeated until the testing stopping criterion is met. The
time complexity of this algorithm is in O(n?), where n is
the total number of test cases finally generated.

VIn this paper, the terms distance measure and difference measure are
used interchangeably.

209

The FSCS-ART algorithm is adopted in this study because
of its simplicity. The number of candidates has been set to
10 as recommended.

111. THE DIFFERENCE MEASURE

Consider the case of regression testing. Situations other
than regression testing will be discussed in Section VIL
Normally, in regression testing, certain operational profile
data of previous tests are available. For example, Rothermel
et al. [23] studied nine different test case prioritization.
techniques. Apart from the first three techniques (namely
“no prioritization”, “random”, and “optimal”) that served
only as experimental controls, all the other six techniques
use test coverage information, such as statement and branch
coverage, produced by prior executions of test cases, to
prioritize the same set of test cases for subsequent execution.

Following the same source of motivation that “the avail-
ability of test execution data can be an asset” [23], in this
paper we propose a metric, namely the Coverage Manhattan
Distance (CMD), to measure the difference between any two
arbitrary test cases. During the execution of a program, we
can observe whether certain elements of the program have
been touched/covered. Such an element can be, for instance,
a node or an edge in the program’s control flow graph, data
flow graph, call graph, or other types of graphs/diagrams.
More concrete examples of such elements include, to name
a few, statements, branches, basic blocks, functions, and
function calls. To record coverage information, if an element
of the given type has been exercised at least once, then its
corresponding flag is set to 1; otherwise the flag is set to 0.
Note that CMD concerns coverage but does not count the
frequency. In other words, frequencies 3 and 100 are both
treated as “1”.

In this paper we focus on branch coverage. Let x be a test
case, and E, be a vector that records the branch coverage
information of z. More formally, let E; = (z1, 22, ..., Ts)
be an execution profile of z, where z; € {0, 1} for ¢ =
1,2,...,n, and n is the total number of branches in the
program (note that each condition has two branches, namely
a true branch and a false branch). The value of z; is 1 if
and only if the ith branch of the program has been covered
during the execution of z; otherwise z; = 0. Similarly, let
y be another test case, and Ey = (y1, Y2, ..., Yn) records
the branch coverage information of y. The CMD between =
and y is given by

"
CMD(z, y) = > |z — 4. (1)
=1 .

In the context of regression testing, E, and E, actually
store coverage data of the previous tests. Therefore, here
we have an assumption that past coverage data are useful
to predict subsequent execution behavior with sufficient
accuracy after modifications are made to the program code.
This assumption is not only supported by the literature of

regression testing, but also supported by our empirical study
results to be reported shortly.

IV. THE EXPERIMENTS

To assess the fault-detection capability of the pro-
posed method, two well-known subject programs were
used to conduct empirical evaluation. The first one
is the replace program of the Siemens suite of pro-
grams [24], downloaded from http://pleuma.cc.gatech.edu/
aristotle/Tools/subjects/. The replace program performs reg-
ular expression matching and substitutions. It is the largest
and most complex one among the Siemens suite of pro-
grams, with 512 lines of C code (excluding blanks and
comments) and 20 functions. Also included in the replace
package are 32 faulty versions that cover a variety of logic
errors and 5,542 test cases.

The second subject program is the space program, down-
loaded from the Software-artifact Infrastructure Repository
(http://sir.unl.edu) [25]. The program consists of 6,199 lines
of C code (excluding blanks and comments) and 136 func-
tions, and works as an interpreter for an array definition lan-
guage. The space package includes 38 faulty versions which,
according to the Software-artifact Infrastructure Repository,
were real faults discovered during the program’s develop-
ment. Also included in the space package are 13,551 test
cases.

As introduced above, each subject program package in-
cludes a base version, associated faulty versions, and a suite
of test cases. For each subject program, the experiment was
conducted as follows: we first run the base version using
all the provided test cases. During each test case execution
of the base version, the Linux utility gcov (a standard test
coverage tool in concert with gcc) was used to collect
branch coverage data. Outputs of the base version were also
recorded as the test oracle.

Then, for each faulty version, we generated two sequences
(permutations) of all the test cases: a pure random (PR)
sequence and an adaptive random (AR) sequence. The
latter was generated using the FSCS-ART algorithm with
the branch coverage Manhattan distance as the difference
measure between test cases. Note that the coverage data
were collected from the base version rather than the faulty
version. The F-measures of the PR sequence and the AR
sequence were recorded (a failure is detected when the faulty
version’s output differs from the base version’s output). For
each faulty version, this process was repeated 1,000 times.

V. EXPERIMENTAL RESULTS
A. Results of Fxperiments with the Replace Program

Results of experiments with the replace program are
shown in Table I . The replace package includes 32 faulty
versions. Version 32 is excluded from the experiments
because it generated identical outputs as the base version on
all the 5,542 test cases. Furthermore, versions 13, 23, and

Table I
RESULTS OF EXPERIMENTS WITH replcce PROGRAM (1,000 TRIALS,
5,542 TEST CASES). OFRT: OBSERVED MEAN F-MEASURE OF RT;,
TFRT: THEORETICAL MEAN F-MEASURE OF RT; FART: OBSERVED
MEAN F-MEASURE OF ART.

OFRT TFRT FART FART/OFRT | FART/TFRT

vl 80.017 80.333] 37.109 46.38% 46.19%
v2 146.697fF 145.868] 83.123 56.66% 56.99%
v3 43.680 42.313] 11.867 27.17% 28.05%
v4 38.316 38.493] 11.497 30.01% 29.87%
v5 20.381 20.379| 14.817 72.70% 72.71%
vé 56.116 57.144} 59.850 106.65% 104.73%
v7 66.081 65.988] 26.754 40.49% 40.54%
v8 96.982} 100.782] 42.675 44 .00% 42.34%
v9 187.797] 178.806]163.446 87.03% 91.41%
v1io 230.119] 230.958]|168.703 73.31% 73.04%
vil 169.558{ 178.806]165.801 97.78% 92.73%
viz 18.221 17.881) 15.759 86.49% 88.13%
vli4 41.706 40.167F 22.755 54.56% 56.65%
v1l5s 92.387 90.869) 74.041 80.14% 81.48%
vle 63.952 65.988] 25.656 40.12% 38.88%
v1i7 220.298| 221.720{222.882 101.17% 100.52%
vls 25.546 26.270f 20.143 78.85% 76.68%
v19} 1348.250] 1385.750]557.812 41.37% 40.25%
v20 238.456| 241.000]245.617 103.00% 101.92%
w21 1381.730) 1385.750]777.449 56.27% 56.10%
v22 270.818f 277.150256.119 94 .57% 92.41%
v24 30.952 32.415} 12.369 39.96% 38.16%
v25|1360.870] 1385.750] 752.841 55.32% 54.33%
v27 20.309 20.99%6 8.392 41.32% 39.97%
v28 38.684 38.762] 11.689 30.22% 30.16%
v29 83.424 85.277] 25.591 30.68% 30.01%
v30 20.150 19.449 6.719 33.34% 34.55%
v3l 26.172 26.270| 18.495 70.67% 70.40%
col:61.44% col:61.04%

avg 229.202] 232.1914137.142 row:59.83% row:59.06%

26 are not stable as each of them produced different outputs
(hence different sets of failure-causing test cases) when
run at different times or under different environments. We
therefore also excluded these versions from the experiments.

In Table 1, the column OFRT gives the observed mean F-
measure of random testing, calculated from the 1,000 trials.
The column TFRT gives the theoretical mean F-measure of
random testing. Let n be the total number of test cases
and m (0 < m < n) be the total number of failure-
causing test cases. Because the testing is through sampling
without replacement, we cannot calculate TFRT by simply
calculating n/m. Instead, TFRT is obtained as follows:

n—rm--1

TFRT= Y pixi,

i=1

where p; is the probability that the first failure is detected

@

at the 4th test run. p; is calculated iteratively as follows:
p1=m/n;

p2 = (1 =p1) x (m/(n—1));

p3 = (1 —p1—p2) x (m/(n —2));

Prn—m+1 = (1=p1—-..=Pp-m) X (Mm/(n~(n—m+1-1)))
= (1 —P1—... _pn—m,)-

For the replace program, n = 5,542, and different faulty
versions have different m values. The column FART gives
the observed mean F-measure of adaptive random testing,
calculated from the 1,000 trials. The columns FART/OFRT
and FART/TFRT give the ratio of ART F-measure to RT
F-measure. A smaller ratio indicates a better fault-detection
capability of ART, and a ratio smaller than 1 means ART
outperformed RT.

Each row of Table I corresponds to a faulty version, and
the last row shows the average of each column. Note that
column 5 of the last row shows two values: “col:61.44%” is
the mean of the column, whereas “row:59.83%” is the mean
FART (137.142) divided by mean OFRT (229.202). Column
6 of the last row is explained similarly.

Table I shows that ART outperformed RT in all the
versions except v6, v17, and v20 (highlighted), but the
differences between ART and RT in these three versions are
marginal. The highest saving occurs for v3, for which the
ratio is around 28%, which means that ART used about 72%
fewer test cases than RT to detect the first failure. Overall,
the average ratio of ART F-measure to RT F-measure is
around 61%, which clearly indicates a significant saving.

It is worth noting that, in Table I , no correlation could
be found between the fault-detection capability of ART
(in terms of FART/OFRT or FART/TFRT ratios) and the
failure rate (a higher TFRT indicates a smaller failure rate).
This observation does not agree with the simulation results
reported in Chen et al. [S], which state that ART will achieve
more gain for smaller failure rates. We note, however, that
the experiments conducted in this study have a different
context (and probably different failure patterns) from the
numerical simulations conducted in Chen et al. [5]. Further
investigation is needed to understand this phenomenon.

B. Results of Experiments with the Space Program

Experimental results with the space program are shown in
Table II , where versions 1, 2, 32, and 34 are excluded from
the experiments because they produced identical outputs as
the base version. Table IT shows that ART outperformed
RT in all versions except v3. Note that the TFRT values for
v4, v6, and v30 are smaller than 2, which indicates a very
high failure rate in these versions. Given that the smallest
possible F-measure is 1, there is little room for improvement
for these versions. The minimum ratio of ART F-measure
to RT F-measure is achieved for v22 (below 17%).

The average ratio of ART F-measure to RT F-measure
is between 30.92% and 54.78%, as shown in the last two

211

Table II
RESULTS OF EXPERIMENTS WITH space PROGRAM (1,000 TRIALS,
13,551 TEST CASES). OFRT: OBSERVED MEAN F-MEASURE OF RT;
TFRT: THEORETICAL MEAN F-MEASURE OF RT; FART: OBSERVED
MEAN F-MEASURE OF ART.

OFRT TFRT FART FART/OFRT | FART/TFRT
v3 20.460 20.978 23.221 113.49% 110.69%
v4 1.099% 1.092 1.08S% 98.73% 99.36%
v5 3.297 3.418 2.957 89.69% 86.49%
v6 1.060 1.066 1.049 98.96% 98.38%
v7 84.664 82.634 22.786 26.91% 27.57%
v8 146.672 141.167 47.787 32.58% 33.85%
v9 3.341 3.163 2.641 79.05% 83.51%
v1io 11.131 11.163 6.718 60.35% 60.18%
vll 12.641 12.607 8.212 64.96% 65.14%
vli2 406.105| 398.588 124 .465 30.65% 31.23%
vl3 17.424 17.487 8.024 46.05% 45.89%
vi4 7.604 7.691 4.034 53.05% 52.45%
vl5s 3.931 3.879 2.435 61.94% 62.78%
vlé 27.261 26.889 6.898 25.30% 25.65%
v17 70.237 68.792 68.233 97.15% 99.19%
vig 393.625] 398.588 124 .836 31.71% 31.32%
v1i9 11.015 10.798 8.594 78.02% 79.59%
v20 65.505 64.228 18.786 28.68% 29.25%
v21 64.621 64.228 18.528 28.67% 28.85%
v22 209.063 208.492 34.768 16.63% 16.68%
v23 48.229 49.280 16.954 35.15% 34.40%
v24 19.157 18.413 6.032 31.49% 32.76%
v25s 3.181 3.118 2.594 81.55% 83.21%
va6 8.197 8.179 4,133 50.42% 50.53%
v27 388.891] 387.200 66.494 17.10% 17.17%
v28 1.932 2.003 1.683 87.11% 84.01%
v29 19.462 18.667 9.539 49.01% 51.10%
v30 1.262 1.256 1.193 94 .53% 95.01%
v3l 8.436 8.263 5.119 60.68% 61.95%
v33 398.249| 410.667 74.055 18.60% 18.03%
v35 63.649 63.624 19.210 30.18% 30.19%
v36 145.472 148.923 129.137 88.77% 86.71%
v37 145.906 145.720 43.189 29.61% 29.65%
v38 382.884 366.270 72.613 18.96% 19.82%

columns of the last row. This result is even better than that
of the replace program. We reckon that ART should perform
better for larger programs, the inputs of which normally have
a greater diversity in coverage. While this work cannot be
directly compared with Chen and Merkel [17], we note that
theoretically no testing method can achieve an F-measure
less than half of the F-measure of random testing with
replacement, when the size, shape, and orientation (but not
the location) of failure regions are known [17].

VI. RELATED WORK

Very recently, Jiang et al. [26] used the Jaccard distance
to measure the difference between two test cases for ART.
The Jaccard distance between two test cases ¢ and b is given
by D{(a, b) =1—|ANB|/|AUB)|, where A and B are the
sets of statements (or branches or functions) covered by a
and b, respectively. Furthermore, instead of using a fixed
number of candidates, Jiang et al.’s algorithm constructs
the candidate set by iteratively adding a random candidate
into the set. This construction procedure will stop when
the new candidate cannot increase program coverage or the
candidate set is full. Jiang et al. empirically investigated the
performance of a family of ART algorithms that employ
the Jaccard distance for regression test case prioritization.
Their empirical study results show that ART was statistically
superior to RT in terms of the APFD metrics and that
one of the ART algorithms was consistently comparable to
the “additional” algorithm (one of the best coverage-based
regression test case prioritization algorithms) in terms of
APFD, and yet had a lower time cost.

Jiang et al. [26] and the author of the present paper have
conducted their studies independently without knowledge of
each other’s work. A comparison of Manhattan-distance-
based ART and Jaccard-distance-based ART against the
APFD metrics is, therefore, left as immediate future work.
An obvious difference between the two is that whenever the
intersection of sets A and B is empty, the Jaccard distance
between A and B always takes the maximum value “17,
but this is not the case with the Manhattan distance. For
instance, suppose there are five branches in the program
under test, namely by, b, ..., bs. Consider three test cases
z, y and z, of which the branch-coverage execution profiles
are (1,0,0,0,0),(0, 1,0, 0, 0) and (0, 1, 1, 1, 1), respec-
tively. Because of the empty intersection of the covered
branches, the Jaccard distance between test cases x and y
is 1, and that between z and z is also 1. In comparison,
the Manhattan distance between z and y is 2, whereas that
between x and z is 5. As aresult, if {z} is the set of executed
test cases and {y, z} is the set of candidates, then Jiang et
al.’s approach [26] will treat y and z equally and randomly
choose one of them to be the next test case; whereas the
approach presented in the present paper will consider z to
be farther apart from z and, therefore, select z to be the
next test case. This treatment agrees with the intuition that

z (rather than y) differs more from z because the execution

profiles of z and z do not share any common value on any
branch, but the execution profiles of z and y share common
value “0” on three branches, namely on b3, by and bs.
ART was developed as an enhancement to. RT with an
objective of reducing the number of test cases to reveal
the first failure. A related technique, known as adaptive
testing, was developed by Cai et al. [27]. Following the idea
of adaptive control, adaptive testing adjusts the selections

212

of test actions online to achieve an optimization objective,
such as minimizing the total cost of revealing and removing
multiple faults.

VII. DISCUSSIONS AND CONCLUSION

ART distance measures focused on input values are lim-
ited to programs that accept prescribed types of inputs. This
paper proposed a general method to measure the distance
between test cases based on coverage information. This kind
of method enables ART to be applied to any programs
without any limitation on input types. We then focused on a
specific type of coverage information, the branch coverage,
and conducted empirical evaluations. Experimental results
with replace and space programs show that the proposed
method improves the fault-detection capability of random
testing significantly.

The proposed method can be directly used to prior-
itize regression test cases. Future research should study
the usefulness of other types of coverage information for
ART, including coverage of elements in function call graphs
and in other types of graphs/models used in modelling
systems, such as state diagrams and other UML diagrams.
Furthermore, the coverage Manhattan distance studied in this
paper only concerns coverage without counting frequency.
Other measures involving frequency information should be
investigated. For example, we can also use Equation (1) to
define a Frequency Manhattan Distance by changing the
meaning of z; and y; from “coverage” to “frequency”.

Apart from regression testing, the proposed method can
be applied to various test case generation tools. For example,
some modern white-box testing tools such as CREST [2] use
some random strategy to select the paths to be covered, and
then use symbolic execution techniques to generate test cases
to cover the selected paths. We expect that the proposed
method can help improve the effectiveness of the path selec-
tion strategies in these tools. Indeed, the proposed method
is not limited to white-box testing or node/edge coverage
of graphs since coverage information can be derived from
almost all kinds of models for systems and software.

A concern with ART is its time complexity in test case
selection. Compared with test case generation, however, it is
often more expensive or time consuming to run a test or to
verify a test result. In these situations, it is highly desirable
to have a strategy that can reduce the number of required
test case executions, and ART helps to achieve this goal.

In this paper, we only studied one ART algorithm, namely
FSCS-ART. There are other ART algorithms with lower
time complexity. A future research topic is to investigate the
feasibility of applying coverage-based distance measures to
these ART algorithms.

VIII. ACKNOWLEDGMENTS

The author would like to thank De Hao Huang for
discussions on difference measures. This project is supported
in part by a Small Grant of the University of Wollongong.

(1

2

(31

{4]

[5]

(6]

M

(8]

9

—

[10]

(11]

[12]

{13]

(14

REFERENCES

B. Hailpern and P. Santhanam, “Sofiware debugging, testing,
and verification,” /BM Systems Jouwrnal, vol. 41, no. 1, pp.
4-12, 2002.

J. Bumim and K. Sen, “Heuristics for scalable dynamic test
generation,” in Proceedings of the 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 1EEE
Computer Society Press, 2008, pp. 443-446.

R. Hamlet, “Random testing,” in Encyclopedia of Software
Engineering, J. Marciniak, Ed. John Wiley & Sons, 2002,
pp- 970-978.

P. S. Loo and W. K. Tsai, “Random testing revisited,”
Information and Software Technology, vol. 30, no. 7, pp. 402—
417, 1988.

T. Y. Chen, E-C. Kuo, and Z. Q. Zhou, “On favourable
conditions for adaptive random testing,” /nternational Journal
of Software Engineering and Knowledge Engineering, vol. 17,
no. 6, pp. 805-825, 2007.

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The ART of test case diversity,” Journal of
Systems and Software, vol. 83, no. 1, pp. 60—66, 2010.

G. F. Renfer, “Automatic program testing,” in Proceedings of
the 3rd Conference of the Computing and Data Processing
Society of Canada. University of Toronto Press, 1962.

D. L. Bird and C. U. Munoz, “Automatic generation of ran-
dom self-checking test cases,” /BM Systems Journal, vol. 22,
no. 3, pp. 229-245, 1983.

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of
the reliability of Unix utilities,” Communications of the ACM,
vol. 33, no. 12, pp. 3244, 1990.

J. E. Forrester and B. P. Miller, “An empirical study of
the robustness of Windows NT applications using random
testing,” in Proceedings of the 4th USENIX Windows Systems
Symposium, 2000, pp. 59-68.

Y. K. Malaiya, “Antirandom testing: Getting the most out of
black-box testing,” in Proceedings of the G6th International
Symposium on Software Reliability Engineering, 1995, pp.
86-95.

[. K. Mak, “On the effectiveness of random testing,” Master’s
thesis, The University of Melbourne, Melbourne, Australia,
1997.

T. Y. Chen, T. H. Tse, and Y. T. Yu, “Proportional sampling
strategy: A compendium and some insights,” Journal of
Systems and Software, vol. 58, pp. 65-81, 2001.

T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random
testing,” in Proceedings of the 9th Asian Computing Science
Conference (ASIAN 2004), Lecture Notes in Computer Sci-
ence 3321. Springer-Verlag, 2004, pp. 320-329.

213

[13]

(16]

{171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

£25]

[26]

27]

T. Y. Chen, D. H. Huang, and Z. Q. Zhou, “Adaptive
random testing through iterative partitioning,” in Proceedings
of the 11th Ada-Europe International Conference on Reliable
Software Technologies (Ada-Europe 2006), Lecture Notes in
Computer Science 4006. Springer-Verlag, 2006, pp. 155—
166.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO:
Adaptive random testing for object-oriented software,” in
Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), 2008.

T. Y. Chen and R. Merkel, “An upper bound on software
testing effectiveness,” ACM Transactions on Software Engi-
neering and Methodology, vol. 17, no. 3, pp. 16:1-16:27,
2008.

H. Jaygarl, C. K. Chang, and S. Kim, “Practical extensions
of a randomized testing tool,” in Proceedings of the 33rd
Annual International Computer Software and Applications
Conference (COMPSAC 2009). IEEE Computer Society
Press, 2009, pp. 148-153.

K.-Y. Cai, T. Y. Chen, and T. H. Tse, “Towards research on
software cybernetics,” in Proceedings of 7th IEEE Interna-
tional Symposium on High Assurance Systems Engineering.
[EEE Computer Society Press, 2002, pp. 240-241.

R. G. Merkel, “Analysis and enhancements of adaptive ran-
dom testing,” Ph.D. dissertation, Swinburne University of
Technology, Melbourne, Australia, 2005.

F.-C. Kuo, “On adaptive random testing,” Ph.D. dissertation,
Swinburne University of Technology, Melbourne, Australia,
2006.

T. J. Ostrand and M. J. Balcer, “The category-partition method
for specifying and generating functional tests,” Communica-
tions of the ACM, vol. 31, no. 6, pp. 676-686, 1988.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Pri-
oritizing test cases for regression testing,” /[EEE Transactions
on Software Engineering, vol. 27, no. 10, pp. 929-948, 2001.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria,” in Proceedings of the 16th
International Conference on Software Engineering (ICSE’94).
IEEE Computer Society Press, 1994, pp. 191-200.

H. Do, S. G. Elbaum, and G. Rothermel, “Supporting con-
trolled experimentation with testing techniques: An infrastruc-
ture and its potential impact,” Empirical Software Engineer-
ing: An International Journal, vol. 10, no. 4, pp. 405435,
2005.

B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive
random test case prioritization,” in Proceedings of the 24th
[EEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society Press, November
2009, pp. 233-244.

K.-Y. Cai, B. Gu, H. Hu, and Y.-C. Li, “Adaptive software
testing with fixed-memory feedback,” Journal of Systems and
Software, vol. 80, pp. 1328-1348, 2007.

	Using coverage information to guide test case selection in Adaptive Random Testing
	Recommended Citation

	Using coverage information to guide test case selection in Adaptive Random Testing
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1368158906.pdf.HyBos

