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Abstract—This work investigates a problem of scheduling tasks

on a single server in which the rate at which the server can
complete its tasks is not fixed but can be varied- a higher service
rate resulting in correspondingly less reliable service. This is a
prevalent trade-off in many practical systems including wireless

communication systems. Introducing the idea of mode of service,
we formulate the rate-reliability problem as a Markov control

problem. We obtain existence results and show that the optimal
policy has a threshold mode. The optimal policy is also shown to

provide average delay guarantee while maximizing goodput. We
provide numerical results supporting our analysis and showing

advantage of the optimal policy over fixed rate policies.

I. INTRODUCTION

The problem of scheduling tasks on a single server so as to

provide certain performance guarantees to its users arises in
numerous areas, most notably in communication, manufactur-

ing and computer systems. For instance, in a communication

system the server may be a link and the task may be to

transmit packets for different flows. There is a vast literature

on this problem addressing different variations. This work
investigates a case in which the rate at which the server can

complete its tasks is not fixed but can be varied- a higher

service rate resulting in correspondingly less reliable service.

Though this is a prevalent trade-off in many practical systems,

our motivation comes from wireless communication systems;

hence they form the focus of the paper.

In a communication system, the rate-reliability trade-off

arises from the fact that for a fixed received power or equiva-

lently, signal-to-noise ratio (SNR) at the receiver1, increasing

the data transmission rate increases the bit error rate (BER) [1].
For example in M-ary PSK single antenna uncoded system, a

high transmission rate pertains to a bigger constellation size

and for a fixed SNR, results in a higher BER in comparison to

a lower transmission rate (smaller constellation size). Figure 1

roughly depicts this trade-off. Obviously, an overall increase
in the transmission power changes the trade-off curve by

Part of this work was done when A. Karnik was at University of Waterloo,
Waterloo, Canada.

1A constant SNR may result from transmission at a fixed power level, under
time-invariant channel gains, or from power control if the channel gains are
varying with time.
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Fig. 1. Rate-Reliability trade-off in communication systems.

yielding a lower BER for a given rate (see Figure 1). However,

transmission power cannot be scaled arbitrarily owing to

regulatory constraints. The rate-BER trade-off is not typically
exploited in existing wireless systems since they are operated

under a peak power constraint and a given BER requirement.

We believe that by exploiting it, the wireless systems can be

much more efficient and flexible. Operating a system this way

might be more complicated than operating with fixed BER,

however, operating the latter is not necessarily simple since if
the channel characteristics are varying with time, so must the

physical layer parameters (i.e., transmit power, modulation,

etc.) to maintain the fixed BER. Data traffic usually requires

long term performance guarantees such as goodput (i.e., the

average rate at which packets are successfully received at the
receiver) and/or average delay, and, therefore, is not sensitive

to small time-scale changes in service reliability as long

as their performance (QoS) objectives are met. This is, in

particular, true for multimedia (voice, video) sources which

are sensitive to delay but not to the loss of some packets

(QoS typically imposes certain goodput and delay require-
ments; hence retransmitting packets on transmission failures is

futile). Thus, by trading rate and BER, a wireless system can

potentially handle more traffic without compromising the long

term quality of transmission. Henceforth we will be concerned

only with multimedia traffic.

This raises a basic (and obvious) question: how should978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



the system be operated under such a rate-reliability trade-

off so that the performance guarantees required by the data
traffic (and assumed to be feasible) are met? There are two

ways. In the first, at a relatively slower time-scale, the server

can adapt the rate of transmission to the input rate, thereby,

guaranteeing high goodput if the input traffic rate is low

while giving gracefully degrading goodput performance with

increasing traffic rate. This is unlike a fixed BER system, in
which the maximum transmission rate is essentially fixed. This

adaptive system can potentially support higher traffic rates

(though with low reliability). In the second, the server can

adapt, at a much finer scale, to the stochastic variations in the

instantaneous load- when the buffers have high occupancy,
the BER can be traded with the transmission rate and when

the buffer occupancy is low the server may switch to a lower

rate yielding high reliability. Thus, by adaptively switching

between rate-reliability regimes based on buffer occupancy

the server can provide delay guarantees to multimedia sources
while improving the total goodput. Note that an on-line version

of such a scheme would obviate the need to explicitly adapt

to the traffic rate since it will adapt transparently to the time-

varying traffic conditions. The other compelling factor for the

second strategy is the time-varying nature of the wireless chan-

nel gains. As the channel varies from ‘good’ to ‘bad’, the BER
can be lowered by lowering the transmission rate if the delay

requirements permit. In fact, owing to differences in channel

quality for different users, the server can adapt transmission

rates individually for each user and do so opportunistically,

thereby, striking a balance between efficiency and robustness.

In this paper, we develop a scheme that trades rate for reli-

ability and vice versa in response to the buffer occupancy and
channel conditions depending on the performance guarantees;

thus the server operates at rates corresponding to different BER

values. This differs from the adaptive modulation schemes

(e.g., [2], [3], [4]) in which the transmission parameters are

changed only in response to changes in the channel quality so
as to maintain a fixed SNR (or BER). Our scheme may, thus,

be seen as a cross-layer optimization scheme where the two

layers involved are the physical and link layer. While we are

not concerned with the practicality of such a scheme in this

paper, we believe that it directly impacts the following two
scenarios of practical interest.

1) Adaptive burst profiles in single antenna systems:

The data transmission rate in single antenna transceivers
is determined by the physical layer parameters, namely,

the modulation-coding schemes. Many wireless systems,

in particular IEEE 802.16 standard for broadband wire-

less access, provide an adaptive physical layer. The

radio link control is typically capable of adaptive burst
profiling in which the modulation and coding schemes

can be adjusted individually to each user on a frame-by-

frame basis. Though mechanisms to monitor and control

the burst profiles have been provided in IEEE 802.16

PMP, the question of how this control is executed is left

open.

2) Scheduling over MIMO antennas: MIMO systems

provide an additional dimension of varying the trans-
mission rate by manipulating multiple antennas. Thus,

a packet may be transmitted over multiple antennas

simultaneously resulting in low transmission rate but

high reliability, or multiple packets may be transmitted

simultaneously, say, one on each antenna yielding high

transmission rate but low reliability. The former may be
identified as diversity gain while the latter multiplex-

ing gain. Diversity-multiplexing trade-off has received

wide attention in recent years. However, studies have

been purely from the physical layer perspective and

the question of trading rate-reliability or equivalently
multiplexing-diversity to guarantee traffic performance

is yet to be resolved.

Our aim is to formulate and study the rate-reliability prob-

lem analytically. In this paper, we consider a single buffer at

the server in which arriving packets are queued till served.
This models single user MIMO systems or an IEEE 802.16

subscriber station employing only one buffer on its wireless

uplink. We assume a finite number of possible service rates to

capture finite modulation-coding schemes and combinations of

multiple antennas. Assuming that the server serves packets in

frames/slots, this leads to a notion of ‘mode’ of transmission;
each mode specifies the maximum number of packet transmis-

sions in a given time period and a probability distribution for

their successful transmission.
The rate-reliability problem is formulated as a Markov

control problem: the server, at the beginning of each slot, needs

to determine the mode of service based on its buffer occupancy

so as maximize some reward function. The positive part of

the reward corresponds to the number of successfully served

packets (i.e., a measure of goodput) whereas the negative
part corresponds to the holding cost (i.e., a cost for delaying

packets). We provide existence and structural results for the

optimal policy. In addition, we show that the optimal policy

can provide average delay guarantees (assuming they are

feasible) while maximizing the server goodput. Numerical
results using an equivalent linear programming formulation are

also provided; in particular we obtain the goodput-delay per-

formance frontier. While the problem formulation is motivated

by the two systems discussed above, in this paper we do not

quantify gains of the adaptive scheme in their specific contexts.
Also, to keep the analysis simple we assume single channel

state (hence adaptation is with respect to only queue-length).

These and other possible extensions (discussed in Section VI)

will be undertaken in a longer version of the paper.
A remark is in order. The problem of controlling the service

rate of server(s) is not novel. Different versions of it have been

studied, for example, M/G/1 queues in [5], tandem queues in

[6] and M/M/1 queues in [7]. To our knowledge, the idea of

exploiting the rate-reliability trade-off and the corresponding
formulation to maximize goodput subject to delay seems to be

new.
The paper is organized as follows. In Section II we discuss

the model and formulate the problem. Existence and struc-



tural results are proved in Section III. The delay-constrained

problem is considered in Section IV. Numerical results are
provided in Section V. We conclude in Section VI.

II. MODEL AND FORMULATION

Consider a system consisting of a server with an infinite

capacity buffer, in which exogenously arriving packets are

queued till they are served, after which they depart the system.
Service is first-in-first-out. Packets may belong to one user

or to multiple users of the same class. Time is assumed to

be slotted with slot (alternatively, frame) k denoting a time

period of [k, k + 1), k = 0, 1, . . .. Packets arriving in slot

k are accumulated and considered for service only in slots
(k + 1)-onwards. v(k) denotes the number of packet arrivals

in slot k. {v(k), k ≥ 0} is assumed to be an i.i.d sequence

with Pv(.) denoting the common p.m.f. Pv(0) > 0 and

λ := E[v]. Thus, λ denotes the average rate of the input

traffic per slot. The server can operate in M + 1 modes
indexed m = 0, 1, 2, . . . ,M . The set of modes is denoted

by M. Mode m specifies the maximum number of packets

that can be served in a slot, ηm, and a set of conditional

distributions, Pm(.|j) for each j ≤ ηm; Pm(l|j) gives the

probability that l ≤ j packets are successfully served given

that j were served in mode m. In this paper, we assume the
Pm(.|j)’s to be Binomial with probability pm. In other words,

pm is the probability that a packet is successfully served in

mode, m, and successful transmissions of packets served are

independent events. It follows that mode m is characterized

by (ηm, pm). Without loss of generality, we assume that
0 = η0 < η1 < . . . < ηM and 1 = p0 > p1 > . . . > pM .

Thus, the modes are ordered in increasing ηm’s and we say m2

is faster/larger than m1 (m1 ≤ m2) if ηm1
≤ ηm2

. Let x(k)
denote the queue-length at the beginning of slot k; x(k) ∈ Z+,

the set of nonzero integers. {x(k), k ≥ 0} constitutes the
observable state process of the system. We denote by X the

state space and by x a generic element of X .

The scheduling decision in slot k = 0, 1, . . ., taken at the

beginning of the slot, is to determine the mode of service,

m(k), after observing x(k). If x(k) = x the number of
packets transmitted is min{ηm, x}. Since our focus is on

the multimedia traffic, we assume that the packets that are

lost are not retransmitted. We denote by a a scheduling

decision, i.e., a = m ∈ M. ma denotes the mode of

transmission associated with a particular action a. A denotes
the set of actions a. The set of feasible actions in state x is

A(x) = M. Denote by Q(x′|x, a) the probability of transition

to x′ given x and action a ∈ A(x). Then Q(x′|x, a) =
Pv(x

′ − (x − ηma
)+), where (u)+ denotes max{u, 0}. The

expected one stage reward in state x and action a ∈ A(x),
r(x, a), is min{ηma

, x}pma
− Ev[h((x− ηma

)+ + v)]. Note

that min{ηma
, x}pma

is the average number of successfully

served packets and h(.) denotes the cost for holding packets

in the buffer. It is assumed that once scheduled, min{ηma
, x}

packets are removed from the buffer and do not incur any cost

in that slot. For reasons that will be clear in Section IV, we

assume a linear holding cost. Thus,

r(x, a) = min{ηm, x}pm − β(x − ηm)+ (1)

for some β > 0 which controls the trade-off between

goodput and buffer occupancy. Note that the positive part

in the expected one-stage reward (related to goodput) favors

‘robust’ (i.e., having higher value of ηmpm) modes whereas

the negative part (corresponding to buffer occupancy) favors
‘fast’ modes.

A discrete time Markov control problem is now specified

by (X ,A, {A(x)|x ∈ X}, Q, r). Denote by Π the set of
feasible policies2 and by Eπ

x the expectation with respect to

probability measure determined by policy π ∈ Π and the

initial distribution P (x(0) = x) = 1. The objective is to find

a scheduling policy, if it exists, which maximizes the time-

average reward, i.e.,

max
π∈Π

lim inf
n→∞

1

n
Eπ

x

[

n−1
∑

k=0

r(x(k), a(k))

]

(2)

III. EXISTENCE AND STRUCTURAL RESULTS

Let

Jπ(x) := lim inf
n→∞

1

n
Eπ

x

[

n−1
∑

k=0

r(x(k), a(k))

]

for π ∈ Π and

J∗(x) := max
π∈Π

Jπ(x)

Recall that a stationary deterministic policy π is a function

from X to A. Thus, π(x) denotes the optimal action in state

x. Since X is countable, π can essentially be treated as an

infinite-dimensional vector so that π(x) also denotes the xth

co-ordinate of π for x = 1, 2, . . .. Let ΠSD denote the subset
of stationary deterministic policies in Π.

Proposition 3.1: For any arrival rate λ within the stability

region of the system, i.e., λ < ηM ,

1) there exists an optimal policy, π∗, in ΠSD .

2) J∗(x) is a constant for all x ∈ X and is obtained as

limit.

3) the average cost optimality equation holds.
4) any limit point of α-discounted reward optimal policies

is average reward optimal.

Proof: Note that r(x, a) ≤ maxm ηmpm. For any π ∈
ΠSD, {x(k), k ≥ 0} is a Markov chain. It is aperiodic since

Pv(0) > 0. Consider policy πM under which the server oper-
ates only the mode M . Then under πM , {x(k), k ≥ 0} is irre-

ducible and positive recurrent. Thus, πM is a 0 standard policy.

Further, for each u > 0, the set {x|r(x, a) ≥ −u for some a}
is finite. The proposition now follows from [8] (Theorem 7.2.3

and Theorem 7.5.6).
We now show that the optimal policy has a ‘threshold

mode’, denoted by m∗. Modes faster than m∗ are not em-

ployed. Moreover, for large enough queue-lengths, the optimal

2A feasible policy, π, is a sequence {πk}k≥0 where πk is the conditional
probability distributions on A given the history (sequence of states and
actions) up to slot k.
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mode of transmission is the same, m∗. Formally, the result is

stated as follows.
Proposition 3.2: There exists an m∗ ∈ M such that

mπ∗(x) ≤ m∗ for all x ∈ X . Moreover, mπ∗(x) = m∗ ⇒
mπ∗(x+1) = m∗.

Let for 0 ≤ α < 1, V ∗
α,n(x) (resp. V ∗

α (x)) denote the
value function of the α-discounted n-horizon (resp. infinite

horizon) reward problem. π∗
α,n and π∗

α denote the respective

optimal stationary deterministic policies. We define a class

of functions called eventually decreasing functions (Defini-

tion 3.1) and show that for each n, V ∗
α,n(x) is such a function

(Proposition 3.3). This guarantees that π∗
α,n has the structure

given in Proposition 3.2. We then use the vanishing discount

approach to show that π∗
α has the same structure.

Definition 3.1: g(.) is eventually linearly decreasing (e.l.d.)

if there exists an x̂ and b ≥ 0 such that g(x) = −b(x− x̂) +
g(x̂) for x ≥ x̂.

Denote the class of e.l.d. functions on Z+ by G. Let gk ∈ G
for k = 1, 2, . . .. Denote by x̂k and bk the ‘threshold’ and the

‘slope’ corresponding to gk.
Proposition 3.3: 1) max1≤k≤K gk(x) ∈ G. Moreover,

let k(x) := argmax1≤k≤K gk(x). Then there exists an
x̂ such that x ≥ x̂ ⇒ k(x) = k(x̂).

2) For ck ≥ 0,
∑K

k=1 ckgk(x) ∈ G with x̂ ≤ maxk x̂k.

3) If maxk x̂k ≤ X < ∞ then g = limk gk ⇒ g ∈ G.
Proof:

1) It is easy to see that max1≤k≤K gk(x) eventually de-

creases linearly with b = min1≤k≤K bk. This also means

that for large enough x, k(x) = argmink bk.

2) For x ≥ max1≤k≤K x̂k,
∑K

k=1 ckgk(x) =
∑K

k=1 ck(−bk(x− x̂k)+ gk(x̂k)). Thus,
∑K

k=1 ckgk(x)

is e.l.d. with x̂ ≤ maxk x̂k and b = −
∑K

k=1 ckbk.

3) The bound on x̂k implies that each gk decreases linearly

for x ≥ X. Thus, for x ≥ X, gk(x) = −bk(x −X) +
gk(X). Since the limit of converging linear functions is

linear it follows that g is e.l.d. with x̂ ≤ X.

Proposition 3.4: V ∗
α,n(x) is e.l.d. for each n ≥ 0. There

exists m∗
α,n ∈ M such that mπ∗

α,n(x) ≤ m∗
α,n for all x ∈ X ,

and mπ∗

α,n(x) = m∗
α,n ⇒ mπ∗

α,n(x+1) = m∗
α,n.

Proof: Our proof is by induction. Terminal cost being

0, V ∗
α,0 is trivially e.l.d. To get an insight consider n = 1.

r(x,m) is e.l.d. for each m. Therefore, by Proposition 3.3,

V ∗
α,1 = maxm r(x,m) is e.l.d.. Let

M1 := {m|ηmpm − (ηm̄ − ηm)β ≥ ηm̄pm̄ for all m̄ > m}

and m̂ := minM1. Then for x ≥ m̂, mπ∗

α,1
(x) = m̂

and for x < m̂, mπ∗

α,1
(x) < m̂ (since mπ∗

α,1
(x) ∈ M(x)

for x ≤ ηM , where, M(x) = min{m|x ≤ ηm} and

M(x) = {m ≤ M(x)}). Thus,V ∗
α,1 is e.l.d. with x̂1 = ηm̄,

b1 = β, and m∗
α,1 = m̂. The proposition, therefore, holds for

n = 1.

Assume now that it holds for k = n − 1, n − 2, . . . , 0 for

n > 2. Also assume that bk = β for each k. V ∗
α,n(.) solves

the following optimality equation.

V ∗
α,n(x) = max

m
(r(x,m) + αEvV

∗
α,n−1((x − ηm)+ + v))

Fix m and let

V m
α,n(x) := r(x,m) + αEvV

∗
α,n−1((x− ηm)+ + v)

Note that V ∗
α,n−1(x) e.l.d. with x̂ = x̂n−1 implies that

V ∗
α,n−1((x− ηm)++u) is e.l.d. with x̂ = (x̂n−1−u)++ ηm.

Thus, if gk(x) :=
∑k

v=0 P (v)V ∗
α,n−1((x − ηm)+ + v) then

gk ↑ EvV
∗
α,n−1((x−ηm)++v)) with x̂k ≤ x̂n−1+ηm for all

k (Proposition 3.3 (2)). It now follows from Proposition 3.3

(3) that EvV
∗
α,n−1((x−ηm)++v)) is e.l.d. Hence Vm

α,n(x) is

e.l.d. (Proposition 3.3 (2)). Since r(x,m) is e.l.d. with b = β
and by assumption V ∗

α,n−1 has bn−1 = β, it is clear that Vm
α,n

has bmn = β implying that the slopes of Vm
α,n for each m

are aligned. Note that x̂m
n = x̂n−1 + ηm and, being e.l.d.,

V ∗
α,n−1(x̂n−1 + v) = −βv + V ∗

α,n−1(x̂n−1). Hence

Vm
α,n(x̂n−1 + ηm) = ηmpm − β(x̂n−1 + ηm − ηm) +

α
∑

v

P (v)(V ∗
α,n−1(x̂n−1)− βv)

Define ymn := ηmpm − βx̂n−1 + α(V ∗
α,n−1(x̂n−1)− βλ) and

let

Mn := {m|ymn − ym̄n ≥ (ηm̄ − ηm)β for all m̄ > m}

and m̂ := minMn.
Since V m

α,n(x) is e.l.d. for each m, it follows from Propo-

sition 3.3 (1) that V ∗
α,n(.) is e.l.d. Hence, for x ≥ x̂n,

mπ∗

α,n(x) = mπ∗

α,n(x̂)
. Since the slopes of Vm

α,n for each m
are aligned, m̂ denotes the mode which eventually ‘dominates’

(hence bn = β and x̂n = x̂n−1 + ηm̂).
Proof of Proposition 3.2: Recall that r(x, a) ≤

maxm ηmpm. Hence, the problem can be modified so that the

expected one-stage reward equals (r(x, a)−maxm ηmpm) in

state x and action a without changing the previous results.
In this case, V ∗

α,n(x) is non-increasing in n and converges to

V ∗
α (x) as n → ∞. Therefore, V ∗

α is e.l.d. (x̂α and bα = β).

Any limit point of sequence π∗
α,n(x), n ≥ 1 is α-discount

optimal for the infinite horizon [8] (Proposition 4.3.1). Con-

sider subsequence kn such that π∗
α,kn

(x) → π∗
α(x). From

the properties of π∗
α,n(x) proved above, it is clear that π∗

α(x)



retains those properties. Now consider sequence αn converg-

ing to 1. Let kn be a subsequence such that π∗
αkn

→ π∗.
Proposition 3.1 (4) implies that π∗ is average reward optimal.

Since each π∗
αkn

has the property stated in Proposition 3.4,

the proposition follows.

IV. DELAY GUARANTEES: CONSTRAINED OPTIMIZATION

Though the above formulation in itself provides a reasonable

way to operate a rate-reliability adaptive scheme, the main

reason behind its importance is that its optimal policy, π∗,

can provide delay guarantee while maximizing the system

goodput. Proving this result is undertaken in this section.
Consider the problem of maximizing goodput subject to

the constraint that the average delay can be at most d̄. Using

Little’s Law, the average delay constraint can equivalently be

stated in terms of a constraint on the average queue-length
(say, x̄). Thus, the problem is

max
π

lim inf
n→∞

1

n
Eπ

x

[

n−1
∑

k=0

s(k)

]

(3)

where, s(k) denotes the expected number of successful trans-

missions in slot k and

π ∈ {d| lim sup
n→∞

1

n
Ed

x

[

n−1
∑

k=0

x(k)

]

≤ x̄} (4)

Taking β to be a Lagrange multiplier, (2) may now be seen

as a ‘relaxation’ of (3) (establishing this was precisely the

reason behind choosing a linear holding cost in (1)).
We show below that the average reward optimal policy for

the relaxed problem, π∗, is also optimal for the constrained

problem (3). The result is stated formally as follows.

Proposition 4.1: Given a delay bound, equivalently a bound

on the expected queue-length x̄, let the set of feasible policies
(4) be non-empty. Then there exists βx̄ > 0 such that the

average reward optimal policy for (2) is optimal for (3).

Since the investigation in this section is centered on β we

make the notation explicit in β. Thus the quantities defined
for (2) will now be denoted as rβ(x, a), J

π
β (x), J∗

β(x) and

π∗
β . Proposition 3.1 proves existence of an optimal policy, π∗

β ,

for the problem maxπ Jπ
β (x) for every β > 0. The following

is true in addition. We will denote by {xβ(k), k ≥ 0} the

queue-length process under π∗
β .

Lemma 4.1: {xβ(k), k ≥ 0} is irreducible positive recur-

rent Markov chain.

Proof: Consequence of the facts that Pv(0) > 0, π∗
β is

work-conserving and [8] (Theorem 7.5.6).

Thus, (3) and (4) both are obtained as limits. Let

x̄β := lim
n→∞

1

n
Ed

x

[

n−1
∑

k=0

xβ(k)

]

Clearly, x̄β = Eµβ
[xβ], where the expectation is with respect

to the stationary distribution, µβ .

Lemma 4.2: β1 < β2 ⇒ mπ∗

β1
(x) ≤ mπ∗

β2
(x).

Lemma 4.2 basically formalizes the intuitive idea that with less

penalty for delay, the optimal policy chooses modes which are

efficient from the point of view of goodput (see Figure 2).

It is proved by showing super-additivity of α-discounted
value function and using the fact that any limit point of α-

discounted reward optimal policies is average reward optimal

(Proposition 3.1). We omit the proof here.

Proposition 4.2: β → x̄β is continuous over [δ,∞) for any

δ > 0.

Proof: Lemma 4.2 implies that for β1 < β2, transition

law Qβ1
stochastically dominates Qβ2

. It follows that µβ1

stochastically dominates µβ2
. Therefore, the family of mea-

sures indexed by β ∈ [δ,∞) is tight and hence β → µβ(x)
is continuous for each x ∈ X [9] (Theorem 6.1.5). Since
µδ−ǫ, for ǫ small enough, stochastically dominates µβ for

β ∈ [δ,∞), stationary queue-lengths xβ are uniformly in-

tegrable. The proposition, thus, follows from [10] (Theorem

5.4).

Proof of Proposition 4.1: Proposition 4.2 proves that,

given x̄, there exists βx̄ for which π∗
βx̄

yields an average queue-

length of x̄. The proposition now follows from the following

three conditions on π∗
βx̄

[11]: (i) it yields (3) and (4) as limits
(Lemma 4.1) (ii) it meets the constraint (4) with equality, and

(iii) it is average reward optimal for (2) for β = βx̄ .

A. Summary of Results

Given a server which can operate in multiple modes with

different reliability levels and which serves an infinite buffer

to which packets arrive in a given (i.i.d.) arrival process of

rate λ, we have shown the following. For every β > 0 in (1),

1) If the queue is stable, then there exists an optimal

stationary deterministic policy which maximizes (2);

stationary deterministic means that the policy specifies

the mode to employ for each value of the queue-length
(Proposition 3.1).

2) The optimal policy is such that no mode faster than a

threshold mode (which depends on β) is used and for

all queue-lengths greater than a threshold queue-length

(which depends on β), the optimal mode of transmission
is the threshold mode (Proposition 3.2).

3) The optimal policy achieves the maximum goodput

among all policies which do not exceed its average delay

(this is an alternate form of Proposition 4.1).

These results imply that the goodput-delay performance fron-

tier (the set Ω := {(d, S∗(d))|d ≥ 1} where S∗(d) denotes

the maximum achievable goodput under the average delay

constraint d) is determined by the set of optimal policies for
(2) indexed by β.

Note that Proposition 4.1 guarantees only the existence of
βx̄ for a given queue-length (or equivalent delay) constraint.

Explicit computation of βx̄ is an important issue and will be

taken up in a longer version of this paper.

V. NUMERICAL RESULTS

Since the state space is countable we use the approximating

sequence method [8] for numerical computation. Let JN and

π∗N denote the average reward value function and optimal



β m∗

0.001 4
0.01 4
0.05 5
0.1 6
0.5 7
1.0 8
2.0 10

TABLE I
VARIATION OF THRESHOLD MODES WITH PENALTY FOR DELAY (β). λ = 3

PACKETS/SLOT.

stationary policy for the truncated state space {x ∈ X |x ≤
N}. Then the following holds.

Proposition 5.1: J∗ = limN JN and any limit point of π∗N

is an average reward optimal policy.

We compute JN and π∗N using a linear programming (LP)

formulation [12] for the following scenario. The buffer size is

taken to be 250 packets (thus, N = 250) and the number of
packets arriving in the buffer per slot is distributed binomially;

thus, v ∼ B(n, q) with n = 10 and λ = nq. The server can

operate in 10 modes with (η, p) equaling (1, 0.9999), (2, 0.99),
(3, 0.95), (4, 0.9), (5, 0.8), (6, 0.7), (7, 0.6), (8, 0.4), (9, 0.1)
and (10, 0.05).

Note that in the following the phrase ‘adaptive scheme’

refers to the general scheme of adapting transmission modes

according to queue-length with the objective of (2) and not

necessarily to a particular optimal policy.

Table I shows the variation of the threshold mode with β
when the arrival rate λ = 3 packets/slot. As β increases, the

delay component in the reward becomes more prominent and

pushes for faster modes.

Figure 3 shows a comparison of the adaptive scheme with

two fixed mode schemes: one in which the server operates
only in mode 4 with a per packet reliability (i.e., probability

of success) 0.9 (referred to as fixed mode 4 scheme) and the

other, called fixed mode 6 scheme, in which the only mode of

service is 6 with per packet reliability 0.7. β is set to 0.01 for

the adaptive scheme. Figure 3 clearly shows the superiority
of the adaptive scheme in terms of the reward rate (average

weighted sum of goodput and delay). Note that in Figure 3

the optimal adaptive policy for each value of the arrival

rate is possibly different (see the earlier remark on ‘adaptive

scheme’). In fact, with increasing arrival rate, the optimal
policy is required to employ more and more ‘faster’ modes to

keep the delay cost low (the threshold mode correspondingly

becomes higher). This may result in decreasing goodput and

optimal reward rate for high arrival rates (in Figure 3 this

happens for arrival rates greater than 6 packets/slot).

An advantage of the adaptive scheme is that fixed mode 4

and fixed mode 6 schemes are stable only for λ < 4 and λ < 6
respectively (hence, in Figure 3 the results corresponding to

them have been shown only up to arrival rates 3 packets/slot

and 5 packets/slot respectively) whereas the adaptive scheme

can support arrival rates up to 10 packets/slot.
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Fig. 3. Variation of the optimal average reward with arrival rate for the
adaptive scheme with β = 0.01 and two fixed mode schemes (4 and 6).

Next, to construct the goodput-delay frontier, we compute

optimal policies for different values of β (using the LP

formulation) and simulate them to calculate the corresponding

values of goodput and average delay (see Section IV-A).

Shown in Figure 4 is the performance frontier for λ = 3
packets/slot. We also show comparative performance of three

fixed mode schemes. Fixed mode 4 and fixed mode 6 schemes

have been introduced above. In Fixed mode 5 scheme the
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Fig. 4. The goodput-delay frontier for λ = 3 packets/slot obtained by varying
β for the adaptive scheme. Also shown is performance of three fixed mode
schemes (4, 5 and 6) for comparison.



server operates only mode 5, thereby, always transmitting 5

packets (less if queue-length warrants it) with reliability 0.8.
Observe that while fixed mode 5 and fixed mode 6 schemes

achieve an average delay close to 1, their respective goodputs

are roughly only 89% and 74% of that of an adaptive policy

that achieves the same delay (β = 1). On the other hand,

fixed mode 4 scheme is close to the frontier, away by roughly

3% in goodput from an optimal policy having the same delay
(β = 0.1). However, if the server is forced to use only a fixed

mode scheme then an average delay constraint stricter than

1.15 means that the server must use fixed mode 5 scheme and

lose roughly 11% in goodput.

VI. CONCLUSION

Rate-reliability is a prevalent and important trade-off in

wireless communication system. Using adaptive burst profiling

and scheduling over MIMO antennas as motivating scenarios,

we formulated the rate-reliability problem as a Markov control

problem and obtained structural results for the optimal policy.

We also showed that the optimal policy achieves the maximum
goodput among all policies which do not exceed its average

delay. Therefore, the goodput-delay performance frontier is de-

termined by the set of optimal adaptive policies. We provided

supporting numerical results and computed a goodput-delay

frontier.
The current formulation can be extended directly to account

for the following.

• Time-varying channel: The formulation implicitly as-

sumes single channel state. With multiple such states,

each mode is specified by the probability of success in

each of these states.

• Markovian arrival process: for realistically modeling
the multimedia traffic.

• Time-varying slot allocation: Instead of a full frame/slot

for transmission, the server is allocated a time-varying

fraction of the frame-time for transmission. Such alloca-
tion are typical in IEEE 802.16 PMP mode.

The linear programming approach leads to an imple-
mentable table-lookup policy. It requires the statistics of the ar-

rival process explicitly. Development of an adaptive, learning-

based scheme could be an interesting research direction.
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