
PUMA: Policy-based Unified Multi-radio Architecture for
Agile Mesh Networking

Changbin Liu∗ Ricardo Correa∗ Harjot Gill∗ Tanveer Gill∗ Xiaozhou Li∗
Shivkumar Muthukumar∗ Taher Saeed∗ Boon Thau Loo∗ Prithwish Basu†

∗University of Pennsylvania †Raytheon BBN Technologies

ABSTRACT
This paper presents the design and implementation of PUMA,
a declarative constraint-solving platform for policy-based rout-
ing and channel selection in multi-radio wireless mesh net-
works. In PUMA, users formulate channel selection policies
as optimization goals and constraints that are concisely de-
clared using the PawLog declarative language. To efficiently
execute PawLog programs in a distributed setting, PUMA in-
tegrates a high performance constraint solver with a declar-
ative networking engine. We demonstrate the capabilities of
PUMA in defining distributed protocols that cross-optimize
across channel selection and routing. We have developed a
prototype of the PUMA system that we extensively evalu-
ated in simulations and on the ORBIT testbed. Our experi-
mental results demonstrate that PUMA can flexibly and ef-
ficiently implement a variety of centralized and distributed
channel selection protocols that result in significantly higher
throughput compared to single channel and identical channel
assignment solutions.

1. INTRODUCTION
Recently, the following trends have emerged in wireless

networking: (1) transceivers supporting multiple tunable RF
channels are becoming common; (2) devices with multiple
wireless interfaces are becoming ubiquitous; (3) software de-
fined radio technologies have developed into an active area
of research with commercial uses [24]; and (4) the Federal
Communications Commission (FCC) has opened up “white
spaces” spectrum to unlicensed devices.

Another wireless networking technology that is gaining
popularity is community mesh networking [2] – a cost-effective
mechanism for providing high speed wireless Internet con-
nectivity to rural and urban communities where broadband
wireless connectivity is unavailable or too expensive. Instead
of dealing with mobility or minimizing power usage, the fo-
cus here is to increase the network capacity by reducing the
interference [11]. Multi-radio multi-channel solutions have
the potential to facilitate high throughput scalability in dense
mesh network deployment scenarios to meet user needs.

In light of the above technological trends, several archi-
tectures and designs for dynamic spectrum access/sharing
in cognitive radio networks [20, 24], and channel selection
and routing in wireless mesh networks [10, 23, 6, 11] have

been proposed. These proposals aim to mitigate the im-
pact of harmful interference and thus improve overall net-
work performance. For reasonable operation of large wire-
less mesh networks with nodes strewn over a wide area with
heterogeneous policy constraints and traffic characteristics,
we believe that a one-size-fits-all channel selection and rout-
ing protocol may be difficult, if not impossible, to find.

To address the above needs, this paper presents Policy-
based Unified Multi-radio Architecture (PUMA) for agile
mesh networking, a platform that aims to develop intelligent
network protocols that simultaneously control parameters for
dynamic (or agile) spectrum sensing and access, dynamic
channel selection and medium access, and data routing with
a goal of optimizing overall network performance.

PUMA aims to serve two important communities. For re-
searchers, PUMA provides a common framework for rapid
describing, evaluating, and comparing new channel selec-
tion and routing policies. For network operators, PUMA
eases the process of implementing, configuring, and deploy-
ing mesh networks. Towards this goal, PUMA makes the
following contributions:

Declarative channel selection and routing: In PUMA,
channel selection policies are formulated as constraint opti-
mization problems (COP) that are specified using the PawLog
declarative language. The customizability of PawLog allows
the providers a great degree of flexibility in the specification
and enforcement of various local and global channel selec-
tion policies. These policy specifications are then compiled
into efficient constraint solver [1] code for execution. Com-
pared to traditional imperative alternatives, PawLog results
in approximately 100X reduction in code size, and is easier
to understand, debug and extend.

In addition to supporting policy specifications, PUMA in-
tegrates the constraint solver with a declarative networking
engine [18]. This enables one to use PawLog to specify
distributed COP programs that implement distributed chan-
nel selection protocols. The declarative networking engine
can also be used for implementing multi-hop routing proto-
cols [15, 18].

Distributed cross-layer protocol: By combining channel
selection and routing within a common declarative frame-
work, PUMA further enables new and interesting capabili-
ties that are significantly easier to capture compared to tra-

1

ditional imperative approaches. As an example of such ca-
pabilities, we have developed a novel distributed cross-layer
protocol that integrates and optimizes across channel selec-
tion and routing policy decisions. This protocol incorporates
the traffic rate into consideration for channel selection, and
improves route computation to jointly optimize for traffic
load and channel diversity. As evidence of the advantages of
declarative programming, the cross-optimized protocol re-
quires minor modifications to existing declarative specifica-
tions to encode dependencies across route and channel selec-
tion policies.

Implementation and evaluation: We have developed a
PUMA prototype using the Gecode [1] high-performance
constraint solver and the RapidNet [5] declarative network-
ing engine as building blocks. We have conducted extensive
802.11 wireless simulations and actual experimentation on
the ORBIT [4] testbed. Our evaluation demonstrates that
PUMA can implement a wide range of channel selection
protocols that converge quickly and significantly outperform
single-channel and identical channel assignment in terms of
network throughput. Moreover, the cross-layer protocol sig-
nificantly outperforms all other protocols, particularly when
one incorporates traffic-aware policies into channel selection
and routing.

2. OVERVIEW

Interface 0

(CCC)
Interface 1 Interface n… Link &

Physical Layer
Spectrum

Sensing

Channel Abstraction Layer

Control Plane Data Plane

Constraint

Solver

Channel

Manager

Declarative

Networking Engine

Routing Protocols

Channel Selection

Protocols

Constraints

and Goals

Forwarding

Agent

Network

LayerNetwork

Status

Figure 1: Components of a PUMA node. The compo-
nents in dotted lines indicate PawLog inputs.

Figure 1 shows an overview of PUMA from the perspec-
tive of a single PUMA node.

Channel manager. The role of the channel manager is
to assign available channels to wireless links to optimize a
performance goal (e.g. minimize network interference, min-
imize the number of unique channels) while subjected to
constraints (e.g. regional policies on spectrum usage [20],
yield to primary users who own exclusive rights to certain
spectrums in white space networks). In PUMA, we use the
PawLog language for declaratively expressing goals and con-
straints as a constraint optimization problem (COP) [26]. These

specifications are compiled into executables within Gecode
constraint solver [1]. The channel manager takes as addi-
tional input network status information from the declarative
networking engine, including network topology and the set
of channels available to each node.

The channel manager can be deployed either in a central-
ized or distributed mode. In the centralized mode, all nodes
send their local neighborhood and channel availability in-
formation to a centralized channel manager which performs
channel assignment for the entire network. In the distributed
mode, each node makes individual channel assignment de-
cisions using its own solver, with only information gathered
from neighbors within the vicinity.

Declarative networking engine. At the network layer,
the RapidNet declarative networking engine [5] is deployed
within the control plane to implement a variety of neighbor
discovery and routing protocols also expressed in PawLog.
These protocols can either be specified dynamically by the
user, or pre-programmed as a library of declarative wireless
routing protocols [15]. In addition, channel selection pro-
tocols enable nodes to exchange status information among
themselves while performing channel assignment using the
constraint solver. All network status computed by PUMA
(e.g. neighbor discovery, routing, channel availability and
assignments) are maintained and stored as RapidNet tables,
and made available to other components via callbacks.

Note that routing protocols, channel selection goals and
constraints, and channel selection protocols are all written
in the same PawLog language. We will demonstrate later
in this paper how one can leverage this unified declarative
framework to encode policies that optimize across routing
and channel selection.

Channel abstraction layer. Each PUMA node runs a
number of multi-channel wireless radio devices (interfaces).
Typically, the first interface operates on the common control
channel (CCC), which is reserved for routing and channel
selection protocol messages. A spectrum sensing 1 compo-
nent is able to detect channels available for each interface by
periodically scanning a wide range of spectrum. The set of
available channel information is then made available to the
channel manager through the channel abstraction layer [8],
which interacts with multiple radios and presents upper lay-
ers with a multi-channel communication interface. In order
for packets to be routed to neighbors using appropriate in-
terface/channel, the output of the channel manager is then
used to initialize the channel assignment table at the channel
abstraction layer.

Forwarding agent. Finally, the output of declarative rout-
ing is a forwarding table (next-hop for each destination) used
by the forwarding agent. Given a destination, the forwarding
agent queries the channel abstraction layer to determine the
corresponding interface/channel for the next-hop, and for-
wards the packet accordingly.

1Spectrum sensing is an orthogonal problem beyond the scope of
this paper, where we focus on channel selection and routing.

2

3. DECLARATIVE CHANNEL SELECTION
In this section, we describe how to declaratively specify

channel selection policies in the form of goals, constraints,
and derivation rules. We first formulate channel selection as
a constraint optimization problem (COP), followed by de-
scribing how these COP formulation can be expressed using
PawLog and then compiled into efficient executions.

3.1 COP Formulation
A COP formulation takes as input a set of constraints, and

attempts to find an assignment of values chosen from an in-
put domain to a set of variables to satisfy the constraints
under an optimization goal. The goal is typically expressed
as a minimization over a cost function of the assignments.
In the context of channel assignment, the variables are the
channels to be assigned to each communication link, while
the values are chosen from candidate channels available to
each node. The goal in this case is to minimize the like-
lihood of interference among conflicting links, which maps
into the well-known graph-coloring problem [13].

We consider the following example that avoids interfer-
ence based on the one-hop interference model [28]. In this
model, any two adjacent links are considered to interfere
with each other if they both use channels whose frequency
bands are closer than a certain threshold. The formulation is
as follows:

Input domain and variables: Consider a network G =
(V,E), where there are nodes V = {1, 2, . . . , N} and edges
E ⊆ V × V . Each node x has an available set of candi-
date channels Ax to select from, and a set of channels Px

currently occupied by primary users within its vicinity. The
number of interfaces of each node is ix.

Optimization goal: For any two adjacent nodes x, y ∈ V ,
lxy denotes the link between x and y. Channel assignment
selects a channel cxy for each link lxy to meet the following
optimization goal:

min
∑

lxy,lxz∈E,y 6=z

cost(cxy, cxz) (1)

where cost(cxy, cxz) assigns a unit penalty if adjacent chan-
nel assignments cxy and cxz are separated by less than a
specified frequency threshold Fmindiff :

cost(cxy, cxz) =
{

1 if |cxy − cxz| < Fmindiff

0 otherwise (2)

Constraints: The optimization goal has to be achieved un-
der the following four constraints:

∀lxy ∈ E, cxy ∈ Ax (3)
∀lxy ∈ E, cxy /∈ Px (4)
∀lxy ∈ E, cxy = cyx (5)

∀x ∈ V, |
⋃

lxy∈E

cxy| ≤ ix (6)

(3) ensures that each channel assignment cxy is selected
from the available channel domain Ax. (4) expresses the

constraint that a node should not use channels currently oc-
cupied by primary users within its vicinity. (5) requires two
adjacent nodes to communicate with each other using the
same channel. (6) guarantees the number of assigned chan-
nels is no more than interfaces.

3.2 PawLog Specifications
Instead of hard-coding the COP formulation into a con-

straint solver, PUMA uses the PawLog language to concisely
declare the formulation in the form of policy goals, rules and
constraints. This results in orders of magnitude reduction
in code size. The compact specifications further facilitate
policy customization and enable us to rapidly explore and
deploy a range of channel selection protocols.

As an example, the following PawLog program specifies
the one-hop interference model COP formulation described
in Section 3.1. This program requires only a handful of
PawLog rules, and has a natural mapping to the mathematical
formulation.
// goal declaration
goal minimize C in totalcost(C)

// variable declaration
var assignChannel(X,Y,C) forall link(X,Y)

// cost assignment rules
s1 cost(X,Y,Z,C) :- assignChannel(X,Y,C1),

assignChannel(X,Z,C2), Y!=Z, C=1,
|C1-C2|<F_mindiff.

s2 totalCost(COUNT<C>) :- cost(X,Y,Z,C).

// Input domain constraint for assignChannel
c1 assignChannel(X,Y,C) -> link(X,Y),

availChannel(X,C,F,St).

// primary user constraint
c2 assignChannel(X,Y,C) -> !primaryUser(X,C).

// channel symmetry constraint
c3 assignChannel(X,Y,C) -> assignChannel(Y,X,C).

// interface constraint
c4 uniqueChannel(X,Count) -> numInterface(X,K), Count<=K.
s3 uniqueChannel(X,UNIQUE<C>) :- assignChannel(X,Y,C).

In PawLog, two reserved keywords goal and var specify
the goal and variables used by the constraint solver. PawLog
constraints (c1-c4) are of the form F1 -> F2, which de-
notes the logical meaning that whenever F1 is true, then F2

must also be true in order for the constraint not be violated.
Derivation rules (s1-s3) of the form p :- q1, q2, ...,

qn., result in the derivation of p, whenever the rule body
(q1 and q2 and ... and qn) is true. Each term within
a rule (e.g. q1, q2) is typically referred to as a predicate,
and the corresponding data output obtained during rule ex-
ecution are referred to as tuples. The derivation rules are
based on Network Datalog [18], a recursive query language
used in declarative networking for computing network graph
properties. PawLog can hence be viewed as a superset of
Network Datalog, with additional constructs specific to con-
straint solving (e.g. goal, var, and constraint rules). We
next describe in detail the input/output to the program, goal
and constraints:

Input tables: The above program takes as two input ta-
bles link(X,Y) and availChannel(X,C,F,St). As de-

3

scribed in Section 2, the link table stores the gathered net-
work topology information, and the availChannel table is
supplied by the channel abstraction layer via known spec-
trum sensing mechanisms, where each entry denotes that node
X has an available channel C with frequency F and signal
strength St.

Output tables: The solver outputs assignChannel(X,Y,C)
table, where each entry indicates channel C is used for com-
munication between X and Y. The channel abstraction layer
uses this information to select an unused interface to run on
channel C, and then updates its internal state that stores the
mapping from neighbors to interfaces. This information will
be used by the forwarding agent to ensure that all messages
forwarded to neighbors are directed to the selected interface.

Optimization goal: The goal in this case is to minimize
the cost attribute C in totalCost, while assigning chan-
nel variables assignChannel for all communication links.
Rule s1 sets cost C to 1 for each cost(X,Y,Z,C) tuple if
the chosen channels that X uses to communicate with adja-
cent nodes Y and Z are interfering. Rule s2 counts the num-
ber of interfering channels among adjacent links in the entire
network, and stores the result in totalCost.

Constraints: Policy constraints are used to remove ille-
gal channel assignments. These constraints can be globally
applied to all nodes, or customized at the node-level. The
constraints c1-c4 encode the four constraints introduced in
COP formulation in Section 3.1. Constraint c1 restricts the
domain of assignChannel(X,Y,C) to only valid channel
assignments for existing links link(X,Y) and ensures that
only available channels are considered. Constraint c2 ap-
plies to the input availChannel table, and states that a
channel C at node X is only available, if there does not ex-
ist a primary user within the vicinity of X. Constraint c3
enforces channel symmetry on the output assignChannel
table. Constraint c4 requires that nodes must use at most K
unique channels, whereK is the number of usable interfaces.
The number of unique channels is derived in rule s3 using
aggregate keyword UNIQUE.

3.3 Policy Customizations
One of the advantages of declarative programming is the

ease of customization, which can often be achieved with only
minor modifications to existing policies. We illustrate some
examples here.

In some wireless deployments, e.g. IEEE 802.11, the two-
hop interference model [28] is often considered a more accu-
rate measurement of interference. This model considers in-
terference that results from any two links using similar chan-
nels within two hops of each other. The two-hop interference
model requires minor modifications to rule s1 as follows:
s1a cost(X,Y,Z,W,C) :- assignChannel(X,Y,C1), link(Y,Z),

assignChannel(Z,W,C2), X!=Z, Y!=Z, X!=W, C=1,
|C1-C2|<F_mindiff.

The above rule considers four adjacent nodes X, Y, Z, and
W, and assigns a cost of 1 to node X’s channel assignment
with Y (assignChannel(X,Y,C1)), if there exists a neigh-
bor Z of Y that is currently using channel C2 that interferes

with C1 to communicate with a node other than Y. The above
policy requires only adding one additional link(X,Y) pred-
icate, demonstrating the customizability of PawLog.
Together with the original rule s1, one can assign costs to
both one-hop and two-hop interference models. Furthermore,
one can easily generalize to K-hop interference model us-
ing a recursively defined rule. Interference models based
on other indicators, e.g. Received Signal Strength Indication
(RSSI), are as well succinctly expressible in PawLog.

In addition, PUMA can flexibly declare more constraints,
e.g., impose regional policies on spectrum usage; avoid chan-
nels that have low SNR (a straightforward filter condition on
availChannel table); ensure channel diversity along each
path (by having the cost assignment take into account of in-
terference along each best path); minimize the number of
unique channels in a network while ensuring no link con-
flicts [14] (by making the cost function a “hard constraint”
which incurs infinite cost if violated).

3.4 PawLog Compilation
PawLog programs are compiled into executions within the

Gecode [1] solver and the RapidNet declarative network-
ing engine [5]. Gecode is used for high-performance con-
straint solving, while RapidNet is used for table materializa-
tion, rule execution, and distributed implementation of chan-
nel selection protocols (Section 4). In a typical deployment,
RapidNet runs the channel selection and routing protocols
at each node, and invokes Gecode’s COP modules when a
channel assignment is required.

Our compilation process maps PawLog’s goal, var, and
constraints into equivalent COP primitives in Gecode. Prior
to running the COP in Gecode, the generated code loads in
the appropriate input data from RapidNet, and then stores the
output results (channel assignments) in RapidNet after COP
execution. We note that this compilation process is generic
and can be applied to other solvers as well.

The more interesting aspect of our compilation process is
the interplay between Gecode solver and RapidNet declara-
tive networking engine. The derivation rules of PawLog pro-
grams are executed using database operators, such as joins
(variable matching in rule body), aggregation (e.g. COUNT,
UNIQUE), selection filters, rule head renaming, etc. For ef-
ficiency and code reuse purpose, these rule executions are
offloaded from the solver to RapidNet’s query engine. The
solver adopts the standard branch-and-bound searching ap-
proach to solve the optimization while exploring the space
of variables under constraints. In cases where the rule body
contains solver variables (e.g. rule s1), instead of running
these rules within RapidNet, we perform a rule rewrite pro-
cess that transforms derivation rules into solver constraints
to prune the search space.

Finally, the declarative networking engine is also used for
executing policy rules whose body predicates span across
multiple nodes (Section 4.2). All derivation rules executed
in RapidNet are done in a continuous, long-running fashion,
where rule head tuples are continuously updated (inserted or

4

deleted) in an incremental fashion [17] as the body predi-
cates are updated. As we show in subsequent sections, this
allows us to incrementally re-optimize channel selection as
the underlying network topology changes.

4. CHANNEL SELECTION PROTOCOLS
Given the declarative channel selection policies introduced

in the previous section, we next describe how these policies
can be realized in an actual deployment by adding additional
PawLog rules. Specifically, we present a centralized and
a distributed channel selection protocol implemented using
PUMA. In both protocols, we consider channel selection to
be carried out separately from routing. In Section 5, we relax
this requirement, and take PUMA’s approach one step for-
ward by presenting a novel distributed traffic-aware protocol
that optimizes across route and channel selection policies.

4.1 Centralized Channel Selection
In centralized channel selection [23, 7], the channel man-

ager is deployed on a single node in the network. Typically,
this node is a designated server node, or is chosen among
peers via a separate leader election protocol.

Due to space constraints, rather than present the entire
PawLog rules, we provide a high-level intuition on how the
PawLog program is formulated. The centralized manager
collects the network status information from each node in
the network – this includes their neighborhood information,
available channels, and any additional local policies. The
network status information can be collected using link-state
dissemination and its variants expressible also as declarative
rules [15]. Alternatively, if a route to the centralized solver
has already been computed, each node can forward the status
information via the CCC directly to the centralized solver.

After gathering network status information, the central-
ized channel manager has access to the entire network topol-
ogy (link table) and available channels (availChannel
table). It then uses the solver to execute the policy rules de-
scribed in Section 3 to generate channel assignments
assignChannel(@X,Y,C) for each node X. This informa-
tion is then propagated to each node X to set its local channel
to neighbor Y accordingly. Here, the location specifier @ is a
common symbol used in declarative networking [18], denot-
ing the source location of each corresponding tuple. It is es-
sential for ensuring that each derived assignChannel(@X,Y,C)
tuple is sent to the appropriate node X.

Given that graph coloring is an NP-hard problem, to find
the solution in reasonable time one approximation method
we have explored is a divide-and-conquer strategy. The basic
idea is to divide the whole network into roughly equal-sized
subnetworks (we use a heuristic breadth-first search to par-
tition the network), and have the solver perform channel se-
lection over each smaller subnetwork. Interestingly, this di-
vision process requires minimal changes to the PawLog pol-
icy rules, simply by partitioning the input tables into smaller
ones. Once the channels are assigned to individual subnet-
works, the remaining links (or bridges) connecting the sub-
networks together are assigned channels that minimize the

overall interference cost. If no new channels are available
(i.e. all interfaces have already been assigned channels dur-
ing the earlier subnetwork optimization phase), the CCC is
used for communication as a fallback.

4.2 Distributed Channel Selection
We next demonstrate PUMA’s ability to implement dis-

tributed channel selection. Distributed channel selection pro-
vides approximations to the optimal centralized solution, and
hence scales better for large networks. Moreover, it has the
added advantages of not introducing single points of failure
and is amenable to incremental computations as the network
topology changes. Our example here is based on a variant
of distributed greedy protocol proposed in [25]. This exam-
ple highlights PUMA’s ability to support distributed COP
computations, where nodes compute channel assignments (a
COP computation) based on local neighborhood informa-
tion, and then exchange channel assignments with neighbors
to perform further COP computations. This distributed ap-
proach is achieved by PUMA’s use of a declarative network-
ing engine in conjunction with a constraint solver.

The protocol works as follows. Periodically, each node
randomly selects one of its links (link selection) to start a
channel negotiation process with its neighbor. To avoid con-
flicting channel assignments, for any given link(i,j), the
link selection protocol selects the node with the larger identi-
fier (or address) to carry out the subsequent channel negotia-
tion process. Once a link is selected for channel assignment,
the negotiation process solves a local COP and assigns a
channel such that interference is minimized. In case there are
several solutions with minimum interference cost, the solve
randomly picks one. The new channel-to-link assignment is
then propagated to immediate neighbors.

The following PawLog program implements the local COP
operation at every node X for performing channel assign-
ment. The output of the program sets the channel
assignChannel(@X,Y,C) for one of its links link(@X,Y)
(chosen for the current channel negotiation process) based on
the two-hop interference model:
goal minimize C in totalcost(C)
var assignChannel(@X,Y) forall eSetLinkChannel(@X,Y)

// trigger the start of the solver
d1 eStartSolver(@X) :- eSetLinkChannel(@X,Y).

// two-hop assignments
d2 twoHopChannels(@X,Y,Z,C) :- link(@X,Y),

assignChannel(@Y,Z,C).

// propagate channels to ensure symmetry
d3 assignChannel(@Y,X,C) :- assignChannel(@X,Y,C).

// cost assignment for two-hop interference model
ds1 cost(@X,Y,Z,W,C) :- twoHopChannels(@X,Z,W,C1),

assignChannel(@X,Y,C2), W!=X, Z!=Y, W!=Y, C=1,
|C1-C2|<F_mindiff.

// aggregate the cost
ds2 totalCost(@X,COUNT<C>) :- cost(@X,Y,Z,W,C).

// Input domain constraint for assignChannel
dc1 assignChannel(@X,Y,C) -> link(@X,Y),

availChannel(@X,C,F,St1), availChannel(@Y,C,F,St2).

// primary user constraint

5

dc2 availChannel(@X,C,F,St) -> !primaryUser(@X,C).

The event that triggers the solver execution of the above
program is denoted by eSetLinkChannel(@X,Y). This event
is periodically generated as part of the link negotiation pro-
cess, and Y denotes the neighbor chosen for the current ne-
gotiation process. The distributed program is similar to the
centralized equivalent presented in Section 4.1, with the fol-
lowing differences:

Localized COP: While the centralized channel selection
searches for all combinations of channel assignments for all
nodes, the distributed equivalent restricts channel selection
to a single link one at a time, where the selected link is
represented by eSetLinkChannel(@X,Y) based on the ne-
gotiation process. For this particular link, the COP execu-
tion takes as input its local neighbor set (link), the avail-
able channels (availChannel), and all currently assigned
channels (assignChannel) for itself and nodes in the lo-
cal neighborhood. This means that the COP execution is an
approximation based on local information gathered from a
node’s neighborhood.

Distributed execution: The use of location specifier @ en-
ables one to naturally capture constraints and dependencies
involving nearby neighbors. Rules d2 enables a node X to
collect the current set of channel assignments for itself and
its immediate neighbors Y. In executing the channel selec-
tion for the current link, constraint dc1 limits the channel
assignment for link(@X,Y) to only channels common to
both X and Y. Once a channel is set at node X, the channel
assignment is immediately propagated to neighbor Y, hence
resulting in symmetric channel assignments (rule d3).

In essence, one can view the distributed protocol as a se-
ries of per-node COP carried out using each node’s constraint
solver. The channel negotiation process is repeated at each
node periodically until all links have been assigned a chan-
nel. Each channel negotiation process will use the link chan-
nel assignments computed in previous rounds in order to de-
termine the channel assignment for the next link.

In situations when the constraint solver returns no solu-
tion, the link is assigned to use the CCC as a fallback. The
complexity of this protocol depends upon the maximum node
degree, since each node at most needs to perform m rounds
of channel negotiation, where m is the node degree.

Incremental updates: Link and node dynamics are easily
captured in PawLog, via a technique known as incremental
view maintenance [17], that essentially stores the rule results
and incrementally updates the results as the rule body pred-
icates are updated. This avoids having to recompute a rule
from scratch whenever the inputs to the rule change. For
example, in rule d2, twoHopChannels tuples are updated
whenever link and assignChannel are updated. This re-
sults in changes to the cost and totalCost values, which
will further result in new channel assignment values when
the solver is next executed for the new link.

5. CROSS-LAYER OPTIMIZATIONS

Using the distributed channel selection protocol as a ba-
sic building block, we present a distributed cross-layer pro-
tocol that optimizes across channel selection and routing.
While similar cross-layer optimizations have received atten-
tion in a centralized context [23], our proposed protocol (to
our best knowledge) is the first to be implemented in a fully
distributed fashion. PUMA’s use of declarative networking
enables us to compactly and naturally realize this distributed
protocol, requiring minimal modifications to the
PawLog rules we presented in Section 4.2. We further dis-
cuss enhancements to the route selection metric to more ef-
fectively take into account channel diversity and traffic load.

Figure 2 outlines the steps taken by the distributed cross-
layer protocol. Each box indicates a step (component) which
encapsulates a set of PawLog rules. The output of each com-
ponent can be directly used as input to the next component,
simply by having rules in the next component be defined in
terms of the output from the previous component.

We provide a brief description of each component:
Distributed channel selection: The first component is

Distributed Channel Selection, which reuses the set of rules
presented in Section 4.2. This process is usually started in
the initial phase of bootstrapping channel assignments.

Link-state update propagation: Following channel se-
lection, a set of PawLog rules are used for implementing a
flood-based propagation of link-state updates (LSUs), using
either traditional link-state dissemination or more scalable
variants (e.g. OLSR [9]). The LSUs in this case include the
neighborhood set of each node, and also the assigned chan-
nels for each link as computed in the previous step.

Route computation: Based on the LSUs, a Route Com-
putation component executes the next step to compute best
paths based on the WCETT [11] metric. WCETT is a path-
based metric, resulting in the selection of a route with max-
imum path channel diversity (Appendix A gives a brief de-
scription of WCETT).

Link traffic estimation: Based on the computed routes,
another set of PawLog rules implement the Link Traffic Esti-
mation component, which estimates the expected traffic load
for each link. Consider two nodes i and j. The traffic on
link(i,j) is estimated as Si × Pij where Si is the data
sending rate of node i, and Pij is the probability that the link
appears along selected best paths of node i. For the initial
bootstrapping stage, we assume P is same for each link. The
aggregate traffic between i and j is then calculated by sum-
ming the traffic from i to j and from j to i. Link traffic esti-
mation can be incrementally updated as routes are updated,
or as the sending rate of nodes changes at runtime. The
link traffic estimation is subsequently used as an interference
cost input to another round of Distributed Channel Selection,
making the channel selection process traffic-aware.

The above four components consist of 25, 11, 4 and 7
PawLog rules, respectively. PawLog specifications of the
cross-layer protocol result in significantly fewer code (and
less code complexity) compared to alternative imperative im-

6

Distributed
Channel
Selection

LSU
Propagation

Route
Computation

Link Traffic
Estimation

assignChannel lsu trafficbestPath Distributed
Channel
Selection

Start

Figure 2: Components in distributed traffic-aware cross-layer protocol

plementations (See Section 7 for code size comparison).

5.1 Example PawLog Program
To highlight the interactions across these components, we

revisit the distributed channel selection protocol in Section 4.2,
and show a fragment of the modified PawLog program:
// LSU includes channel information
ls1a lsu(@X,X,Y,C,X,Ch) :- link(@X,Y,C),

assignChannel(@X,Y,Ch).
ls2a lsu(@M,X,Y,C,Z,Ch) :- link(@Z,M,C1),

lsu(@Z,X,Y,C,W,Ch), M!=W.

// two-hop traffic
d2a twoHopTraffic(@X,Y,Z,T) :- link(@X,Y),

traffic(@Y,Z,T).

// two hop interference model
ds1a cost(@X,Y,Z,W,C) :- twoHopChannels(@X,Z,W,C1),

assignChannel(@X,Y,C2), W!=X, Z!=Y, W!=Y,
twoHopTraffic(@X,Z,W,T1), twoHopTraffic(@X,W,Z,T2),
C=T1+T2, |C1-C2|<F_mindiff.

Rules ls1a-ls2a customize the link-state propagation
rules [15], by additionally propagating the assigned channel
Ch attribute for each link(@X,Y,C). Rule ds1a replaces
the earlier rule ds1 in Section 4.2, where the cost of chan-
nel assignment is now the aggregate traffic load, which sums
up the bi-directional traffic on all adjacent interfering links,
given the two-hop interference model.

The rules above together with the ones for Route Com-
putation construct a mutual dependency naturally captured
via PawLog: in rule ds1a, the constraint solver will use the
cost of aggregate traffic load derived from route selection to
determine channel assignments; these assignments are sub-
sequently propagated via rules ls1a-ls2a for channel di-
versity based routing using WCETT metric.

Based on Figure 2, the cross-layer optimization process
stops when the second round of channel selection completes
(with some channel assignments possibly refined). An alter-
native (fancier) approach is to consider an indefinite feed-
back loop in which the process of channel and route se-
lection is repeatedly co-optimized until some theoretically
sound stopping criteria is reached, e.g. when the network in-
terference is below certain level. While these extensions are
feasible to be explored and implemented in PUMA, repeated
loops result in longer convergence time and yield diminish-
ing returns. A detailed theoretical analysis of the stopping
criteria is an interesting avenue for future work.

The above program works under the assumption that net-
work traffic is relatively stable over the period of channel se-
lection and routing. Given that wireless mesh networks usu-
ally have relatively fixed traffic patterns for hours [23], this
assumption normally holds. In the event that traffic patterns
keep fluctuating, we can easily modify the PawLog rules to
fallback to a traffic agnostic policy (like the distributed pro-
tocol in Section 4.2).

5.2 Traffic-aware WCETT Enhancement

The WCETT [11] metric is based on Expected Transmis-
sion Time (ETT), which depends on link capacity and packet
loss rate due to signal strength degradation. In practice, ETT
is also affected by link traffic. The higher the traffic load, the
more likely ETT will increase due to collisions and conges-
tion related delays. To avoid routing along links with high
traffic, we propose the Traffic-aware WCETT, which multi-
plies the original ETT value for each link by estimated traf-
fic that traverses the link. Achieving this requires minimal
changes to our PawLog rules, since link traffic estimation
is already stored in the traffic table. Our evaluation re-
sults in Section 6 demonstrate that using the traffic-aware
enhancement to WCETT results in further performance im-
provements over a regular distributed channel selection pro-
tocol, in addition to the improvements that are attributed to
the cross-layer optimizations presented earlier in this section.

6. EVALUATION
We have developed a prototype of PUMA using the Rapid-

Net declarative networking engine [5] and the Gecode [1]
constraint solver. PUMA takes as input channel selecting
and routing policies written in PawLog, and then generates
RapidNet and Gecode C++ code using the compilation pro-
cess described in Section 3.4.

Our PUMA platform provides two execution modes: (1)
The simulation mode uses ns-3 [3] as its simulated network
layer. ns-3 is an emerging discrete event-driven simulator in-
tended as an eventual replacement for the popular ns-2 sim-
ulator. ns-3 emulates all layers of the network stack, sup-
porting configurable loss, packet queuing, network topology
models, and the IEEE 802.11b PHY+MAC model; (2) The
implementation mode runs the same PUMA instances as in
simulation, but instead of having the instances communicate
via a simulated network, uses actual sockets to allow PUMA
instances deployed on different physical nodes to commu-
nicate with each other. This allows us to perform realistic
performance evaluation on the ORBIT [4] testbed.

In both modes, PUMA supports multi-radio multi-channel
capabilities via our implementation of the channel abstrac-
tion layer [8] described in Section 2. Simulations enable us
to evaluate the performance of various protocols in a con-
trolled environment where we can vary network topology,
traffic patterns, number of interfaces and available channels.
This complements our ORBIT testbed evaluation.

In the absence of a publicly available imperative platform
with capabilities (such as unified centralized/distributed chan-
nel selection and routing) comparable to PUMA, our evalua-
tion focuses on validating PUMA’s flexibility and efficiency.
Specifically, we evaluate the PUMA platform along the fol-
lowing dimensions.

PawLog execution: Our first evaluation goal is to quantify

7

the overhead of resources required for channel selection and
routing. For each PawLog program executed using PUMA,
we measure the solver execution time for centralized chan-
nel selection, as well as per-node communication overhead
and convergence time for distributed protocols. The objec-
tive here is to validate that PawLog can be deployed at rea-
sonably low overhead.

Channel selection and routing policies. Our second eval-
uation goal is to evaluate the policies and protocols used for
channel and route selection. We injected packets into PUMA
nodes with increasing sending rate, and then measure the
aggregate network throughput defined in terms of network-
wide aggregate data packet transmissions that are success-
fully received by destination nodes. In our experiments, we
either fix the channel selection policy and vary the protocols
(e.g. centralized vs distributed), or fix the channel selection
protocol and vary the policies (e.g. one-hop vs two-hop in-
terference).

PawLog language. In our third evaluation goal, we eval-
uate the flexibility of PawLog in supporting a wide range of
channel selection and routing policies. We further provide
evidence on the compactness of PawLog, by comparing the
lines of code in PawLog and the generated C++ code.

6.1 Experimental Setup
We evaluate the following channel selection protocols: Cen-

tralized (Section 4.1), Distributed (Section 4.2), Cross-layer
(Section 5), and Cross-layer (E) (Section 5.2). Recall that
the enhanced cross-layer protocol refines WCETT by taking
link traffic load into route computation. For each protocol,
channel selection combines the use of one-hop and two-hop
interference models, by attempting to solve a COP that min-
imizes the number of conflicting links under either models.

As a basis of comparison, we consider two baselines 1-
Interface and Identical-Ch. In 1-Interface all nodes commu-
nicate with each other using one interface and hence a com-
mon channel. In Identical-Ch [11], the same set of channels
are assigned to the interfaces of every node (e.g. channel 1 to
the first interface, channel 2 to the second), and a centralized
constraint solver then assigns each link to use one of these
interfaces. All of these protocols use the WCETT metric for
routing, and runs a declarative link-state protocol [15].

In all our setups, nodes utilize multiple interfaces consist-
ing of homogeneous multi-channel radios. We limit the set
of usable channels to “orthogonal channels”, i.e. channels
with sufficient frequency gap between them to incur mini-
mal or no interference when active in each other’s vicinity.
This limits interference to situations where nearby links use
the same channel.

6.2 Small Network Simulations
Our first experiment consists of a small network of 12

nodes randomly located in a 450m× 450m arena. Although
channel assignment is NP-hard in complexity, the small net-
work size enables the centralized solver to achieve an opti-
mal solution in reasonable time. This allows us to compare
the optimal solution with other protocols.

In this setup, the transmission range of each node is ap-
proximately 100m, and all nodes communicate using ns-3’s
802.11b PHY+MAC model. Each node has an average de-
gree of 4, and is equipped with one interface reserved for
CCC, and two additional data interfaces with 4 orthogonal
channels each. All interfaces have capacity of 11.0Mbps.
By default our simulations do not use RTS/CTS among nodes,
but permit up to 3 retries at the MAC layer to transmit each
packet.

Convergence time. Centralized requires less than 10 sec-
onds to perform channel selection on a Intel Quad core
2.33GHz PC with 4GB RAM running Ubuntu. The execu-
tion time is dominated by the computation overhead of the
Gecode solver. The distributed protocols converge quickly
as well – at 40 seconds and 80 seconds respectively for Dis-
tributed and Cross-layer. These convergence times represent
the cost of performing channel selection from scratch on the
entire network until all links have been assigned channels.

Convergence in the distributed case is dominated by the
network degree and the periodic timers between each indi-
vidual link channel negotiation. Since the solver computa-
tion only requires input channel information within a node’s
neighborhood, each per-link COP computation during nego-
tiation is highly efficient and completes within 200ms. In the
steady state after the initial channel assignments, as topology
changes, the distributed protocols require only incremental
recomputation by performing a channel negotiation for each
modified link. On the other hand, the centralized approach
requires a complete solver recomputation (for the entire net-
work) even when only one link has changed.

Aggregate network throughput. Figure 3 shows the ag-
gregate network throughput for five protocols as the traffic
load increases. The traffic load consists of UDP data packets
sent from random sources to random destinations. We ob-
serve that the throughput for all protocols first increases lin-
early as expected, then becomes sub-linear, and finally flat-
tens when the network is saturated.

The baseline protocol 1-Interface is the first to saturate (at
an aggregate traffic load of 3.0Mbps), followed by Identical-
Ch (at 6.5Mbps). Centralized (the optimal channel selec-
tion solution) consistently outperforms all other protocols at
traffic loads below 8.0Mbps. At higher traffic loads, Cross-
layer outperforms even the Centralized solution. This is be-
cause Cross-layer is able to select channels and routes to in-
telligently bypass congested hot spots, an optimization that
cannot be easily achieved when routing and channel selec-
tion decisions are carried out separately. In Figure 3, we omit
Cross-layer (E), since its performance is similar to Cross-
layer for small networks.

Bandwidth utilization. Distributed and Cross-layer are
both bandwidth efficient, requiring only per-node average
bandwidth utilization of 7.98Kbps and 8.55Kbps respec-
tively for computing channel selection from scratch.

6.3 Large Network Simulations
We repeat the same experimental setup as Section 6.2, but

8

0 2 4 6 8 10
0

1

2

3

4

5

6

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

Cross−layer
Distributed
Centralized
Identical−Ch
1−Interface

Figure 3: Aggregate network
throughput (12 nodes).

0 2 4 6 8 10
0

1

2

3

4

5

6

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

Cross−layer (E)
Cross−layer
Distributed
Centralized
Identical−Ch
1−Interface

Figure 4: Aggregate network
throughput (30 nodes).

0 2 4 6 8 10
0

1

2

3

4

5

6

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

2−hop Interference
Restricted Channels
1−hop Interference

Figure 5: Aggregate network
throughput (varying policies).

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow throughput (Kbps)

C
D

F

Centralized
Distributed
Cross−layer (E)

Figure 6: CDF of flow throughput
(individual flow model).

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow throughput (Kbps)

C
D

F

Centralized
Distributed
Cross−layer (E)

Figure 7: CDF of flow throughput
(gateway traffic model).

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

Topology number

T
hr

ou
gh

pu
t (

M
bp

s)

Cross−layer (E)
Distributed
Centralized
Identical−Ch
1−Interface

Figure 8: Aggregate network
throughput (varying topologies).

utilize a larger mesh network consisting of 30 nodes ran-
domly located within a 600m × 600m arena with an aver-
age node degree of 5. We configure each node to use three
data interfaces, where each interface has an available set of
8 orthogonal channels.

Convergence time. Given the complexity of channel as-
signment and the size of the network, the Centralized solu-
tion that searches for the optimal solution (not surprisingly)
require days to complete. As a result, we utilize the divide-
and-conquer approximation introduced in Section 4.1, which
divides the network into roughly equal-sized subnetworks.
The smaller the size of each subnetwork, the faster the solver
terminates, but the less optimal the solution is. For a subnet-
work of size 7, PUMA’s solver is able to generate channel
assignments within 30 seconds. For all distributed protocols,
the convergence time is similar to that of the earlier 12-node
experiment. This is because the convergence time for chan-
nel selection for these protocols is determined by node de-
gree and link negotiation interval, not the network size.

Aggregate network throughput. Figure 4 shows the ag-
gregate network throughput for all protocols. We observe
that the scalability trend is similar to the 12 nodes setup (Fig-
ure 3), but with some key differences: (1) Distributed con-
sistently has higher throughput than Centralized, suggesting
that while both are approximations to the optimal solution,
the divide-and-conquer strategy is not as effective as a purely
greedy approach that assigns link channels one at a time;
(2) Cross-layer’s relative improvements over the other proto-
cols are even more apparent in a large network, achieving an
average 24.7% higher throughput compared to Distributed,

and a 1.9X and 4.8X improvement over Identical-Ch and
1-Interface respectively; (3) the best performing protocol is
Cross-layer (E), which has an improved throughput of 9.5%
over the basic Cross-layer.

Bandwidth utilization. Distributed, Cross-layer, and
Cross-layer (E) incur low per-node average bandwidth uti-
lization of 12.57Kbps, 12.64Kbps and 12.80Kbps, respec-
tively. The performance numbers for network throughput
and bandwidth utilization suggest that per-node overhead is
low. Moreover, as network size increases, distributed proto-
cols are a more attractive option compared to a centralized
strategy in generating good channel assignments within rea-
sonable communication overhead and convergence time.

6.4 Policy Customization
In all our previous experiments, we have fixed the channel

selection policy but vary the mechanisms (e.g. centralized vs
distributed). Given the same 30-node setup, Figure 5 high-
lights the capabilities of PUMA to handle policy variations
with minor changes to the input PawLog policy rules.

Specifically, we fix the protocol to be Cross-layer (E), and
then vary the policies in two ways. First, Restricted Chan-
nels reduces the number of available channels for each node
by an average of 20%. This emulates the situation where
some channels are no longer available due to external fac-
tors, e.g. decreased signal strength, the presence of primary
users, or geographical spectrum usage limits. Second, 1-hop
Interference uses a different cost assignment function to con-
sider only one-hop interference. As a basis of comparison,
2-hop Interference shows our original channel selection pol-
icy used in prior experiments.

9

We observe that for Restricted Channels, the throughput
decreases by 35.9%. With the additional use of one-hop in-
terference model, the throughput further reduces by an aver-
age of 6.9%, indicating that the two-hop interference model
does a better job in ensuring channel diversity.

6.5 Varying Traffic and Topology
Using the 30 node setup, we examine the sensitivity of our

results by varying traffic patterns and network topologies.
Individual flow model. Here, instead of using a random

traffic model, we selected 300 random source/destination pairs,
and then generate a steady stream of packets at a bidirec-
tional sending rate of 17.00Kbps (in each direction) between
each pair routed along the computed best path. Figure 6
shows the CDF of network throughput breakdown by indi-
vidual network flows. We observe that under flow traffic,
Cross-layer (E) achieves the best performance, followed by
Distributed, and then Centralized. We omit presenting 1-
Interface and Identical-Ch in the CDF, since their throughput
is far below Centralized.

Gateway traffic model. Figure 7 shows a similar CDF
under a different gateway traffic model. Instead of selecting
random sources/destinations to construct the flows, the gate-
way model limits the flows between three designated gate-
way nodes and randomly selected other nodes. This creates
a well-studied traffic scenario [10, 25, 22] where gateway
nodes are receiving/disseminating data from/to other nodes
in the network. We observe that the relative performance
differences (in terms of flow throughput) among protocols
are consistent with our earlier observations.

Different topologies. To analyze the sensitivity of differ-
ent topologies, Figure 8 repeats the same experiment as Fig-
ure 4 with an aggregate data rate of 9.6Mbps between ran-
dom sources and destinations. Across six different topolo-
gies experimented, we measure the aggregate network through-
put, and again observe similar trends as before: Cross-layer
(E) achieves the highest throughput, followed by Distributed,
Centralized, Identical-Ch, and finally 1-Interface.

Heterogeneous traffic. Finally, we conduct experiments
where the sending rate of nodes vary based on the normal
distribution. Figure 9 shows the performance for all pro-
tocols for different normal distributions, from the least het-
erogeneous (on the left as pattern 1) to the most heteroge-
neous (on the right as pattern 3). The aggregate network-
wide sending rate is fixed at 6.8Mbps. For all three traf-
fic patterns, both Cross-layer and Cross-layer (E) consis-
tently outperform other protocols. Moreover, Cross-layer
(E) yields an 11.1% throughput improvement (on average)
over Cross-layer. Interestingly, since the other four protocols
are already performing poorly, they are not affected much by
the degree of traffic heterogeneity.

6.6 ORBIT Testbed Results
Our final set of experiments are carried out on the OR-

BIT [4] testbed, a wireless testbed that consist of machines
arranged in a grid communicate with each other using 802.11.
Each ORBIT node is equipped with 1 GhZ VIA Nehemiah

processors, 64KB cache and 512MB RAM. We selected 30
ORBIT nodes in a 8m × 5m grid to execute one PUMA in-
stance each. Each of these 30 nodes utilizes two Atheros
AR5212-based 802.11 a/b/g cards as their data interfaces.
By default, RTS/CTS is not used, and nodes are configured
without retries.

ORBIT is one of the publicly available wireless testbeds
for carrying out large-scale wireless experiments. This
testbed allows us to validate results obtained in simulations.
One current limitation of ORBIT is that given that the max-
imum distance between any two nodes in our experiment is
about 9.4 meters, all nodes can hear the transmission signals
from all other nodes.

To mitigate this issue, we make the following changes:
(1) reduce the transmission power of all nodes to 1dBm; (2)
utilize iptables to filter packets at the MAC layer to emu-
late a grid topology where each node only receives messages
from its designated neighbors within 1-2 meters range; (3)
nodes communicate using 802.11a/g with 54Mbps capacity,
which we have found to result in higher saturation bandwidth
on ORBIT compared to 802.11b. In total, we have 10 or-
thogonal channels (7 from 802.11a and 3 from 802.11g) to
assign to the two data interfaces. Even with these mitigation
techniques, we note that the resulting network is physically
a fully-connected mesh since any two nodes can still receive
signals from each other. This limitation of ORBIT impacts
the absolute throughput across all protocols experimented.

The first experiment evaluates our protocols using the ran-
dom traffic model similar to previous simulations. After
channel assignments and routes are established, packets are
routed from randomly selected sources to destinations along
the best paths. Due to ORBIT’s configuration as a fully-
connected mesh, the utility of traffic-aware routing is lim-
ited. We hence focus on comparing the regular Cross-layer
with other schemes. Figure 10 shows the aggregate network
throughput as the offered load increases until saturation is
reached for most protocols.

We make the following observations. First, the compara-
tive differences across protocols are consistent with our ear-
lier simulation results. The best performing protocol is Cross-
layer which has the highest aggregate throughput, followed
by Distributed and Centralized (with divide-and-conquer ap-
proximation).

Second, 1-Interface and Identical-Ch have reductions in
throughput at high data rates greater than 8.0Mbps. We at-
tribute this to congestion-related high packet losses due to
increased interferences at high data rates. These losses are
more apparent for protocols with limited channel diversity.
Cross-layer on the other hand avoids throughput degradation
through a better choice in route and channel selection.

Third, we observe that PUMA is able to handle high rates
of traffic. For instance, when data is injected into the net-
work at a rate of 7.5Mbps, the Cross-layer protocol is able
to forward packets efficiently with only a loss rate of 14.7%.
Given that each packet traverses 3-4 hops from source to

10

1 2 3
0

1

2

3

4

5

6

7

8

9

Traffic pattern number

T
hr

ou
gh

pu
t (

M
bp

s)

Cross−layer (E)
Cross−layer
Distributed
Centralized
Identical−Ch
1−Interface

Figure 9: Aggregate network
throughput (varying traffic).

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

Cross−layer
Distributed
Centralized
Identical−Ch
1−Interface

Figure 10: Aggregate ORBIT
throughput (30 nodes).

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

10 Channels
8 Channels
6 Channels
4 Channels
1 Channel

Figure 11: Aggregate ORBIT
throughput (varying #channels).

destination, this translates to about 1.0Mbps per-node band-
width. Given ORBIT’s fully-connected mesh, these perfor-
mance results should be viewed as a lower bound.

In our second experiment, we execute Cross-layer using
the same setup as above, but limits the number of available
channels to 10, 8, 6, 4, and 1 (fall back to 1-Interface). This
setup emulates the situation where some channels are un-
available due to policy constraints same as simulations in
Section 6.4. Figure 11 shows whenever more channels are
available, PUMA is able to leverage the increased channel
availability to reduce interference and hence results in in-
creased throughput.

7. DISCUSSION
We discuss our experimental results by revisiting our eval-

uation criteria used in Section 6:
PawLog execution: PUMA is able to perform channel se-

lection and routing in a bandwidth-efficient manner with fast
convergence time, and handle high traffic rates before reach-
ing interference-induced saturation.

Channel selection and routing policies. This paper is
one of the first comprehensive attempts at experimentally
evaluating a wide range of channel selection protocols in
both simulations and actual testbed. Centralized and dis-
tributed channel selection and routing protocols implemented
in PUMA significantly outperform single-channel and iden-
tical channel assignment solutions. The relative differences
and scalability trends of these protocols are consistent with
what one would expect in imperative implementations.

Our proposed cross-layer protocol (particularly when with
the enhancement of traffic-aware routing) exhibits the best
overall performance in terms of high throughput and low loss
rate, and especially in large networks, significantly outper-
forms other protocols.

Flexibility of PawLog. Our evaluation validates PawLog’s
flexibility in supporting various channel selection protocols
(e.g. centralized, distributed, cross-layer) and policies (e.g.
one-hop vs two-hop interference models, restricted channels).
PawLog’s high level abstractions make it extremely easy to
encode novel policies, such as the cross-layer strategy that
optimizes across channel selection and routing. This is a
clear evidence on the advantages of a declarative approach,
which allows us to rapidly prototype and evaluate varying

protocols and policies.

Protocol PawLog Imperative (C++)
Centralized 35 3229
Distributed 48 4445
Cross-layer 59 5817

Table 1: PawLog and Compiled C++ comparison
Compactness of PawLog. Table 1 illustrates the com-

pactness of PawLog, by comparing the number of PawLog
rules (2nd column) for three representative protocols against
the actual number of lines of code (LOC) in the generated
RapidNet and Gecode C++ code (3rd column).

Each PawLog program includes all rules required to im-
plement routing and channel selection. These include rules
for LSU propagation, route computation, channel selection,
and dissemination of channel information in the network.
The generated imperative code is approximately 100X the
size of the equivalent PawLog program. The generated code
is a good estimation on the LOC required by a programmer
to implement these protocols in a traditional imperative lan-
guage. In fact, PawLog’s reduction in code size should be
viewed as a lower bound. This is because the generated C++
code implements only the rule processing logic, and does
not include various PUMA’s built-in libraries, e.g. Gecode’s
constraint solving modules, the network and channel abstrac-
tion layers provided by RapidNet. These built-in libraries
need to be written only once, and are reused across all pro-
tocols written in PawLog rules.

While a detailed user study will allow us to comprehen-
sively validate the usability of PawLog, we note that the or-
ders of magnitude reduction in code size makes PawLog pro-
grams significantly easier to write, understand, debug and
extend than multi-thousand-line imperative alternatives.

8. RELATED WORK
Several architectures and designs for dynamic spectrum

access/sharing [20, 24, 19, 7] and channel selection and rout-
ing [10, 23, 6, 11, 25, 22] have been proposed for mitigating
the impact of harmful interference and thus improving over-
all network performance. PUMA aims to to enable all of the
above protocols and the policies that dictate their behaviors
to be specified and customized easily.

11

XG [20] proposes an architecture for policy-based net-
work management for spectrum access control. PUMA’s
policy-based framework similarly addresses the issue of chan-
nel management, but also provides the capabilities to imple-
ment policy-based routing protocols and perform cross-layer
optimizations.

Prior work [13, 25] have formulated channel selection as
COPs, however they are typically hard-coded into a con-
straint solver and limited to centralized contexts. [16] pro-
poses the formulation of centralized channel selection poli-
cies as declarative COP programs. Our paper significantly
extends this work by exploring centralized approximations,
distributed channel selection, traffic-aware cross-layer opti-
mizations, as well as an extensive experimental evaluation in
both simulations and the ORBIT testbed.

Declarative networking has been studied in both wired [18]
and wireless [15] environments, and even used as a basis for
course projects in a networked systems class [12]. PUMA
focuses on a new domain that combines declarative chan-
nel selection and routing in wireless mesh networks. By in-
tegrating a declarative networking engine with a constraint
solver, PUMA provides novel capabilities that enable dis-
tributed cross-layer optimizations in an incremental fashion.

9. CONCLUSION
This paper presents PUMA, a policy-based extensible plat-

form that combines channel selection and routing within a
common declarative framework. PUMA integrates a declar-
ative networking engine with a constraint solver to realize
a variety of declarative wireless routing and channel selec-
tion protocols, and in addition, provides avenues to optimize
across route and channel selection policies. We have de-
veloped a prototype of PUMA using the RapidNet declar-
ative networking system and the Gecode constraint solver,
and have carried out extensive evaluations of PUMA in sim-
ulation and on the ORBIT testbed. We are in the processing
of releasing PUMA as open-source for use by the networking
community. We are also exploring integrating PUMA with
legacy systems, for instance, interfacing our channel selec-
tion manager with software router packages (e.g. Quagga [21]).

While our policy-based customizations demonstrate the
flexibility and generality of PUMA, we further plan to ex-
plore runtime policy-based adaption, where even the opti-
mization goals and constraints themselves can be reconfig-
ured at runtime based on application requirements and net-
work conditions. Furthermore, we plan to apply existing
work on declarative network verification [27], in order to for-
mally prove properties of PawLog protocols, e.g. reasoning
about the interactions between channel selection and routing.

10. REFERENCES
[1] Gecode constraint development environment.

http://www.gecode.org/.
[2] Meraki. http://meraki.com/.
[3] Network Simulator 3. http://www.nsnam.org/.
[4] ORBIT Wireless Network Testbed.

http://www.orbit-lab.org/.
[5] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.

[6] M. Alicherry, R. Bhatia, and L. E. Li. Joint channel assignment and
routing for throughput optimization in multi-radio wireless mesh
networks. In MobiCom, 2005.

[7] V. Brik, E. Rozner, S. Banerjee, and P. Bahl. DSAP: a protocol for
coordinated spectrum access. In DySPAN, 2005.

[8] C. Chereddi, P. Kyasanur, and N. H. Vaidya. Design and
implementation of a multi-channel multi-interface network. In
REALMAN, 2006.

[9] T. Clausen and P. Jacquet. Optimized link state routing protocol
(olsr). In RFC 3626 (Experimental), October 2003.

[10] A. Dhananjay, H. Zhang, J. Li, and L. Subramanian. Practical,
distributed channel assignment and routing in dual-radio mesh
networks. In SIGCOMM, 2009.

[11] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop
wireless mesh networks. In MobiCom, 2004.

[12] H. Gill, T. Saeed, Q. Fei, Z. Zhang, and B. T. Loo. An Open-source
and Declarative Approach Towards Teaching Large-scale Networked
Systems Programming. In SIGCOMM Education Workshop, 2011.

[13] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of
interference on multi-hop wireless network performance. In
MobiCom, 2003.

[14] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph
coloring. In PODC, 2006.

[15] C. Liu, R. Correa, X. Li, P. Basu, B. Loo, and Y. Mao. Declarative
policy-based adaptive MANET routing. In ICNP, 2009.

[16] C. Liu, X. Li, S. C. Muthukumar, H. Gill, T. Saeed, B. T. Loo, and
P. Basu. A policy-based constraint-solving platform towards
extensible wireless channel selection and routing. In PRESTO, 2010.

[17] M. Liu, W. Zhou, N. Taylor, Z. Ives, and B. T. Loo. Recursive
Computation of Regions and Connectivity in Networks. In ICDE,
2009.

[18] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
Networking. In Communications of the ACM (CACM), 2009.

[19] L. Ma, X. Han, and C.-C. Shen. Dynamic open spectrum sharing
MAC protocol for wireless ad hoc networks. In DySPAN, 2005.

[20] F. Perich. Policy-based Network Management for NeXt Generation
Spectrum Access Control. In DySPAN, 2007.

[21] Quagga Routing Suite. http://www.quagga.net/.
[22] Ramachandran, K. N. and Belding, E. M. and Almeroth, K. C. and

Buddhikot, M. M. Interference-Aware Channel Assignment in
Multi-Radio Wireless Mesh Networks. In INFOCOM, 2006.

[23] A. Raniwala, K. Gopalan, and T.-c. Chiueh. Centralized channel
assignment and routing algorithms for multi-channel wireless mesh
networks. SIGMOBILE Mob. Comput. Commun. Rev., 2004.

[24] C. Santivanez, R. Ramanathan, C. Partridge, R. Krishnan,
M. Condell, and S. Polit. Opportunistic spectrum access: Challenges,
architecture, protocols. In ACM WiCon, Boston, MA, 2006.

[25] A. Subramanian, H. Gupta, and S. Das. Minimum Interference
Channel Assignment in Multi-Radio Wireless Mesh Networks. In
SECON, 2007.

[26] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[27] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Towards declarative
network verification. In 11th International Symposium on Practical
Aspects of Declarative Languages (PADL), 2009.

[28] Y. Yi and M. Chiang. Wireless Scheduling Algorithms with O(1)
Overhead for M-Hop Interference Model. In IEEE ICC, 2008.

Appendix A: WCETT Metric
The Weighted Cumulative Expected Transmission Time
(WCETT) [11] metric is based on Expected Transmission
Time (ETT) of each link and takes into account path chan-
nel diversity.
WCETTP = (1− β) ∗

∑
l∈P

ETTl + β ∗ max
1≤j≤k

Xj (7)

In (7), the WCETT of a path P is expressed as a weighted
formula (tunable by coefficient β) between the path ETT
(summation of ETT ETTl for all links in path P), and the
maximum ETT of the bottleneck channel (computed by tak-
ing the max of all Xj , where Xj is defined as the sum of
ETT for all links in P with channel assignment j).

12

