Supporting Concern-Based Regression Testing and itization
in a Model-Driven Environment

Roberto S. Silva Filho, Christof J. Budnik, Williakh Hasling, Monica McKenna, Rajesh Subramanyan

Siemens Corporate Research
Software Engineering Department
755 College Road East
Princeton, NJ USA 08540
{Roberto.Silva-Filho.ext, Christof.Budnik, Bill. Hasg, Monica.McKenna, Rajesh.Subramanyan}@siemens.c

Abstract—Traditional regression testing and prioritization
approaches are bottom-up (or white-box). They relyon the
analysis of the impact of changes in source code tifacts,
identifying corresponding parts of software to retst. While
effective in minimizing the amount of testing requied to
validate code changes, they do not leverage on sifieation-
level design and requirements concerns that motivat these
changes. Model-based testing approaches support eptdown
(or black box) testing approach, where design and
requirements models are used in support of test gemation.
They augment code-based approaches with the abilitip test
from a higher-level design and requirements perspéee. In
this paper, we present a model-based regression tieg and
prioritization approach that efficiently selects test cases for
regression testing based on different concerns. Itelies on
traceability links between models, test cases anddae artifacts,
together with user-defined properties associated tamodel
elements. In particular we describe how to supportoncern-
based regression testing and prioritization using DE/UML,
an extensible model-based testing environment.

Keywords- model-driven testing; test development; regression
testing; test prioritization.

l. INTRODUCTION

In current incremental and interactive development

reducing the testing effort needed to validate seftware
versions, improving the overall productivity of teeftware
development process.

Two important techniques: change impact analysié an
prioritization are usually combined in the prodantiof
optimal regression test suites [2]. Change impaetlyais
approaches apply different strategies in the deledf test
cases to validate the software after an evoluttep.sThey
strive to balance attributes such as inclusivenasssision,
efficiency and generality, while minimizing the nber of
tests to execute [3]. Likewise, prioritization $égies’ goal
is to reorder tests based on different criteriahsas their
fault revealing potential [4]. This information che used to
schedule test execution in order to more effegtiveleal
faults in the program.

Code-based (or white-box) prioritization approadtage
focused on ranking tests based on their abilityreeeal
errors in the code. A common approach has beempfty a
code-level metrics based on test coverage, asriarifer
prioritization [2], [5]. While very effective in $&cting a sub-
set of tests that cover specific code changes,ethes
approaches are agnostic to requirements, orgamzdtand
architectural-level concerns such as: featuress;faoctional
requirements, risks, and client-base prioritiexite a few.
Recently specification-based (black-box) approadmes

processes [1], tests occur in every stage of softwa model-driven engineering (or MDE) [6] have beenligghin

development process. Every time a program is clthdge
to the addition of new features or fixing of exigtiissues,
tests are run to ensure the quality of the chaagd, that
other features, not directly related to the charage, still
working as required. The goal is to find, as eadypossible,

the development and testing of complex softwardegys.
MDE facilitate software development by focusingtba use
of models rather than source code as its primdifaetr By
relying on abstractions that are closer to the lpraldomain
requirements, MDE helps to bridge the gap betweeblem

any defects introduced in the software due to eitheand software implementation domains. MDE achievis t

corrective or evolutive maintenance activities.

In large software projects, tests account for aatgre high-level

amount of effort with respect to both their devehgnt and
execution. Software quality assurance
supported by exhaustive software testing especladipre
major releases.

The goal of regression testing is to minimize theoant

is many times

goal through the automation of the process of foamsng

software models into lower-level artifgc
including tests and reports.

In this context, model-based testing approaches, [&],

[8], have been developed to simplify the processtest
development and execution. In these approachesglmace
used to describe the system’s expected behavidle tdols

of test cases that need to be executed when aaseftw automate the process of test generation and emacuti

change occurs, without jeopardizing the detectibfiaalts

that may have been introduced. The main idea mdwent
the execution of tests that exercise parts of tue ¢hat are
not affected by the software change, thus sigmiflga

Models have also been applied in the process df tes
prioritization [9] and regression testing [10]. frarticular,
model-based integrated development environmentls asc

TDE/UML [8] provide an extensible platform whereeie including our concern-based regression testing and
approaches can be implemented. prioritization approach.

In this paper, we discuss our approach to modedébas The benefit is an earliest possible testing indbfware
regression testing and selection. Instead of rglyn the lifecycle, which reduces test cycles and improvesdpct
analysis of structural model changes alone, ourcgmh quality. TDE/UML has been used within SIEMENS on
incorporates different user-defined concerns inpifoeess of numerous projects from different domains.
selection and prioritization of test cases. Inipalar, user-
defined concerns, such as last change date, retgrits, B. TDE/UML Model-Based Approach
risk, and features, are represented as propentigeimodel. The TDE/UML model-based testing approach is
Moreover, through traceability links between regmients, summarized in Figure 1. TDE/UML supports both the
model, test cases and code artifacts, these canaeerused creation of UML models, and the generation of tests
to automatically select and prioritize test progedyubefore reports based on these models. TDE/UML is also yigh
they are used for code generation and executiolli our ~ customizable, supporting plug-ins in different padf the
approach relies on the online monitoring of chanigethe test design and generation pipeline. The main coes of
model, identifying model changes without the need f the system are summarized as follows.
model differencing that uses a lot of computatigpaiver.
We illustrate our approach by showing how TDE/UML, [a Model design and checking Test and report generation
model-based testing environment for UML, is extehde
support concern-based regression testing and foration.

Custt del
The approach demonstrates how the combined use <

1

1

1

|

1

0 .

traceability links, test-driven environments, imoental ode o i

: Cuslt:urTer:odel Test Report
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Reports

change tracking, and extensible architectures eaapplied Ganapation .
in support of regression test generation. Seneration

This paper is organized as follows: Section llddtrices
the model-based testing strategy supported by TDE/U
This approach is extended by concern-based regressid
prioritization strategy as described in Section Related
work is discussed in Section IV followed by the doision
and discussion of future work in Section V.

Import

l T Traceability Links !
'

1

Test suite 1
modifiers I‘
1
1

Model Rule
Verification

Model
Editor

Language-specific
generators.

Test
Generation

Generation

Custom
model editors
- 7’

Sol -7 ‘\

== \
Model Editor Traceability Links \ (':I'ezt
elements commands AN ode

-

N -

II. MODEL-BASED TESTINGWITH TDE/UML -
Traceability Links

]
i i _ P
genLIrDaEi/éJank;as[glj Ign aU lt/(l) IE) ! |tssu'§,efr%1| g’nocfleilsb?os Z;anteeSt Figure 1. TDE/UML Model-Based Architecture Overview

functional test cases based on use cases, rep@sast . L
o . ! UML Model: TDE/UML currently supports UML activity
activity diagrams. TDE/UML was developed at SIEMENSand sequence diagrams, as well as class diagrams

Corporate Research (SCR) to automate and forméiiee representing choices and categories in the catqugotition
testing process as much as possible, delivering oae m method

systematic and efficient system and integratiorellgests. Model Importer: The use of UML diagrams allows

The tester annotates the diagrams with additiot data TDE/UML to interoperate with existing modeling teolThis

such as coverage requirements, constraints, a M :
preconditions. TDE/UML provides an integratedqﬂtel\%lﬁ;ﬁn Ec;irgr)l.em[;%ergrﬂy Cﬂiﬂtﬁm é?gggrhn;psét;: be

environment supporting model creating and verificgttest supported. For such, custom model editors, supprti

suite and test code generation. specific UML diagrams and their respective editing
A. TDE/UML Characteristics commands (e.g. create activity, create note, adddgwetc.)

A distinctive characteristic of TDE/UML is the usé ©@" be defined. A o
category partition method [11] for input data getien. Model Rule Verification: During its development, models

This approach reduces the space of test casesounith can be checked for different consistency and stylles. In

: PR ; ; ; e particular, TDE/UML supports syntax and semantic
Jtt)%é)tsvaggrl]ZIr&gMIl_tsmgoedn(jgalzlit?]/a V%Igsllte c';iggm?n t:]%g/%b ,\I/I:Ey thechecki_ng of OCL data and control constr_aints, a=fivithin
category partition method is integrated with UMlagiiams _notets In thte mtOdfel’ th?.t %p%(?'fy data-ldrlventguamﬂ; data
through the use of annotations specified in a laggtsimilar mplli/l cggs&aln St (0; ac zla\I/'I Y) |eégram ?emferghs. f
to OCL (Object Constraint Language). These anrmtati 0 eport eneration. - supports of the process o

define constraints connecting the model descriptmuiser exportntw_g U']Y”' r(;mldgls to ci|ffe'r:ent forma1|t§, HaTnlauthe
defined data categories and choices, prescribedhn generation of model documents. For example. an

category partition method. An additional advantagl word processing documents reports, or formats ctibipdo

TDE/UML is its computational power and efficiency i other UML tools.

- . . Test Generation: During the test generation, the
generating test cases. TDE/UML also provides a -piug . - '
oriented architecture, supporting different extensi annotated UML model is used to produc&est Suite. This

process is configurable and supports different dath path
modifiers, which implement coverage algorithms luding

the happy path (user-defined critical path), data coverage,l.

path coverage, path-data coverage and others.

Test Quite: Is a data structure representing a set of test

procedures derived from UML models. Test procedares
the basic product of test generation. They desailset of
test steps, operating over specific data bindiagsyell as
generic template code to be used in code generation

Traceability Links: are defined between individual test

steps, artifacts and the model. Optionally, tradixabinks
from generated code to their originating test staygs also
generated. These links help in the process of seigne
testing as described in Ill.E.

Code Generation: The code generation is based on the3.

test procedures described ifest Suites, and on the
traceability links to the model. Based on that iinfation,
generators (each specific to a programming language
used to produce executable test procedures.

Report Generation: Test Suites can also be used as a 4.

basis for generating more detailed test reportsexample,
summarizing coverage information.

Test Suite Modifiers: can be defined to further refine the

generated test procedures and their steps. Ma&ldier also
used to filter and reorganize the generated testepiures
within a Test Quite.

In our approach, the Test Suite Modifiers are used
prioritize test procedures based on different corgseand to
filter out test procedures that were not affecteaanges in
the model. In the next section, we describe ourehbdsed
regression testing and prioritization approach.

lll. CONCERN-BASED REGRESSIONTESTING AND
PRIORITIZATION

concerns. It is divided in a set of successivessiystrated
in Figure 2, and summarized as follows:
During edit time, the model is monitored for chasigs
the users modify, add and remove existing elemients
the UML diagrams. The model is also annotated with
different concerns, represented as element preperti
2. During test generation, and using the timestamps
collected during edit time, both structural and astit
changes in the model are identified. This infororatis
used to classify test procedures as re-testaltte(aiew
or impacted by changes) and reusable (not affdayed
changes). Obsolete tests are NOT identified duwodg
generation, but are shown in step 2 of Figure 2 for
illustration purposes.
During the filtering step, procedures are selected
according to different attributes. For example, re-
testable procedures are selected for generaticed s
timestamps of model elements that originate that
procedure.
During prioritization, tests previously selectedr fo
regression testing are reordered based on different
attributes such as: risk, change impact, and atker-
defined properties associated to model elements.
5. Finally, code is generated and executed. Obsobsts t
are deleted, and reusable code is optionally egdcut
The key insight of our approach is the use of asdined
properties to represent design and requirementsecos, the
monitoring of changes as the test model is editédchwv
produces timestamps, the change impact analysiedbas
these timestamps, and the use of traceability lbedsveen
different artifacts generated by the model-based
environment. These links are kept consistent asribael is
successively transformed from high-level elementto i
intermediate test procedures, and ultimately intdecand

Concern-based regression testing and prioritizatiofieport artifacts. By tapping into this process, wan

supports users in selecting and reordering subefetsst
cases based on different criteria. These criteridude not
only changes in the model but also specificativelle

Model-based regression testing and prioritization

efficiently streamline the regression testing aridrjtization
process in an efficient way, and can possibly appig
strategy to existing MDE tools.

1. Model 2. Change Impact Analysis 3. Filtering

v

4, Prioritization 5. Code Generated & Executed

TestUseCase_A

TestCase_A 1
TestProcedure_A 1_a
TestProcedure_A_1_b
TestProcedure A 1 ¢

Use Case A

TestProcedure_A_1_
TestProcedure_A_1
TestProcedure_A_1
TestProcedure_B_2

a TestProcedure_B_2_
b TestProcedure_A_1

c TestProcedure_A_1
a TestProcedure_A_1

a ExecutableTestProcedure_B_2_a
c ExecutableTestProcedure_A_1_c
_a ExecutableTestProcedure_A_1_a
b ExecutableTestProcedure_A_1_|

b

TestCase_A 2
TestProcedure_A_2_a
TestProcedure_A_2_b

TestUseCase_B
—TFestCase—B-1

—TestProcedureB—1-a

—TestProcedure-B-1-b
TestCase B 2

Use Case B

Code Deleted

ExecutableTestProcedure_B_1_a
ExecutableTestProcedure_B_1_b

Reusable Code

TestProcedure_B_2_a LEGEND:
TestUseCase_C ExecutableTestProcedure_A_2_a
TestCase_C_1 ExecutableTestProcedure_A_2 b
TestProcedure_C_1_a ExecutableTestProcedure_C_1_a
TestCase _C_2 Reusable Procedures ExecutableTestProcedure_C_2_a
TestProcedure_C_2_a Re-testable (new or modified) ExecutableTestProcedure_C_2_b
TestProcedure_C_2_b Test Procedures L
Obsolete Procedures Lo o - o o -

Figure 2. General example showing the main steps tife approach.

In order to validate our approach, we extendecconsider changes in any user-defined propertiesesdh
TDE/UML as illustrated in Figure 4. In the followgn modifications are all considered semantic changas, result
sections, we further describe these extensions. in the update of their respective elements timegtam

. . . Sructural changes: Upon creation, new activity and
A. Integrating Concernsin TDE/UML Model Editor decision nodes, sync points, transitions, as veeihiial and

For every UML element in the model, properties ban final nodes all have their timestamps updated. fEmeoval
defined to represent different concerns such &sfestures, of single nodes in activity diagrams usually resultthe
requirements, ownership, and so on. A model elemant deletion of two transitions, and the creation ofnew
have different properties, allowing these concéonsverlap transition between adjacent nodes. This new tiansis
in different ways. Once defined by users, propsrtian be tagged as changed, as well as the adjacent nodest th
modified and viewed, at model edit time, by cligkion the connects. The special cases of deletion of iniiaffinal
elements of the model, and using the Propertieelpas nodes in a diagram results in the deletion of asttmn, and
shown in Figure 3. the time stamping of predecessor or successor rnindie
) activity diagram. For example, the deletion of &enesults
ike;-itur:;jCér:;:im-;:j:sf::ﬂD\f:{nf:;do:;?gitawmwzimcma‘tde-Ec"‘rm"'at---@@ in the update of its associated diagram elementm-No
S - e semantic changes as the laying out of activitiab detision

Cir@a i g 1@%e ¢ Koo = . . X
PR a8 B B B g0 [=% [9]& & B R, nodes in the diagram are not considered.
¥ Dgtlcanera ety | “DigiaCaneraitée £ | Diagram updates. Whenever elements are removed or
4 fpaens T e 2 added to an activity diagram, the diagram itself hiz
R s St Basean timestamp updated. This approach captures changbsas
—+ Transition define 200m Boolean ‘ p p . p p p

the deletion of whole sub-diagrams or individuahsitions,

o that otherwise would be undetected by our time pitagn
’ approach.

The change tracking feature was implemented by

— Connect Note

N Static Text Press ONJOFF

=] TDE/UML note
= Note

S Activity

& Dedson Eorera made OF2 ﬂl‘mﬁ] | modifying the UML model elements to support timegpa

g sy —— T properties, and by modifying existing commands li@ t

Initizl Node = > P . . .

e e activity diagram editor to record changes as thalehds

(@) Activity Final Zhooting mode OK3 mOdIerd

B Swim Lane <>

\ T osdesgnandchecing | Testand repon gonraton |
= properties % ERE =70

Property Value I~

Change Property- Embed
impact based filter traceability in
analysis and sorting comments

Test suite Language-specific
modifiers generators

Test Code
Generation Generation

Pl
~. _-- \
. \ Test
Traceability Links \\ Code
A

-

Use Case
=i General

Color Yellow

Description

D 1260276599123

Last Modified Wed Mar 24 11:17:53 EDT 2010

Name Set Camera Mode

Package TE Model Example i v
= Properties Panel

Property-aware model

Model
Editor

Custom
model editors

Property
aware model
elements

i

Figure 3. Setting up and Viewing Properties in TDBJML

Timestamp-
able
commands

B. Tracking Changesin the Model

Timestamps are regular element properties and ean
inspected at edit time. For example, Figure 3 shibesLast Figure 4. Extending TDE/UML for Regression Testingand
Modified” property of the “Set Camera Mode” actifT his Concern-Based Prioritization
property represents the last time this activity wasdified.

Internally, timestamps are strings representingr {&&), C. Change Impact Analysis

month (MM), day (DD), hour (HH), minute (MM) and The chanae i . . .

\ \ g . ge impact analysis used in TDE/UML relies o
?econtq g?&?&cﬁgggé?wﬁg; tlrge zone. It |sh$t0nethe the traceability links from generated test proceduand the
ormat. - DUl approach assumes e - and the change tracking approach previously

the local computer clock i.s regularly quated tlgh)_mn discussed. Using these links, the model elements bea
SNTP server (this feature is standard in moderrratipe inspected for their respective properties and tiameps.

systems such as UNIX/Linux and Windows). In patticu Before generating a test suite based on the model,

we adopted the following time stamping criteria fi@rcking developers are asked to define different paramateshown
Chaggnegn'tn tTE? moo:eLIJ. dates Undates i isting di in Figure 5 for example, the data and path coverage
Ic lement pdates: Lpdates In existing diagram algorithms. Optionally, they can also specify adiframe

elements include modifications of: activity nhamdscision time range start, time range end) within whichnges in

nodes expressions, note expressions marked with t : : :
<<TDE/UML>> stereotype, category names and choiass, ﬁg .mod_el are considered for regression testing/oand
| prioritization.

well as decision nodes and transition guards. W a

L

b

Se -
Traceability Links

risks are ranked higher than those testing lowsek ri
activities.

= Resource - C:\Program Files\SCR\TDEUML\doc\DigitalCamera\DigitalCamera.t... g@
Flle Edit Navigate Search Project Window Help

CICRE G e R TR G R G i - Hence, the approach allows the combination of wffe
% “DigitalCamerstdecl 1 . DigitalCamera.tde =0 prioritization and regression testing approachesegating
TDE/UML different test suites. The key to this featurehiss support for
e test suite modifiers in TDE/UML, and the ability thie Ul in
UML Model - -
Digtal Camera [supporting the customization of these policies.
Test Generation -
Run Al Show Macel [e | [Jshon pdvnced Options: = Resource - C:\Program Files\SCRATDEUML\doc\DigitalCamera\DigitalCamera.t... = | 0/E4
Rule Verification | 1 Ele Edit Mawigate Search Project Window Help
TdeModelChedks g‘rnperhf T l;"alueﬂ-l
overage Algorithm all-paths foEE ol i 1 5 e G2 s i
Sync Cogveragge Algorithm saxpllng :, et Y __: $ 2 @ - {?— 'u e B =
Check Model Result :::::s ﬂ::g::: glsgr:s;?inn ;1‘:5&'5 %" Digitalcamera.tdecfg 3 . DigitalCamera, tde Shm
_ e N Choice Coverage Algorithm choice-per-site TDEMML
Tﬁtmam amping joritnm reast-usel ra b
RS ;mepiafgzlgm:? Ldartzl 1:27:56 EDT 2010 — SOV S sy
Hime Tange and War 3411038 T8 EDT 3610 UML Fodel St e
Filter by modification time true B suite . TestProcedurs Summary

Order test procedures by # modified ... true =B TdeTestGenerator i
=5 Digital Camera

=B pigital Camera_TP1

Run Al Show Model

Rule Verification B Digital Camera_TP1_1
3| TdeModeChecks =B Digital Camera_TP2
- ~[BE1 Digital Camera_TP2_1 | =
CheckModel Result =B Digital Camera_TP3
- 7 B3 Digital Camera_TP3_1 :
T?émw =B pigital Camera_TP4 Fhease ERen

Figure 5. TDE/UML Test Generator Ul

- B DgtalCamera RS 1
=B Digital Camera_TP5 |
B2 Digital Camera_TP5_1
= B Digital Camera_TP&
B Digital Camera_TPs_1 | 3. Media(s) taken fal
=B Digital Camera TP7 [l e
I3

L. Press ONJOFF button |7

Generate TestResult:

2. Shoot

As previously described, the regression test praeed
happens in three steps (steps 2, 3 and 4 of FR)uféirst, a
full Test Suite is generated, according to the selected||
coverage algorithm parameters. In a second step, th|
resultingTest Suite is filtered. Test procedures that have anylt
step whose traceability link points to a modifieléneent
within the provided time interval, are selected.stTe
procedures not originated from modified model eletvare
discarded for the time being. Third, the test pdoces are
prioritized according to user-defined criteria. Tiresult is
then presented to the end user as shown in Figure 6

D. Concern-based Prioritization

Prioritization consists on selecting and reordertegt
procedures based on a priority function. This figomctis
based on the values of one or more model or testegure
properties. For example, a prioritization approaem be
defined to reorder test procedures based on théewuaof re-
testable steps they have. Another prioritizatiomegta may
consider the average risk of all the steps in etadt

B

Figure 6. TDE/UML Test Suite Browser

E. Code Generation

After classifying, selecting and prioritizing test
procedures, executable tests (code) and reports bean
generated. In particular, we assume two differeenarios
supporting the generation of executable tests.hin first
scenario, only the filtered and prioritized tesbqadures are
used. This allows the fast generation of executtdsits for
new and modified features, introduced within a tipegiod.
This strategy can also be used for generation e€able
tests for specific concerns. In a second scenddang a
major software release, for example, a more comptiest
generation is performed. In that case, re-testatdereusable
tests are both generated and executed. Test presedte

procedure. Prioritization can also be
independently from change impact analysis, and imayve
different properties at a time.

Test prioritization is implemented by test suitedifiers,

installed in the test generation pipeline (see feigl). These

modifiers reorganize test procedures accordingifferent

criteria. For example, test procedures can be dd@sed on

the number of steps originated in modified elemaémtthe
model. This heuristic allows test procedures thatec the

highest number of changed model elements (andfthere
may have the highest fault reveling potential)p¢oexecuted

first.
We also support prioritization by other properti€sr
example, risk. Users can define individual risks &ach

activity, or may program the system to calculats¢hrisks.

Test procedures with steps originated on activitiéh high

performedgenerated into individual executable test filestaswvn in the

example of Figure 2.

In both scenarios, obsolete tests are identified by
comparing the reusable and re-testable executesis with
the existing executable test code base. This psoées
automated by the use of test signatures, storedrasnents
in each executable test source file.

Test signatures are strings derived by composiadth
test procedure path. They combine the test use tese
case, test procedure and individual test steps siame
including their corresponding data bindings. Foaraple,
the signature oExecutableTestProcedureA 2 a of Figure 2
will be the string:

TestUseCaseA/TestCaseA_2/TestProcedureA_2_
a/Stepl[datal],Step2[data?],...,StepN[dataN]

This signature name uniquely identifies executabt
cases. By comparing these signatures against geddrst

procedures, obsolete tests can be efficiently ifietitand
removed from the code base.

IV. RELATED WORK

In both industry and the research literature, thigran
increasing interest in model-based regressionnggstind
prioritization. This section discusses current wiorkhe area,
comparing them to our approach.

An analysis of existing code-based regressionnigstnd
prioritization approaches is presented at [13] @4d. In all
these approaches, code is the main artifact beiatyzed.
Code-based regression testing is time consumingsually
requires testers to access and understand the @odden

automation is used, requires the parsing of the lavho

program code base. An approach for regressiorséésttion
where requirements are represented as commerits cotle
is proposed by [15]. This approach, however, |latsquate
automation to manage requirements changes.

Different model-based prioritization approaches ehav

been proposed in the literature [9], [4] includingk-based
approaches such as [16] and [17]. Our work buildenu

existing approaches by supporting the combinatidn o

prioritization and regression testing based orediffit user-
defined concerns.

Recent developments in model-based regressiomgesti

include: model-based test prioritization heurist[@®],[7]
that focus on model-based change impact analysi ttee
use of traceability information [12] in support afitomatic

test generation based on UML sequence diagrams.

particular, the work of [12] and [7] perform chanigepact
analysis based on the differentiating of model diags. This
approach is very costly and time consuming sinceqgtires
the compilation of two or more models in a sing&ps A big
advantage of our approach is the minimization eéhcosts
through the tracking of model changes at edit-tirmeprding
change timestamps, as the model evolves, and tlity &b
combine specification-based concerns with modehgés.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described an approach for modséth
regression testing and prioritization that levesageser-
defined properties and traceability links. We dgsad our
approach showing its integration with TDE/UML.

Currently, we support change-based regressionnggesti

based on timestamps, and property-based prioriizal he
implementation, however, is batch-based. l.e.
prioritization and filtering is performed as pait the test
generation process, using test suite modifiershasvis in
Figure 4. We are currently working on a user irstegf to
better support test developers in defining and yaiag
alterative prioritization and regression testingersrios
before generating code.

Future work includes the refinement of the change

impact algorithms in order to minimize the set eftt

procedures to be regenerated. The current chanpactm

analysis algorithm employs a best-effort stratdwt twhile
guarantees coverage of all changes, is not optidal also
plan on optimizing the use of traceability links code
generation. Finally, we plan on validating our ajmh by

the

applying it in different business units at SIEMENSus
refining our design to meet individual project neednd by
comparing it with existing approaches.

REFERENCES

[1] C.Larman and V. R. Basili, "lterative and |eanental
Development: A Brief History," ihEEE Computer. vol. 36,
20083, pp. 47-56.

[2] G. Rothermel, R. H. Untch, C. Chengyun, andIMHarrold,
"Prioritizing Test Cases for Regression TestingBEEE
TSE, vol. 27, pp. 929-948, 2001.

[3] G. Rothermel and M. J. Harrold, "Analyzing regsion test
selection techniqueslEEE Transactions on Software
Engineering, vol. 22, pp. 529-551, 1996.

[4] A. Srivastava and J. Thiagarajan, "EffectivBlgoritizing
Tests in Development Environment,"lintl. Symposium on
Software Testing and Analysis Roma, Italy: 2002.

[5] S.Elbaum, G. Rothermel, S. Kanduri, and AM&lishevsky,
"Selecting a Cost-Effective Test Case Prioritizatio
Technique "Software Quality Journal, vol. 12, pp. 185-210,
September 2004.

[6] R.France and B. Rumpe, "Model-driven Developtraf
Complex Software: A Research Roadmap Fiture of
Software Engineering: IEEE Computer Society, 2007.

[7] L.C.Briand, Y. Labiche, and S. He, "Automagiregression
test selection based on UML desigrisf: Softw. Technol.,
vol. 51, pp. 16-30, 2009.

[8] B. Hasling, H. Goetz, and K. Beetz, "Model Bageesting of
System Requirements using UML Use Case Modeldyitin

In Conf. on Software Testing, Verification, and Validation, 2008.

[9] B. Korel, L. H. Tahat, and M. Harman, "Testd?fiization
Using System Models," iglst IEEE Intl. Conference on
Software Maintenance. 2005.

[10] O. Pilskalns, G. Uyan, and A. Andrews, "Regies Testing
UML Designs," in22nd |EEE International Conference on
Software Maintenance: IEEE Computer Society, 2006.

[11] T. J. Ostrand and M. J. Balcer, "The Categmaytition
Method for Specifying and Generating Fuctional $gst
Commun. ACM, vol. 31, pp. 676-686, 1988.

[12] L. Naslavsky, H. Ziv, and D. J. Richardson, Model-based
Regression Test Selection Technique,IBERE International
Conference on Software Maintenance, 2009, pp. 515-518.

[13] S. Elbaum, A. G. Malishevsky, and G. Rothermel
"Prioritizing test cases for regression testing ACM
SIGSOFT International Symposium on Software testing and
analysis Portland, Oregon, United States: ACM, 2000.

[14] G. Rothermel, S. Elbaum, A. G. MalishevskyKallakuri,

and X. Qiu, "On Test Suite Composition and Coseetffe

Regression TestingACM Trans. Software Engineering

Methodology, vol. 13, pp. 277-331, 2004.

[15] P. K. Chittimalli and M. J. Harrold, "Regressitest selection
on system requirements," Ist India Software Engineering
Conference Hyderabad, India: ACM, 2008.

[16] R. Subramanyan and C. J. Budnik, "Test Saecti

Prioritization Strategy," ir33rd | EEE International Computer

Software and Applications Conference - Vol 02. 2009.

[17] Y. Chen, R. L. Probert, and D. P. Sims, "Sfiegfion-based
Regression Test Selection with Risk Analysis,2002
Conference of the Centre for Advanced Sudies on
Collaborative Research Toronto, Ontario, Canada: IBM
Press, 2002.

