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Abstract—The BGP routing system is inflexible and sub-
optimal for both stub networks and ISPs. Stub networks are
unable to obtain routes that meet their end-to-end requirements,
and ISPs have limited flexibility in controlling their revenues and
offering new services to a wide customer base. We present the
S4R supplemental routing system to address these shortcomings.
Technical soundness and economic viability are equal first class
design requirements for S4R. In S4R, ISPs announce links
connecting different parts of the Internet. ISPs can selfishly price
their links to attract maximal amount of traffic. Stub networks
can selfishly select paths that best meet their requirements at the
lowest cost. We design a variety of practical algorithms for ISP
and stub network response that strike a balance between accom-
modating the (selfish) objectives of all participants and ensuring
efficient and stable operation overall. We employ large scale
simulations of realistic scenarios to show that S4R operates at a
close-to-optimal state and that it encourages broad participation
from stubs and ISPs. We describe a prototype implementation
using OpenFlow and show that it can support S4R effectively.

I. INTRODUCTION

BGP enables stub networks, such as content providers and

enterprises, to reach clients and services located through-

out the Internet. ISPs employ BGP in a variety of ways

to control traffic entering and leaving their networks, and

in turn, to enhance their revenues. However, BGP suffers

from key inflexibilities that impose constraints on both stub

networks and ISPs today [4], [14]. BGP offers stub networks

exactly one policy-constrained path per destination per ISP

connection, with no guarantees on performance or availability.

Thus, stub networks cannot flexibly meet the requirements of

key network-based applications, such as satisfying the end-

to-end performance constraints of real-time video or finance

applications, especially during peak traffic periods [4], [18]. To

overcome this, stub networks can enter into partial transit or

paid peering contracts with multiple ISPs to support sensitive

applications. Unfortunately, these contracts are binding and

long-term in nature. Other finer-grained approaches [26], [5],

[4], are either undesirable in practice or inadequate.

BGP is sub-optimal for ISPs, too [30]. ISPs have little

flexibility in controlling their revenues and expanding their

services to attract a larger customer base. While BGP import

and export policies allow ISPs some control over their rev-

enues, they require ISPs to rely on long-term bilateral contracts

with peers and customers [23]. ISPs can offer performance

guarantees for traffic within their own domain, but are at the

mercy of those they contract with once traffic exits their own

network. Moreover, there are no easy ways for an ISP to

expand its customer base to stub networks located in places

where the ISP has no “physical presence”. Approaches based

on tunneling (e.g., MIRO [30]) are inadequate because the

tunnels must traverse multiple intermediate ISPs that may not

offer the tunneled traffic the same level of high performance.

Some prior efforts [12], [28], [2], [10], [9] have recognized

the fundamental shortcomings of routing, namely, that it is

neither aligned with important emerging stub network usage

scenarios nor with ISP revenue and operational goals. How-

ever, these works focus either on (some of the) underlying

implementation issues or on economic/theoretical analyses. To

date, no work has both described a technical solution and

evaluated its viability in practice, especially from an economic

standpoint. For example, approaches such as multi-provider

MPLS/VPNs [2] consider the technical issues in enabling

stub networks to obtain inter-domain paths meeting their

requirements, but they do not consider the crucial economic

issues for both ISPs and stub networks (e.g., how to price

paths to maximize revenue, how to select paths with best

cost-performance trade-offs etc.), which impact whether or

not such mechanisms are adopted in the first place. At the

other extreme, game-theoretic models [10], [9] study selfish

interactions among ISPs and stubs, and show that the result

can be arbitrarily bad in some network settings; however, it is

not clear if these results hold in realistic scenarios.

Our paper brings together both technical as well as eco-

nomic issues to develop a compelling solution to BGP’s

intrinsic shortcomings. We describe the design and imple-

mentation of an economically-grounded routing system, called

S4R, designed to supplement, not supplant BGP. S4R enables

participating stubs and ISPs to behave selfishly in order to

directly meet their local objectives. Thus, S4R offers its

participants a great degree of flexibility, which fosters greater

participation from them while not requiring any kind of global

oversight. We evaluate S4R in a variety of realistic situations

using metrics and models that are similar to those used in prior

game-theoretical analyses and show that S4R is desirable for

both stubs and ISPs. We show the S4R can be implemented

effectively using the OpenFlow platform [22].

ISPs participating in S4R announce (virtual) links connect-

ing different locations of the Internet. ISPs have the flexibility

of dynamically altering the link prices so as to control the

quality of their links and, more importantly, to attract arbitrary

remote traffic and maximize their revenue. Stubs have the

flexibility to select (or shift at any time to) paths with optimal

cost-performance trade-offs for the specific application at

hand. A stub will always be able to find paths that best meet its

application-level requirements as long as it has the willingness

to pay for it. S4R’s approach to enabling selfishness of its

participants directly aligns with the selfishness models studied978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



in prior worst-case theoretical analyses. However, we find,

surprisingly, that S4R leads to robust outcomes in practice

contrary to what theory suggests [10], [9].

We describe two implementations of S4R: centralized and

distributed. We develop learning-based response algorithms

both for ISPs to change prices to maximize revenue and

for stubs to reroute traffic selfishly when prices change. Our

algorithms are designed to balance the need to accommodate

stub and ISP selfish objectives with ensuring stable and effi-

cient system-wide operation. Our algorithms help S4R reach a

correlated equilibrium where every participant is content with

their own choice given others’ choices.

Through an extensive evaluation using a variety of realistic

and synthetic scenarios, we answer key technical and eco-

nomic questions: (i) Does S4R reach a stable operating point?

How does S4R’s equilibrium performance compare to socially

optimal outcomes? (ii) How do structural properties, including

network topology, presence of monopolies, stub network value

distributions, etc., impact the overall performance? (iii) How

well does S4R support various stub network usage patterns and

ISP revenue objectives? And, (iv) Can we overcome practical

implementation challenges in supporting S4R?

We find that, in all scenarios, the net performance derived

by S4R stubs (in centralized or distributed cases) is roughly

30% away from the best possible social outcome (i.e., where

all ISPs are altruistic and provide globally-optimal routes).

S4R can support a variety of stub usecases, which are poorly

supported today, equally effectively. Furthermore, there is

no significant skew in ISP revenues. Thus, S4R functions

efficiently and yields attractive outcomes for all participants

despite their selfish actions. We find S4R is efficient as

long as there is sufficient path diversity. Furthermore, the

performance of S4R is unaffected by the variance in stub

networks’ willingness to pay. We also find that S4R can handle

a modest degree of churn in practice. Using experiments on

a small-scale testbed, we find that our prototype, which uses

OpenFlow switches, can effectively support S4R.

Thus, our contributions are: (1) a supplemental routing

system that aligns with the economic objectives and emerging

requirements of ISPs and stubs, (2) the design of algorithms

that ensure robust and efficient overall operation while accom-

modating selfish actions of individuals, (2) an implementation

of the proposal using OpenFlow-based components, (3) a

thorough evaluation of economic aspects under realistic sce-

narios, which prove the viability of the proposal despite worst-

case theoretical results to the contrary, and, (4) a thorough

examination of key technical and implementation challenges.

II. MOTIVATING EXAMPLES

To exemplify the requirements for S4R, we discuss three

scenarios which are poorly supported today. In each case,

a stub desires end-to-end guarantees, and these must be

simultaneously supported by one or more remote ISPs.

(1.a) Expected spikes in traffic, e.g., a popular Web ser-

vice experiencing increased traffic during broadcasts of major

events, sales or during releases of new software (see for

example [3]). To offer good performance to its clients, the Web

server may wish to purchase network paths with additional

end-to-end bandwidth to ISP PoPs in large cities where most

clients are located only when demand is known to be high

(this only addresses the network bottleneck; the Web service

would have to provision its server to handle the load as well).

The site may wish to revert to BGP at all other times.
(1.b) Sensitive traffic requiring a fixed amount of end-

to-end point-to-point or point-to-multipoint bandwidth, e.g.,

real-time HD video and Telepresence. Another class includes

applications requiring high availability.
(2) Bulk transfers with deadlines such as video-on-demand

services, e.g., NetFlix’s “On Your TV”, which may want

to “push” popular content to caches located closer to stub

networks in order to provide instant access. Stub networks

would want their end-to-end transfers to complete before a

pre-set deadline, but do not care about the actual transfer rates.
Today, it is possible to obtain inter-domain paths for the

above by entering into paid transit or partial peering contracts

with a collection of ISPs along chosen paths. However, such

contracts are long term in nature: the stub cannot switch to

an alternate path should its current choice be sub-optimal,

not can it opt out should traffic demand not warrant the

additional capacity [23]. Another possibility is for the stub

network to multihome, but it cannot hope for any concrete

performance guarantees beyond the first hop. Overlays may

also be employed, but such schemes have poor interactions

with the objectives of ISPs [25]. Techniques such as multi-

provider MPLS and VPNs [11], [2] may be applicable, but

existing proposals consider the technical details of distributed

provisioning of end-to-end tunnels. But it is equally important

to incorporate ISP and stub economic considerations and un-

derstand the implications of various choices for inter-domain

route provisioning and route selection.
Design Requirements: S4R is a routing system for providing

end-to-end routes accommodating scenarios such as the above,

while incorporating the economic considerations of partici-

pants. S4R’s design requirements are as follows:
(R1) S4R should be useful for stubs. Specifically: (R1.1) Stubs

who have the means and willingness to pay should be able to

find routes matching their requirements. (R1.2) There should

be no “cheaper” route that also meets the stubs’ constraints

at any point in time. (R1.3) S4R should support a variety of

stub usage scenarios equally effectively. (R2) To encourage

ISP participation, S4R should allow them to set prices for the

routes they offer in an arbitrary selfish manner to control link

quality and attract remote traffic.
Next, we describe the key components of S4R (§II). We

then describe ISP pricing and stub route selection (§IV), as

well as router support issues (§V). Finally, we then describe

prior pessimistic theoretical studies but show using extensive

simulations that S4R is effective in practice (§VI).
III. S4R OVERVIEW

Stub networks. In S4R, stubs can obtain end-to-end paths

between two network locations with some associated proper-

ties. We focus mainly on performance guarantees, but S4R

can be used for other properties, such as avoiding specific



ISPs, traffic striping, and routing through intermediaries like

DDoS filters [24]. Our framework applies to two types of

stubs: (1) large stubs such as enterprises, Web services

and campuses which require guarantees for the traffic they

exchange with some network destinations; (2) small regional

ISPs with footprints limited to a specific geographic region

or a state. Such networks may wish to offer their customers

some performance guarantees to popular remote destinations.

Usage scenarios have not received much attention in most

prior work. In S4R, stub networks can place requests of

four different types that model different stub requirements:(1)

Diurnal predicted: The stub network has a fixed required band-

width profile (spanning 24h) for specific application traffic to

a destination. (2) Peak predicted: This is similar to the above,

except that the stub requests a certain amount of bandwidth

for a specific 1 hour period corresponding to a predicted peak

in the application traffic volume. (3) Instantaneous: Both the

above guarantees are based on stubs knowing something about

their traffic profile beforehand. However, traffic to certain

destinations could peak unexpectedly and stay high for long

periods. In such cases, based on some initial monitoring,

the stub many decide to instantaneously purchase a certain

amount of bandwidth for some upcoming duration of time. (4)

Elastic bulk: This models delay-tolerant bulk transfers (e.g.,

prefetching VOD content, transfers of scientific datasets etc.).

The stub requests to transmit some number of bytes (e.g.,

500GB) within a given time interval (e.g., the next 12 hours).

S4R stubs provide a value associated with the traffic to

a destination, which is treated as private information. This

encodes the amount that the stub is willing to pay per Mbps

and drives the stub’s selfish behavior. Also, stubs are local

utility-maximizing: Given link prices, a stub can select routes

such that its utility—the difference between the value derived

by the stub and the price it pays—is maximized on a per-

destination and per-application basis.

ISPs: Each ISP offers to carry traffic across a “vir-

tual link” between two network locations (e.g., specific

PoPs) at some cost per unit bandwidth. ISPs can be large

national/international-scale providers or even third party ser-

vice providers. ISPs are revenue-maximizing, setting prices to

maximize the revenue earned from the links owned. An ISP’s

revenue per link is the product of the stub network flow routed

on the link and the link price per unit traffic. Thus, S4R enables

ISPs to use pricing as a tool to attract traffic from even remote

stubs and enhance their revenues, thereby freeing ISPs from

the constraints imposed by rigid bilateral contracts today.

There are two possible approaches to accommodating the

objectives/requirements of ISPs and stubs, discussed next.

A. Centralized S4R

In the centralized variant, stubs and ISPs communicate with

a logically central, neutral facilitator; Similar arrangements are

used for enabling partial transit and paid peering today [1].

Stubs submit their requirements and ISPs submit their virtual

links. The facilitator faithfully simulates the selfish interac-

tions of the stubs and ISPs, and finds a stable state, or an

equilibrium, that is acceptable to everyone; We describe the

mechanisms to emulate ISP and stub behavior in §IV.

At equilibrium, the facilitator computes: (1) Stub routes.

For every 1hr interval, the facilitator outputs: (a) the S4R

routes that the stub should use for the interval, and (b) how

much traffic the stub should send across these routes. The

routes and traffic splits can change on a hourly basis for

diurnal-predicted and elastic-bulk demands. (2) Link prices.

The facilitator outputs prices that ISPs should charge over

time, and informs them of the amount of flow they should

observe for a given stub over time. The ISP uses the latter

to filter traffic from stubs who are sending more than agreed

upon.

Since the participants are selfish, in order for the facilitator’s

solution to be acceptable to ISPs and stubs, it should ideally

be a Nash equilibrium [27], where no ISP has the incentive

to unilaterally deviate from the current price to boost revenue;

and all stubs employ utility maximizing paths and have no

incentive to route over alternate paths.

Flexible global policies: The facilitator can impose flexible

policies to ensure some global properties are satisfied, as

well. The default policy is that the net value derived across

all stubs who end up using the system is maximized. While

this offers global efficiency, it could result in unfairness. A

different policy could ensure that a certain minimum amount

of demand from each region is guaranteed routes, irrespective

of the relative values of the stubs located at each location.

This introduces some level of fairness into the system. Another

policy could enforce both fairness and value-optimality.

B. Distributed S4R

In the distributed variant, ISPs and stubs interact directly by

passing messages along, rather than through a facilitator. In

this setting, two possibilities arise to communicate link prices

to stubs: (a) ISPs employ link-state routing to spread link

price and topology information on a regular or triggered basis.

(b) ISPs register the current prices with a central database,

which stubs query for prices. In both cases, stub networks

react to the prices by routing their request messages along

newly-found least cost paths. ISPs compute the expected traffic

they will carry based on the messages that traverse their links

over time and adjust their link prices accordingly. We describe

algorithms for ISP price adjustment and stub routing in §IV.

The advantage of this mechanism is that it does not rely

on a central point of trust. However, since player actions are

completely uncoordinated, global desirable properties such as

optimal net value or fairness cannot be guaranteed.

C. Support for Stub Requirements

We isolate traffic belonging to different classes of stub

requests from each other because the requests have different

semantics in terms of when they can be placed and by when a

stub must hear an answer; e.g., diurnal requests are placed at

the beginning of 24 hour time-periods, peak-predicted requests

are placed at 1 hourly intervals, while instantaneous requests

can be placed at any time. More specifically, we run three

logically separate approaches (distributed or centralized): one



for accommodating instantaneous requests, one for accom-

modating peak-predicted requests, and another joint one for

elastic and diurnal-predicted requests. Alongside, ISPs offer

up to three logically independent sets of virtual links.

Except for instantaneous demands, we enforce that stubs

employ the chosen routes and ISPs charge stubs only after S4R

has reached convergence to ensure stable overall operation.

The ISP and stub response mechanisms described next are

designed so that the network will converge to a correlated

equilibrium. In the centralized variant, the facilitator runs the

simulation until some termination condition is reached. In the

distributed variant, ISPs continue spreading topology and price

information while stubs send their requests along least-cost

paths for a fixed large number of iterations pass (§IV), after

which actual traffic can be routed. Our evaluation (§VI) shows

that both the centralized and distributed approaches reach

stable operating points. To support instantaneous demands, the

S4R system runs in an online fashion.

We note that three of the diurnal predicted, peak predicted

and instantaneous usage scenarios can be supported in both

the distributed and the centralized variants. In contrast, bulk

transfers is best supported in the centralized version: the facil-

itator can accommodate bulk transfer requests by “spreading”

their demand over time intervals when there is little demand.

IV. DESIGN DETAILS

The algorithms used by S4R participants have two design

goals that are at odds with each other: (1) enable participants

to selfishly meet their objectives; (2) ensure that the S4R

system operates in a stable fashion and dynamically adjusts

to varying conditions (e.g., stub requests entering and leaving,

ISP links going down, etc.). To reconcile these goals, for ISPs,

we borrow ideas from regret-minimization to design effective

price-adjustment approaches. For stubs, we develop a novel

heuristic for traffic reassignment across ISP paths.

A. Distributed S4R Design

ISPs. An ISP prices links so as to maximize its revenue

given the other ISPs’ and stubs’ choices. Since the ISP has

incomplete information about others’ strategies, and moreover

strategies change dynamically, the ISP faces an online opti-

mization problem. Each ISP therefore can employ a learning

algorithm to determine the best strategy. The learning algo-

rithm successively tries different prices at different iterations

(employing historical information) and gradually converges

to an optimal price. The algorithm attempts to minimize the

“regret” of the ISP, which is the difference between the optimal

average revenue achievable through a single price and the

average revenue obtained by the algorithm overall.

We present two iterative regret-minimizing learning al-

gorithms: (1) The epsilon-decreasing explore-exploit algo-

rithm [29], is a simple learning algorithm that is proven to

minimize regret in a static environment (if strategies of other

ISPs and stubs are picked from an unchanging probability

distribution, and do not adapt to this ISP’s strategy). (2) The

hedge-bandit algorithm [8], provably minimizes regret even

in worst-case dynamic online settings. While variants of these

Parameters: k, the number of different prices; N = k2; α, the weighting parameter
for EWMA.
Variables: Randomness parameter ǫt = min(N/t log t, 1); for every potential price
i, a revenue estimate πi.
Initialization: For every price i, πi = 0.

At
every iteration t do:
1. With probability ǫt, pick a price i uniformly at random and report it.
2. Otherwise (i.e. with probability 1− ǫt), pick the price i with the maximum πi and

report it.
3. Let the revenue obtained at the current step be X . Update the revenue estimates for
i as follows: πi = απi + (1 − α)X .

Fig. 1. Algorithm epsilon-decreasing explore-exploit

have been studied in theoretical settings, to the best of our

knowledge we are the first to apply them to practical dynamic

network pricing settings and to evaluate their performance in

realistic situations (§VI).

In epsilon-decreasing explore-exploit, at every iteration the

ISP either “explores” prices by picking a price uniformly at

random, or “exploits” by picking a price that has historically

obtained the most revenue. At iteration t, an explore is

performed with probability ǫt and exploit with probability

1− ǫt. In the beginning, ǫt is set to a high value. As history

is accumulated it decreases with t: ǫt = min(N/t log t, 1) for

a constant N that depends on network size.

To pick the best-price-so-far in an exploit step, the

ISP maintains an exponentially weighted moving average

(EWMA) of the revenue obtained by each potential price.

After a certain large number of iterations, this approach would

give more weight to newer knowledge gained and less to

historical data compared to a simple average. This is especially

important in a dynamic environment where demands come

and go, because a price that was attractive historically may

become unattractive over time. The EWMA approach allows

the algorithm to adapt quickly to such changes (Fig 1).

Hedge-bandit also “explores” at every iteration with an ǫt
probability. However, in this algorithm ǫt remains constant.

The crucial difference is in their “exploit” step. Instead of

picking the best-in-history price at every exploit step, Hedge-

bandit picks a price from a probability distribution that assigns

high probability to prices with high revenues and low probabi-

lity to other prices. The probability associated with prices that

consistently perform poorly decreases exponentially over time.

Therefore, Hedge-bandit quickly converges to good prices

while not entirely disregarding prices that perform moderately.

This allows it to adapt quickly to changes in the system such

as the arrival or departure of demands (Fig 2). This is crucial

to gracefully accommodating churn (§VI).

Stubs. A stub maximizes the utility it derives from routing

its traffic – this is the difference between the value it obtains

from routing its traffic and the price it pays to ISPs. Therefore,

every stub must distribute its traffic over least cost paths to its

destination. Stubs use the default BGP path for traffic with

value less than the price on the least cost paths.

We now discuss a novel heuristic which stubs can employ to

meet their requirements optimally given the current network

state (Fig 3): each stub maintains a list of the paths that it

currently uses, as well as a list of currently least-cost paths.



Parameters: k, the number of different prices; L = the capacity of the link times
maximum price; randomness parameter ǫ = 0.01 and weight δ = 0.01.
Variables: Weights wi and probabilities pi for every potential price i. W =

∑
i wi,

and pi = wi/W .
Initialization: For every price i, wi = 1 and pi = 1/k. W = k.

At
every iteration do:
1. With probability ǫ, pick a price i uniformly at random and report it.
2. Otherwise (i.e. with probability 1−ǫ), pick a price i randomly from the distribution
p and report it.

3. Let the revenue obtained at this step be X . Update wi as follows: wi =
wie

δX/LP where P = ǫ/k + (1 − ǫ)pi. Other weights stay the same.
4. Update the probability vector p by setting pj = wj/W for every j, where W is

the new sum of all the weights.

Fig. 2. Algorithm Hedge-Bandit

Parameters: Selfishness parameter ǫs; granularity parameter δ.
Variables: H , a list of paths used in the previous iteration; L, a list of currently
least-cost paths; fP , flow on path P ; r, the amount of flow to be redistributed at any
iteration.
Initialization: H = ∅.

At
every iteration t do:
1. Construct L by finding all least-cost paths.
2. Initialize r = 0. For every path P in H \ L, increment r by ǫsfP if fP ≥ δ

and fP otherwise; Set fP = fP − r.
3. Let ftot =

∑
P∈L max(fP , δ). For every path P in L, set fP = fP +

r/ftot max(fP , δ).

Fig. 3. Distributed flow-update algorithm for stubs

At every iteration the stub removes all traffic from paths that

are not currently least-cost, and spreads this traffic across least-

cost paths in proportion to the traffic already carried by them.

We also study a smoother version of this selfish flow-update

algorithm to understand whether slow updates to stubs’ flow

lead to better convergence. Conceptually similar algorithms

[6] have been employed to solve flow problems in (non-

selfish) settings and have been theoretically shown to have

good convergence times. In the smoother version, each stub

gradually moves its traffic from paths used in the previous

iteration to those that currently charge the least price. Each

stub removes an ǫs fraction of its flow from non-least-cost

paths and distributes it over least-cost paths. The parameter

ǫs characterizes stub selfishness — ǫs = 1 corresponds to a

“selfish” version where stubs always only use least-cost paths,

while ǫs < 1 corresponds to the “smooth” version where stubs

give weight to historically good paths and occasionally route

over non-least-cost paths. While on the one hand the smooth

version is more robust to sudden fluctuations in ISP prices, on

the other hand, it may adversely affect performance because

ISPs get slower feedback to their price changes.

B. Centralized S4R Design

The facilitator derives an equilibrium meeting some global

objective using an iterative approach, simulating ISP and stub

actions at each step by first picking prices for ISPs and then

flow paths for stubs, until some termination condition is met.

ISP actions: The facilitator simulates a repeated game

among the ISPs. In any repeated game if each player employs

a regret minimizing learning algorithm for picking its strategy,

then the game converges to a correlated equilibrium [15]: no

player has incentive to deviate from its strategy if other players

continue to follow their strategies. The facilitator simulates one

of the regret-minimization algorithms described earlier.

Stub actions: At every iteration, the facilitator simulates

stub behavior by routing the flow of each stub along the

least cost path given link prices. Despite the constraint of

following best response, the facilitator has substantial flexi-

bility in routing flow because some source-destination pairs

may have multiple least cost paths between them. Moreover,

for some stubs the cost of the least cost path may be exactly

equal to their value in which case routing their flow over this

path or over the BGP path brings equal utility to them. The

facilitator may use this flexibility to implement desirable social

objectives; we focus on maximizing net social value (§II).

To achieve this objective, the facilitator solves the following

max-value flow problem: It first determines for every stub a

list of all least cost paths between the corresponding source-

destination pair. It then determines the amount of flow to

be sent by the stub along every such least cost path while

honoring capacity constraints on edges and maximizing total

value of the flow routed. This can be set up as a LP (omitted).

If for some stub the cost of the least cost path is strictly less

than the stub’s value, it is in the best interest of the stub to

route its entire flow, while the LP may only route a fraction

of the flow to satisfy capacity constraints. To rectify this, for

every stub with value strictly larger than the cost of the least

cost path, the facilitator finds an arbitrary least cost path and

routes the entire remaining flow along the path.
Termination condition: The facilitator could use a variety

of tests to determine when to halt the simulated interaction

between stubs and ISPs. One approach is to check if the total

utility as perceived by both ISPs and stubs does not improve

any further, i.e., checking if the difference between the 95th

and the 5th percentile net utilities is less than a small fraction

(say 5%) of the 95th percentile.
C. Churn in Instantaneous Requests

The issue of churn arises in the case of instantaneous de-

mands when stub requests arrive and leave S4R unexpectedly;

in all other cases, the requests are known to S4R ahead of

time and churn isn’t an issue. The distributed and centralized

variants are designed to accommodate slow churn, where a

small fraction of stubs enter and leave the system over time.
In the centralized framework, the facilitator can recompute a

new equilibrium from the current state when facing churn. This

happens in an offline fashion and current traffic is unaffected

during the recomputation. Note however that addition of new

stubs may affect whether or not some current stubs can

continue routing over S4R in the new equilibrium; existing

stubs, if denied, stop using the system and may submit a new

request. As shown in §VI, stubs who have low willingness to

pay are likely to be affected by churn in the system, and we

consider this to be an acceptable outcome. In the distributed

case, churn perturbs the system, forcing reconvergence to a

new equilibrium within the running system itself. Any existing

request can get affected during reconvergence, even though

the eventual equilibrium accommodates the request. There are

two reasons why a request is affected in this fashion: (1) the

capacity of a link it is using overflows in some reconvergence

iteration (because the link price is too low)—we describe in



§VI simple mechanisms to mitigate the impact of this in real

scenarios, or (2) all paths are too expensive at the price levels

in some reconvergence iteration—we find, in practice, that this

typically only affects stubs with low values.

V. USING OPENFLOW

We now discuss how to support S4R paths alongside tra-

ditional BGP paths atop the same underlying routing infras-

tructure and to configure and tear-down paths with specific

requirements on the fly, where the paths can be specified at

the granularity of application flows. We believe that Open-

Flow provides the appropriate platform for addressing these

challenges.We note that the distributed architecture can also

be implemented using OpenFlow, but omit the details.

An OpenFlow network consists of two entities: NOX, a

logically central controller, and dumb switches which act on

the controller’s instructions. Depending on specific events, the

controller installs or removes flow forwarding rules on the

switches. Rules are based on matching a ten-tuple for a flow

that includes the source and destination IP and port and VLAN

ID, among other things. Actions taken on matched flows range

from permitting them (with or without mangling the flow) or

denying them or forwarding to the controller. Flow rules can

be stored at switches for various time periods allowing rules to

be updated frequently or act as semi-permanent routing entries.

We assume that OpenFlow is enabled on edge routers of stubs

and on routers at either end of virtual links.

Stubs submit their requests to their respective controllers

who forward them to the facilitator along the logical links

shown. Once the facilitator computes routes, the NOX con-

trollers corresponding to the on-path ISPs, as well as the

source and destination controllers, are informed of the routes.

The controllers then install the corresponding forwarding rules

at their switches. When stubs leave, they send an explicit tear-

down message. If a stub requires a single path then, simply,

flow entries are installed for the corresponding connection 4-

tuple at each router on the path. A stub who is offered multiple

routes per destination is provided with a nonce per route. In

addition, the facilitator computes a unique per-link nonce for

each path. The flow tables for the stub’s traffic along each path

include the nonce as well, and indicate how the nonce must be

rewritten for the next link. The nonce is useful to distinguish

among multiple equal cost paths.

Key features in OpenFlow enable S4R to meet various

application requirements. Prior work [20] has shown how

to leverage QoS extensions to the OpenFlow API (i.e., per-

flow rate limiters and dynamic priorities) to slice network

bandwidth and dynamically assign flows to slices to meet

their performance requirements. We leverage this to isolate

stub requests and prevent misbehaving traffic from impacting

others with hard performance constraints.

VI. S4R VIABILITY

Some of the theoretical underpinnings of S4R have been

studied in different contexts. S4R is similar to a real world

marketplace where customers are willing to shop around for

the best prices for sets of goods and stores try to competitively

price goods to attract customers to purchase from them. Since

each ISP is interested in maximizing its own revenue, the over-

all system performance at equilibrium may not be “socially”

optimal. A natural question is how far from optimal can the

system performance be. There is a rich body of recent work in

algorithmic game theory that investigates such questions in the

context of network pricing and network formation games [10],

[9], [16], providing bounds on the “price of anarchy” (POA),

namely the ratio of the worst-case system performance at

equilibrium to the social optimal.

The works most relevant to S4R are [10] and [9]. These

consider a general market with buyers and sellers, where

each seller owns a distinct item and prices it selfishly. Each

consumer buys the cheapest desirable “bundle” of products.

In a network setting, the product is bandwidth; each seller is

a ISP owning one virtual link, while consumers are interested

in bundles of edges that form source-destination paths. For

pathological instances, the price of anarchy can be unbounded,

implying that system performance can be significantly far from

optimal [10], [9]. The poor efficiency means that few stub

networks and ISPs are likely to extract utility from S4R.

The works also find that when stub values satisfy the

monotone hazard rate (MHR) condition [7], the worst-case

performance improves significantly: it is worse than optimal

by a factor no more than exponential in the number of

hops between any source and the sink, and is independent

of other parameters such as the values themselves, network

size, available capacities, etc. The MHR condition is widely

used in economics to characterize commonly occurring value

distributions. Most natural distributions, e.g., uniform, nor-

mal, exponential, power-law, Laplace and chi-square, satisfy

MHR [7]. This observation has implications for S4R because

we can expect the distribution of per-unit-demand values to

follow the stubs’ (or users’) wealth distribution, which is a

power-law distribution with the MHR property. While this is

somewhat “positive” for S4R, it still points to the fact that the

outcome in practice can be quite far from the optimal, which

brings S4R’s viability into question.

A. S4R Evaluation

We emulate different realistic scenarios to understand to

what extent the above pessimistic results hold in practice given

our design choices described so far. The key questions we ask

are: Does S4R’s operation reach a stable point in practice?

How far from optimal is S4R at this point? We study the

social value derived by the system relative to the optimal

social value, also called “efficiency”. This measures the ability

of stubs to obtain benefit while allowing the ISPs to extract

maximal revenue. We also evaluate practical viability: (1) Does

the lack of central control in the distributed variant set it at

a disadvantage relative to the centralized variant? (2) How

do various ISP and stub response algorithms described §IV

perform in practice? (3) How well does S4R support different

usage models and churn? Finally, we study economic viability:

(4) Do stubs who value their traffic the most get to use the

system? Is there a skew in how revenues are distributed across



Topology Nodes, Edges

Rocketfuel-based 50, 100

Power law 46, 93

Random (prob. edge = 0.8) 50, 93

Regular (deg = 4) 50, 100

TABLE I
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Fig. 4. Convergence: Rocketfuel, Zipfian values.

ISPs? (5) How do the underlying interconnect, distribution of

stub values and the presence of monopolies impact S4R?

Topologies. We use models of ISP interconnection topolo-

gies (Table I). As a baseline, we extract a PoP-level topology

spanning several ISPs (∼12 in number) from Rocketfuel; the

virtual link graph we use reflects 50 PoPs in highly populated

cities spanning all tier-1 and some tier-2 ISPs in N. America,

and the measured edges between them (100 in all).

Source stubs are located at any node in the above topology.

In all, there are 10, 000 source stubs. Destinations are located

at the 16 most highly populated nodes, where we assume that

node population is proportional to degree. Traffic follows grav-

ity model: the demand between a pair of nodes is proportional

to population. Our baseline topology roughly reflects how S4R

may be used in practice, wherein large stubs (10000 in all)

wishing to reach clients in large cities purchase suitable end-

to-end paths that consist of PoP-to-PoP (i.e., inter-city) virtual

links in multiple ISPs. We also generated three other synthetic

topologies – Power-law random graphs, Erdos-Renyi random

graphs and regular graphs with roughly the same numbers

of vertices and edges – to understand the impact of the ISP

interconnection structure. Link capacities are 25 or 100 units.

We also performed experiments using other topologies with

different degrees of path diversity and path lengths.

Link costs and stub values. Each link is assigned an

initial cost generated randomly between 0.1 and 5 units at a

granularity of 0.1 units. ISP link costs always stay in [0.1, 5.0].
Each stub is assigned an associated value with the unit demand

it imposes. The values are drawn from the same range as

link costs, [0.1, 5.0] units. We experiment with several value

distributions. The first is Zipf with an exponent of α = 1.

This represents a typical income model and satisfies the MHR

condition. The second set is drawn uniformly at random from

the range and also satisfies MHR. The third is a bimodal

distribution drawn from [0.1,1] or [4.5 and 5], with 90% of

values originating from the first interval. This does not satisfy

MHR. Unless otherwise specified, we assume that all stubs are

employing the peak-predicted usage model. We also evaluate

other usage models.
B. Centralized S4R

Convergence. Figure 4 shows the evolution of net value

for stubs routing in S4R and total ISP revenue for one of

our experiments. We present results for both ISP learning

algorithms—EE (epsilon-decreasing explore-exploit) and HB

Topology Value Distribution Convergence Efficiency

Rocketfuel Zipfian 52,000 0.78

Rocketfuel Uniform 53,000 0.70

Rocketfuel Bimodal 53,000 0.75

TABLE II
CENTRALIZED FRAMEWORK, WITH ISPS USING EE.
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Fig. 5. Comparing EE and HB; Zipfian stub values

(hedge-bandit). Both curves flatten after 50,000 iterations for

EE (Fig 4(a)) and 200000 iterations for HB (Fig 4(b)). Thus

S4R moves to a stable state over time. The termination

condition (§IV-B) is actually met at around 52,000 and 230,000

iterations for the two algorithms, respectively. Although not

shown here, we found that the system eventually converges to

an equilibrium–i.e., an unchanging set of prices and routes–

after some large number (>500K) of iterations across all the

scenarios we studied. Compared to the status of the system at

the termination condition above, the final equilibrium differs

very little in terms of the per-link prices and overall value

derived by stubs. Henceforth, we refer to the system at the

termination condition itself as being the equilibrium state.

Efficiency. We now discuss system efficiency at equi-

librium. Table II shows representative results for different

topologies and stub value distributions. We assume that the EE

algorithm is used to emulate ISP learning. Surprisingly, S4R

arrives at a reasonably efficient outcome in most of the realistic

situations (60%-80% efficiency) despite allowing selfish ISP

and stub interactions, contrary to what the theory suggests.

Value distributions that were shown to result in undesirable

outcomes by prior analytical results, e.g. bi-modal (which is

not MHR), result in efficient outcomes.

Comparing ISP Learning Algorithms. We now compare

the two ISP algorithms. The results of the comparison are

shown in Figure 5, where we study the time taken for S4R to

converge and the link prices derived by either algorithm.

Several points are worth noting: Figure 5(b) shows that the

algorithms result in roughly the same settings of link prices

at equilibrium. We also found that the two algorithms differ

negligibly in system efficiency at equilibrium (not shown).

However, Figure 5(a) indicates that HB takes a lot longer

(4-10×) to converge. In the HB algorithm, link prices could

change more abruptly and more often until convergence is

reached because the algorithm explores mediocre prices in

addition to the best ones. In contrast, EE forces link prices

to be more stable and slowly evolving. The same reason

also contributes to HB converging slower on topologies with

greater potential for route diversity (e.g., compare Regular

against Power law in Figure 5(a)).

HB is designed for the worst case (§IV), and hence may be

more appealing under a wide spectrum of situations. However,

our evaluations shows that EE works well in most practical



ISP Price Algorithm ǫs Efficiency Convergence

EE 0.1 0.39 73,000

EE 1 0.69 52,000

HB 0.1 0.19 100,000

HB 1 0.61 150,000

TABLE III
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Fig. 6. Distributed S4R at equilibrium

situations anyway. Because of its simplicity and reasonable

performance we advocate using EE in practice.

C. Distributed S4R

Vs. Centralized Variant. When there can be multiple stable

states, a central facilitator can suggest the best one to all

the participants, e.g., the one that maximizes social value.

Such optimizations cannot be performed in the distributed

framework. We examine the extent to which the distributed

framework suffers due to the lack of this global optimization.

Interestingly, the distributed approach performs nearly as well

as the centralized one. The efficiency difference compared to

centralized is just 0.07-0.12 in all scenarios (not shown).

The distributed approach is designed to run in a continuous

online fashion. To understand if the system oscillates, we

applied a variety of tests. We monitored the change in the

net social value and net ISP revenues over time in various

settings. In particular, we applied the centralized termination

condition (§IV-B) to the state in various iterations of the

distributed variant to examine if and when the distributed

variant “terminates”. We found that the distributed framework

achieves convergence in all cases (omitted for brevity) and

that participants in the distributed approach can keep track of

the iteration number as they exchange messages and requests

(§III-C), and start routing data traffic after it crosses a large

value (e.g. 100,000).

Stub Response. In the distributed setting, the stub flow

update algorithm (Figure 3) gradually moves an ǫs amount

of the stubs’ traffic from currently-used sub-optimal paths to

the new best-priced paths. We study how the choice of ǫs
impacts system performance and in particular if allowing stubs

to be “fully selfish” (ǫs = 1) leads to poor outcomes. Table III

summarizes our findings. Surprisingly, we find that a large ǫs
leads to robust performance—enabling stubs to be selfish is not

bad from a global viewpoint. Constraining stubs from reacting

selfishly (i.e., using a small ǫs) seems to lead to substantially

inferior performance at equilibrium. This is because when

stubs use small ǫs, ISPs get very slow feedback about the

effects of their price changes. ISPs may then wrongly associate

the price changes they made with the small increases/decreases

in the amount of traffic they are carrying and the resulting

revenue.

D. ISP and Stub Properties at Equilibrium

We now examine the status of stub networks and ISPs at

equilibrium. We consider the distributed approach and take
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Fig. 7. Distributed S4R: ISPs at equilibrium

k Convergence iteration Efficiency

3 43,000 0.26

4 52,000 0.59

6 219,000 0.70

TABLE IV

a snapshot of the link utilizations, stubs routing through the

network, link prices and ISP revenues. In Figure 6(a), we show

the fraction of stub networks that are allocated routes at each

value for the distributed framework. We see that very few stub

networks with low values (< 1 unit) get to route using the

system. A small number of stub networks with high values are

denied service—this could happen because of where they are

located and how many other stubs they are competing against.

In Figure 6(b), we show the utilizations of links owned

by different ISPs. A small fraction of the links (20%) have

utilizations <10%. About 30% of the links have ≥ 50%

utilization. This suggests that most ISPs are able to attract

traffic onto their links using S4R. In Figure 7 we show the link

prices and revenues of ISPs. We find that in an overwhelming

fraction of the cases, the equilibrium prices are far lower

than the maximum possible value of 5 (they are ≤ 2 units;

Figure 7(a)). From Figure 7(b) we see that revenues are fairly

evenly distributed across the ISPs and there is little skew.

Roughly 45% of the revenues are in the 10-40 unit range.

The reasonable distribution of revenues and link utilizations

indicate that ISPs would be willing to take part on S4R. Since

stubs with moderate to high values are able to route in S4R,

it would be able to attract enough stubs as well.

E. Factors Impacting Equilibrium Properties

Theory shows that networks that contain significant dis-

parity among stubs in terms of per-unit-demand values (i.e.,

non-MHR distributions) can have poor equilibria. Our results

in the previous section show that value disparity still leads

to reasonable outcomes in practice. Theory also showed that

the price of anarchy in the market pricing game depends

primarily on the existence and number of “virtual monopolies”

in the network. In S4R, a link is called a virtual monopoly if

there exists a source-destination pair such that all of the flow

routed from the source to the destination is carried by the

link (because all alternate routes are too expensive). Crucially,

as the hop-lengths of paths in a network increase, this could

potentially lead to a larger number of virtual monopolies

for any stub network, causing system performance to worsen

significantly. We now study the impact of virtual monopolies

by varying the connectivity of the network.

We select the baseline regular graph topology (with per

node degree of 4) and change the average degree of each

node to 6 and 3 to increase/decrease, respectively, the route

diversity and path lengths. We employ the distributed S4R



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

F
ra

c
ti
o
n
 o

f 
re

q
u
e
s
ts

 a
c
c
e
p
te

d

Value

3 regular
4 regular
6 regular

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

C
D

F
 o

f 
fr

a
c
ti
o
n
 o

f 
lin

k
s

Price of link

3-regular, Zipf
4-regular, Zipf
6-regular, Zipf

(a) Stub Networks Utilizing the System (b) Link Prices

Fig. 8. Stub Network and ISPs in regular graphs.

Iteration Demand Increase Reconvergence Efficiency % Stubs Preempted

58100 10% 6000 0.89 2%

77600 1% 6500 0.84 2%

84100 10% 6100 0.82 2%

TABLE V
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Fig. 9. Preempted stubs in the instantaneous demand scenario.

variant in this analysis. As shown in Table IV, in networks

where path diversity is restricted (correspondingly, there is a

high incidence of virtual monopolies), S4R efficiency suffers

significantly. Figure 8 shows the distribution of values of stubs

who route over S4R, and the link prices selected by ISPs, in the

different regular topologies. As expected, link prices increase

slightly with decreased path-diversity (Figure 8(b)), because

virtual monopolies charge higher equilibrium prices. More

tellingly, the set of stubs using the system is very different.

In topologies with larger degrees, greater fractions of stubs

who value the routes more end up using the system. In such

topologies there are both a larger number of, and shorter on

average, paths available. For the degree-3 graph, significant

fractions of even the high-value stubs are denied. The effect

of higher link prices is aggravated by longer paths, leading to a

poor social outcome. Thus, when the ISP interconnect has poor

path diversity and path lengths are long S4R is unlikely to be

viable (i.e., few stubs are likely to use it). Luckily, S4R places

a low barrier to entry: any ISP can provision a virtual link and

use intelligent pricing as a tool to attract traffic to its link and

enhance revenue. This will ensure a rich ISP interconnect and

short paths in practice.

F. Churn: Instantaneous Demands

We study the performance of both centralized and dis-

tributed S4R when stubs enter and leave with instantaneous

demands. We start the system with an initial set of stubs and let

it attain equilibrium. We remove 10 random stubs and add 100

random new stubs such that the net increase in Instantaneous

demand is 1-10% of current demand. Re-computation of equi-

librium occurs only if these stubs can not be accommodated

on the current least cost paths. We repeat this multiple times.

The results of this experiment for the centralized variant are

presented in Table V. An important question is how efficient

the system is given that due to time constraints the solution

must be found quickly by computing a new equilibrium

relative to current equilibrium state. To understand this, we

compute the reconvergence efficiency, which is the difference

between the system’s observed performance and the “ideal”

performance had we let it reconverge to a new equilibrium

with the current set of stubs. The reconvergence efficiency

is never worse than 75%. We also note that recovergence is

quick, averaging less than 6500 iterations.
We also analyze the stubs which are preempted at equi-

librium due to the new stubs who are added in. Figure 9(a)

shows, over the entire duration of the experiment, a CDF of

the stubs who get preempted, and their values. Figure 9(b)

shows the fraction of stubs preempted compared to the number

of other stubs with that value in the system for one random

iteration. We see that typically only stubs with lower values get

preempted. Corresponding results for the distributed variant

are similar and omitted for brevity.
At certain times during distributed reconvergence, links may

become overloaded due to extra demand in the system, causing

dissatisfaction to stubs as well as ISPs. To address this, each

ISP link can have a small fraction of its capacity αb set aside

as backup. Each ISP sets or alters prices to operate below

1−αb of its link capacity at equilibrium. The spare αb fraction

of capacity can thus be utilized to accommodate momentary

oversubscription and ensure that stubs are not impacted during

churn. We found that setting αb = 8% is sufficient to ensure

that no link is overwhelmed with high probability (omitted).
Our results so far have been for the peak-predicted and

instantaneous demands. We also evaluated diurnal-predicted

and elastic-bulk requests and found that S4R converges to 80%

efficiency on average in both cases (omitted).
Summary of Findings: (1) S4R converges to a stable

operating point with 65-80% efficiency, showing that S4R

will be of of high overall utility. S4R is efficient even when

the disparity in stub values is high in practice. Both are

contrary to theoretical analysis. (2) The distributed approach

converges in all situations with slightly inferior efficiency

to the centralized one. The simplistic EE learning algorithm

performs better in practical situations compared to HB which

has proven worst-case guarantees. Selfish stub response for

rerouting leads to better outcomes as it provides more up-to-

date information to ISPs. (3) S4R effectively supports all the

four usage models. S4R can accommodate a modest amount

of churn. At equilibrium, stubs who have the highest values

for their traffic always find paths, and there is no significant

skew in ISP revenues. Thus, both ISPs and stubs will find

S4R attractive. (4) S4R efficiency suffers under limited path

diversity and/or long paths. But, as the barrier to entering S4R

is low, we expect rich interconnection and path diversity.
G. Centralized Prototype

We implement the facilitator in a standard Linux desktop.

It can communicate with one or more NOX controllers. We

implemented a simple messaging protocol for the facilitator

to inform NOX controllers of the flow state they should

install. We use a separate logical facilitator and logical NOX

controllers for different types of stub requests. The controllers

each control distinct pre-assigned portions of switches’ flow

table space and of the available link capacities. Our testbed

emulates the configuration shown in Figure ?? albeit over a



single 1Gbps ISP link. We have 10 stubs (VMs in a single

desktop) attached to a software OpenFlow switch communi-

cating with 10 destination VMs attached to another switch;

each switch communicates with a separate controller, which

are connected to the facilitator.

Communication. The messages exchanged in S4R are: (1)

The sending stub sends a request to use S4R. (2) The facilitator

acknowledges the request and starts route computation. (3) The

facilitator notifies stubs if their request was accepted. (4) The

facilitator notifies ISPs of link prices to charge. The route itself

is installed directly in switches. Messages (1) (2), and (3) are

minimal in size (at most 150 bytes). Messages for (4) require

the most bandwidth as there is one flow table entry per flow on

a link. Our analysis of the paths computed for the Rocketfuel

topology shows that, >95% of the time, the paths have ≤ 5

hops. Thus, the overhead of these messages is small (∼300B

per request per path). With 10,000 diurnal-predicted requests,

this would result in <190MB of control traffic.

Computation Time. With 10000 stubs, for instantaneous

requests, the amount of time taken varies from a few ms to

one minute. The computation time is low if the stub can be

accommodated on the least-cost path at the current prices, high

if accommodating the new stub results in churn in the system.

Performance guarantees. To demonstrate the ability to

support stub performance guarantees, we place 10 requests

where request i needs i ∗ 20Mbps. We implement a toy

facilitator that rejects requests with the least demands under

over-subscription; thus, requests i = 1, 2, 3 are denied in our

toy scenario. For the remaining requests, we install flow table

entries at the switches, instantiate traffic at the stub (IPerf

traffic generators sending as fast as possible), and measure

bandwidth at the destination. We find that each stub i > 3
obtains roughly what it requested. The maximum deviation

between the requested and obtained bandwidths was ±9%.

VII. RELATED WORK

S4R bears some similarity to “nanopayment” systems like

Bill-Pay [12] where ISPs announce prices for various levels of

service across their networks. Users employ source routing and

include payments in their packets to be deducted by each ISP.

Because these protocols operate at packet-level, they impose

high overhead for ISPs and require significant changes to

applications. Our work extends bandwidth brokering systems

where the primary focus was QoS in a single ISP [32]. Some

recent proposals have argued for inter-domain brokering [21],

[28]. For example, the MINT proposal [28] uses a centralized

mediator to run a continuous double auction to match requests

with available bandwidth resources. While these proposals

share the same broad goals as us, they do not take into

account the selfish goals of stubs and service providers, and

they don’t analyze the outcome of direct interactions between

them. Several routing systems enable stubs increased routing

flexibility [13], [31], [30], [19], [17], [2]. However, these

systems do not consider the ISP-side view, in particular, ISP

pricing and the resulting interactions among ISPs/stubs.

VIII. CONCLUSIONS

S4R is an economically-grounded technical framework that

supplements BGP to provide flexibility that is missing from

BGP. S4R allows free form interaction between stubs and ISPs,

enabling them to maximize their selfish objectives. Despite

prior theoretical work showing that freeform interactions of

this kind in a large marketplace can lead to arbitrarily bad

outcomes, we find, surprisingly, that the performance of S4R is

close to the best possible social outcome in practical scenarios.

We built an OpenFlow-based prototype for S4R and showed

that it imposes little overhead.
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