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Abstract—Interactive networks are vulnerable to various at-
tacks due to the existence of malicious nodes which do not comply
with the network protocol so as to achieve their own purposes.
For example, in a peer-to-peer (P2P) streaming system, since
each peer needs to participate in uploading data to other peers,
malicious peers may choose to upload bogus data so as to damage
the playback and degrade the watching experience of normal
peers in the system. This is known as pollution attack in P2P
networks, and it can cause severe impact to the performance
of P2P streaming systems. Other examples include pollution
attack in wireless mesh networks (WMNs) where malicious nodes
forward modified and polluted packets to other nodes, and the
shill attack in online social networks (OSNs) where malicious
users give wrong recommendations to others so as to mislead
their purchases. In this paper, we propose a general and fully
distributed detection framework which can be executed by each
legitimate node in an interactive network to identify its malicious
neighbors. To illustrate the effectiveness and the efficiency of our
detection framework, we apply it to three realistic applications:
P2P streaming networks, WMNs and OSNs, and show how to
defend against the attacks launched by malicious nodes. We
also quantify the performance of our detection algorithms and
validate our analysis via extensive simulations.

Index Terms—Interactive Networks; Security; Malicious Be-
havior Detection

I. Introduction
Many network services consist of a large set of independent

nodes, and these nodes are required to follow some rules
(or protocols) to cooperate so as to achieve a given network
functionality. To realize such network service, every nodes
must communicate or provide local services with a subset of
other nodes which are called neighbors, e.g., upload packets
to neighbors, download packets from neighbors and forward
packets for neighbors and so on. To guarantee the correct
functionality of the network service such that every node can
get service with desired performance, nodes must follow the
predefined protocols when they participate in the communi-
cation with their neighbors. However, there are number of
scenarios that nodes may not want to follow the protocol. For
one, some nodes may violate the rules and behave maliciously
so as to obtain some personal gain. For others, it is possible
that a third party may inject some mis-behaving nodes so as
to disrupt the network service to gain a competitive edge in a
commercial market.

Malicious nodes exist in many interactive network services
where nodes must communicate with each other to achieve
some functionality, for example, in P2P networks, peers must

cooperate with others and participate in uploading and down-
loading. Specifically, when a peer wants to playback a piece
of video file, it must first download all required sub-pieces
from its neighbors who have these data. On the other hand, if
its neighbors request some sub-pieces that it possesses, it also
needs to upload the sub-pieces to its neighbors. Therefore,
every node follows this rule to participate in uploading and
downloading so that it can get the desired data for playback.
However, some nodes may not follow these cooperative rules,
e.g., they may upload polluted sub-pieces to their neighbors
instead of uploading correct sub-pieces, and this is the well-
known pollution attack in P2P networks [18]. There are
many causes for pollution attack. One of them is that a P2P
software is mis-configured and it uploads polluted information
to other peers. Another possibility is that another P2P service
provider hires a pollution agent to carry out such attack to its
competitors. As reported in [6], pollution attack can reduce the
number of legitimate peers by as much as 85%. Furthermore,
the bandwidth used in exchanging the polluted data may
deplete the network resource, and lowering the efficiency.

Another example of malicious behavior in interactive net-
works happens in WMNs which have network coding op-
portunistic routing enabled. In these networks, every node
operates not only as a host but also as a router, and it forwards
packets for other nodes that are not in the direct transmission
range of their destinations. Since network coding is enabled,
intermediate nodes first mix (or encode) received packets
and then forward the coded packet to other nodes. However,
malicious nodes may inject polluted packets in the system as
they are allowed to modify received packets (since this is part
of the network coding operation). This is also known as the
network coding pollution attack in WMNs.

Last but not least, malicious nodes can also be found in
virtual networks like OSNs where users frequently interact
with their friends and participate in providing and receiving
recommendations. Specifically, users often seek or receive
recommendations from their friends before they do any pur-
chase. On the other hand, when one buys a product, she
may make recommendations to her friends such that they
may be influenced to do further purchase. However, malicious
users may give wrong or misleading recommendations to their
neighbors. We call such attack the shill attack in OSNs. There
are many reasons to motivate such kind of attack, e.g., firms
may hire some users in an OSN to promote their products,
worse yet, they may even consider paying users to provide978-1-4673-0298-2/12/$31.00 c⃝ 2012 IEEE



misleading recommendations on their competitors’ products.
In this paper, our goal is to develop a “general theory” to

detect and identify malicious nodes in interactive networks.
Once we identify these malicious nodes, one can block them
for further communication so as to reduce their impact to the
normal network service. Specifically, we develop a general
and fully distributed detection framework which can be easily
implemented by each node to identify its malicious neighbors.
To illustrate the theory and framework, we apply it to the three
applications we mentioned above and show how to defend
against the pollution attack in P2P networks, WMNs, and
OSNs. The main contributions of our work are:

• We develop a general and fully distributed detection
framework which can be executed by every legitimate
node so as to identify its malicious neighbors.

• We apply our general detection framework to a large class
of interactive networks to identify malicious nodes so as
to defend against malicious attack.

• We show the effectiveness of our framework by deriving
three performance measures: probability of false negative,
probability of false positive and the expected detection
time to quantify the performance of our detection algo-
rithms under different applications.

The organization of this paper is as follows. In Section II,
we present a general detection framework and define three
performance measures. We apply the detection framework to
P2P streaming systems, WMNs and OSNs to defend against
pollution attack and shill attack in Section III, Section IV and
Section V respectively. In Section VI, we run simulation to
validate our model and analysis, and Section VII concludes.

II. General Detection Framework
We consider a network consisting of a set of independent

nodes, and each node interacts with a subset of other nodes
which are called its neighbors. Nodes are required to obey
some predefined rules for cooperation so as to achieve some
network functionality. However, some nodes may not follow
the rules to collaborate, and conversely, they carry disruptive
operations when interact with their neighbors, and we call such
nodes the malicious nodes. Correspondingly, the nodes which
follow the rules are called good nodes or legitimate nodes.
The purpose of this paper is to identify the malicious nodes
and block them for further communication so as to guarantee
the functionality of the network. To achieve it, we design a
fully distributed detection algorithm which can be executed by
every good node to identify its malicious neighbors.

Let us focus on a particular good node, say node i. In
the rest of this paper, we refer to node i as the detector.
Define N i as the neighboring set of node i, i.e., node i only
interacts with nodes in N i. Since only two types of nodes
exist in the network, good nodes and malicious nodes, every
node j in N i must be either good or malicious, we use tj
to denote its type, and tj ∈ {good,malicious}. We model
the interaction between node i and its neighbors as a repeated
process and time proceeds in rounds. At each round, node i
may interact with some of its neighbors in N i to achieve some

objective. We call the set of such neighbors the active set and
use A(t) to denote the active set at round t. Intuitively, every
node in A(t) contributes to node i at round t. However, if a
malicious node exists, node i may not achieve its objective due
to the disruptive operations carried out by the malicious node.
Formally, we define the payoff of node i for each interaction
with its neighbor j as follows.

Uij =

{
1, if tj = good,
−∞, if tj = malicious.

(1)

In a realistic system, nodes do not have global information.
Specifically, node i can only observe the behaviors of its
neighbors but not their types, i.e., node i does not know the
payoff gained from each individual neighbor. In this work, we
assume that node i can measure the total payoff gained at
each round, which is the sum of the payoff gained from each
individual neighbor in the active set. We define U(t) as the
total payoff at round t. Formally, we have

U(t) =
∑

j∈A(t)
Uij . (2)

Since Uij is either 1 or −∞ based on Equation (1), U(t)
can be either |A(t)| or −∞. If U(t) equals to |A(t)|, then it
means that all Uij are equal to one. In other words, all nodes in
the active set at time t must be good nodes. On the other hand,
if U(t) is equal to −∞, then at least one Uij equals to −∞,
i.e., the active set A(t) contains at least one malicious node.
We define secure set as the set of nodes which are identified
as good nodes, and use S(t) to denote it at round t.

S(t) =
{
A(t), if U(t) = |A(t)|,
∅, if U(t) = −∞.

(3)

Now, we can describe the general framework of our detec-
tion algorithms. Observe that, initially, there maybe several
malicious nodes existing in the neighboring set N i. Further-
more, node i does not know which neighbors are malicious
nodes and which neighbors are good nodes. In other words,
every node in the neighboring set is potentially malicious. De-
fine M(t) as the set of nodes which are potentially malicious
until round t, i.e., all neighboring nodes that are not in M(t)
are considered as good nodes by node i. Initially, we have
M(0) = N i. We call M(t) the malicious set at time t. To
identify the malicious nodes in N i, observe that at each round,
node i is sure that all nodes in the secure set S(t) are good
nodes and they can be removed from the malicious set. If we
execute our algorithm for sufficient number of rounds, one can
expect that all good nodes are removed from the malicious set
and M(t) only contains malicious nodes. Formally, we have

M(t) =M(t− 1)− S(t). (4)

The implementation of the above idea is stated as follows.

Alg. A: General Detection Framework for Node i

t← 0;
M(0) = N i;
while (M(t) contains good nodes){



/* shrink the malicious set */
t← t+ 1;
M(t)←M(t− 1)− S(t);

}
remove all nodes in M(t);

We like to point out that, since the detection algorithm is
fully distributed, i.e., every good node can execute it to identify
its malicious neighbors. Therefore, all malicious nodes in the
whole network can be identified.

One technical issue that we need to answer is how efficient is
the proposed detection framework? Here, we use the following
performance measures to quantify our detection framework:

• Pfn(t), probability of false negative until round t,
• Pfp(t), probability of false positive until round t, and
• E[R], expected number of rounds needed for detection.
The first two performance measures quantify the accuracy

of the detection framework, while the third one quantifies the
efficiency. Formally, Pfn(t) is defined as the probability that
a malicious node is wrongly regarded as a good node, which
is actually the probability that a malicious node is wrongly
removed from the malicious setM(t) since only nodes in the
malicious set are regarded as malicious nodes. On the other
hand, Pfp(t) is defined as the probability that a good node
is wrongly regarded as a malicious node. Since we regard all
nodes in the malicious setM(t) as malicious nodes, Pfp(t) is
the probability that a good node remains in the malicious set
M(t). Lastly, the random variable (r.v) R denotes the number
of detection rounds until no good node exists in M(t).

In the following sections, we illustrate how to use the
general detection framework to identify malicious nodes in
various interactive networks. Due to page limit, we only
present the results for the case that malicious nodes always
behave maliciously in P2P streaming systems and OSNs. We
also studied the case of intelligent attack where malicious
nodes may pretend as good nodes in following the network
protocol. The rational is that malicious nodes may want to
confuse the detector so as to avoid the detection. Please refer
to [14]–[16] for more details.

III. Case Study: Peer-to-Peer Streaming Systems
In this section, we illustrate how to apply the general

detection framework to P2P streaming systems so as to
defend against pollution attack. First, we briefly introduce
the background on P2P streaming systems and the pollution
attack problem, then we present a fully distributed detection
algorithm which is based on our general detection framework
to identify malicious nodes in P2P streaming systems. We also
derive the three measures we defined before to quantify the
performance and efficiency of our detection algorithm.

A. Background on P2P Streaming Systems

P2P streaming systems consist of a large set of peers where
each peer downloads desired data from other peers, and also
uploads data it has to other peers. The server of a P2P
streaming system which generates video contents first divides

a video file into non-overlapping chunks, and a chunk is the
unit of P2P advertisement. Specifically, each peer maintains a
bitmap to record its chunks availability, and peers periodically
exchange their bitmaps to inform other peers which chunks
they are holding. To balance between communication/memory
overheads and playback requirement, a chunk is further di-
vided into non-overlapping pieces, and each piece is further
divided into non-overlapping sub-pieces. Specifically, a piece
is the unit of video playback and a sub-piece is the unit of data
transfer. When a peer enters the system, it first requests the
tracker to obtain a set of peers which are called its neighbors.
To obtain a particular piece for playback, it seeks download
service from its neighboring peers, and each neighboring peer
may upload one or more sub-pieces to it. After download all
required sub-pieces, this peer can playback them, and it can
also upload sub-pieces that it has to its neighbors.

As reported in [18], the distributed nature of P2P streaming
systems makes them vulnerable to pollution attack. Specif-
ically, some peers may upload bogus sub-pieces to their
neighboring peers, and these peers are called malicious peers
or malicious attackers. To guarantee the validity of each piece
before playback, a peer must verify all corresponding sub-
pieces. However, due to the synchronization requirement and
time constraint of P2P streaming systems, one cannot afford
to verify every sub-piece, but rather, verify every piece in-
stead. To enable the verification functionality, when the server
divides a piece into multiple sub-pieces, it also generates the
hash code of that piece and appends it to every associated
sub-piece, then uploads all sub-pieces to peers in the system.
On the other hand, when a peer wants to playback a piece and
has downloaded all required sub-pieces, it first computes the
hash value of that piece, then compares it with the hash code
appended in each sub-piece. If the hash value matches, the peer
can playback that piece. otherwise, it simply drops the whole
piece and requests all required sub-pieces from its neighbors
again. One thing we want to emphasize is that, by verifying
the validity of every piece, even if a peer knows that some sub-
pieces are bogus (if the hash value does not match), it still has
no clue as to which sub-pieces are bogus and which sub-pieces
are valid. In other words, it does not know which neighbors
are malicious. The purpose of our detection algorithm is to
identify the malicious attackers so that one can remove them
from the P2P network.

B. Detection Algorithm
According to our general detection framework, we only

focus on a particular good (or legitimate) peer, say peer i,
and model the interaction between peer i and its neighbors as
a repeated process. The detection process proceeds in rounds.
We define a round as the time duration of downloading a piece
and verifying it. At round t, a subset of neighbors upload
sub-pieces to peer i, we call it the uploading set at time t
and denote this set as U(t). According to the definitions in
our general detection framework, uploading set is actually the
active set at round t, i.e.,

A(t) = U(t), t = 1, 2...



After downloaded all required sub-pieces, peer i verifies
the validity of the piece. If the hash value matches with the
appended hash code, then peer i can playback that piece.
In other words, the total payoff peer i obtains at round t is
|U(t)| (based on the payoff for each individual interaction as in
Equation (1)). On the other hand, if the hash value does not
match, then there must be some bogus sub-pieces and peer
i cannot playback that piece, so the total payoff that peer i
obtains is simply −∞. Formally, we have

U(t) =

{
|U(t)|, if the hash value matches,
−∞, if the hash value does not match. (5)

Based on the total payoff peer i obtains at round t, the secure
set S(t) can be derived, which is either U(t) or ∅ according
to the value of the total payoff. Formally, we have

S(t) =
{
U(t), if U(t) = |U(t)|,
∅, if U(t) = −∞,

t = 1, 2, ... (6)

Now, the detection algorithm can be described as follows.

Alg. A1: Defend Against Pollution Attack in P2P Stream-
ing Systems

t← 0;
M(0) = N i;
while (Pfp(t) > P∗

fp){
/* shrink the malicious set */
t← t+ 1;
M(t)←M(t− 1)− S(t);

}
remove all peers in M(t);

In this algorithm, the secure set can be derived by Equation
(6), while the derivation of the probability of false positive
Pfp(t) will be presented in the next subsection. The physical
meaning of the termination condition in the while loop is
that, if probability of false positive is not smaller than a
predefined threshold P∗

fp, then we need to continue shrinking
the malicious set as some good nodes may reside in it.

C. Performance Analysis

Let us derive the three performance measures to quantify
the performance of Alg. A1. We first consider probability of
false negative and probability of false positive which quantify
the effectiveness of Alg. A1. Results are stated in Theorem 1.
Theorem 1: When Alg. A1 has run for t iterations, probabil-
ity of false negative Pfn(t) = 0 and probability of false pos-
itive Pfp(t) =

∏t
τ=1

S(τ−1)∩S(τ)

S(τ−1)
where S(τ) = N i − S(τ).

Proof: By using Alg. A1 to identify pollution attackers, note
that, only neighbors in the secure set are removed from the
malicious set, and the sub-pieces uploaded by neighbors in
the secure set are all correct, i.e., the secure set only contains
good nodes. Therefore, no malicious peer is wrongly removed
from the malicious set, i.e., Pfn(t) = 0.

To derive probability of false positive, which is defined
as the probability that a good peer is wrongly regarded as

a malicious peer, note that, we can formally write it as
Pfp(t) = P{j ∈ M(t)} where j is any good neighbor of
peer i. Therefore, we have

Pfp(t) = P{j ∈M(t− 1), j ∈M(t)}
= P{j∈M(t−1)}P{j∈M(t)|j∈M(t−1)}
= Pfp(t− 1)P{j∈M(t)|j∈M(t−1)}. (7)

To derive P{j ∈M(t)|j ∈M(t−1)} which is the probability
that any good node in M(t − 1) is not removed at round t,
note that, M(t − 1) =M(t − 2) ∩ S(t− 1), so on average,
the probability that a neighbor of peer i in M(t − 1) is not
removed at round t is S(t−1)∩S(t)

S(t−1)
. Considering that dishonest

peers only account for a small fraction, one can approximate
P{j ∈M(t)|j ∈M(t−1)} as S(t−1)∩S(t)

S(t−1)
, by substituting it

in Equation (7), we have Pfp(t) =
∏t

τ=1
S(τ−1)∩S(τ)

S(τ−1)
where

S(0) is initialized as ∅ and S(t) is derived by Equation (6).

To derive the performance measure of expected number of
detection rounds until no good peer exists in the malicious set,
we assume that peer i has N neighbors, i.e., |N i| = N , and
k of them are malicious. Moreover, we assume that at each
round, each neighbor is selected to upload sub-pieces to peer
i with probability α, and this probability is called uploading
probability. Now, the expected number of detection rounds can
be derived and the result is stated in the following theorem.
Theorem 2: If Alg. A1 is used by peer i to identify ma-
licious neighbors, then the expected number of detection
rounds is E[R] =

∑∞
r=1 rP (R = r) where P (R = r) =∑r

d=1

(
r−1
d−1

)(
1−α

)kd(
1−(1−α)k

)r−d
[(
1−(1−α)d

)N−k−(
1− (1− α)d−1

)N−k
]
.

Proof: To derive the distribution of R, observe that, the
malicious set gets shrunk in a round only when the secure
set is not empty, we call such a round a detectable round and
use r.v. D to denote the number of detectable rounds peer i
needs to identify its malicious neighbors. We have

P (D ≤ d) = P (after d detectable rounds, no good peer
exists in the malicious set)

=
(
1− (1− α)d

)N−k

To derive the distribution of R, note that, the probability
of a round being detectable is (1 − α)k. Given the number
of detectable rounds D, the conditional probability P (R =
r|D = d) is a negative binomial distribution, so we have

P (R = r) =
r∑

d=1

P (D = d)P (R = r|D = d)

=
r∑

d=1

(
r − 1

d− 1

)(
1− α

)kd(
1− (1− α)k

)r−d

[
P (D ≤ d)− P (D ≤ d− 1)

]
.



Now, the expected number of detection rounds E[R] can be
easily derived as shown in the theorem.

IV. Case Study: Wireless Mesh Networks

In this section, we illustrate how to apply our general
detection framework on wireless mesh networks in defending
against pollution attack. We first provide the background on
wireless mesh networks and the related problem of pollution
attack, then we propose a fully distributed detection algorithm
to identify malicious attackers. Lastly, we quantify the perfor-
mance of the detection algorithm.

A. Background on Wireless Mesh Networks

Wireless mesh networks usually consist of two types of
nodes: mesh routers and mesh clients. Each node operates not
only as a host but also as a routing element which forwards
packets to other nodes that are not in the direct transmission
range of their senders. Although mesh clients can be mobile,
mesh routers are usually stationary. For most commonly used
architecture of WMNs, there is a backbone network which
only consists of mesh routers, and we only focus on such
backbone networks in this paper.

Due to the mobility of mesh clients, WMNs can provide
easy Internet access. However, because of the spatial and
temporal fading of wireless channels, the loss rate in each
communication link is usually very high. For example, as
reported in [1], half of the operational links have a loss
probability greater that 30%. Therefore, traditional routing
protocol which determines the next hop in forwarding a packet
cannot guarantee high end-to-end throughput. Conversely,
opportunistic routing protocol where every node participates
in forwarding packets is used to improve the performance.
To further improve the spatial reuse, network coding is also
employed. By using network coding enabled opportunistic
routing protocol, not only the end-to-end throughput is im-
proved, but can also reduce the packet collision so that the
network capacity can be further improved. As demonstrated
in [13] and systems like COPE [9] and MORE [5], one
can achieve the above argument for unicast and multicast
data delivery in WMNs. Therefore, network coding enabled
opportunistic routing protocol is usually configured in wireless
mesh networks, and we focus on such type of WMNs.

Now, let us provide a brief background on network coding
and explain why WMNs are vulnerable to pollution attack.
The core idea of using network coding is in “packets mixing”.
Specifically, intermediate nodes along the source-destination
path can mix or encode received packets and forward the coded
packet to other nodes. Therefore, some nodes may behave
maliciously to inject polluted packets into the system and we
call these nodes malicious nodes or malicious attackers. As
indicated in [7], pollution attack can be easily launched, and
some related work, e.g., [8], [10], [12], [20], [21] address
the problem of pollution attack, in particular, on detecting
the existence of pollution attack and how to discard polluted

packets. In here, we present a fully distributed detection
algorithm to identify the malicious nodes in WMNs.

B. Detection Algorithm

As mentioned before, in wireless mesh networks with
network coding enabled opportunistic routing, intermediate
nodes participate in packets mixing and forwarding. Therefore,
it is vulnerable to pollution attack in the sense that malicious
nodes may inject polluted packets in the system. To guarantee
the correctness of forwarded packets, intermediate nodes must
perform verification so as to filter out polluted packets. One
common approach is to perform hash verification by using
homomorphic hash functions [11]. However, because of the
high computational cost of modular exponentiation in per-
forming hash verification, verifying every received packet can
only achieve at the expense of low system throughput, so it
is impractical for WMNs [7]. To design practical verification
schemes, batch verification in which multiple packets are
verified at one time are employed. The rational for batch
verification is that a set of coded packets can be mixed to a
single coded packet by using a set of random linear coefficient,
and the mixed coded packet can be verified by using the
homomorphic hash function. To verify a set of packets by
using batch verification, if the verification passes, i.e., the
mixed packet is correct, then it means that the set of packets
are all correct. On the other hand, if the verification does
not pass, i.e., the mixed packet is not correct, there must be
some polluted packets. However, the intermediate node does
not know which packets are polluted and it can not identify
the nodes which forward polluted packets to it either. In here,
we present a fully distributed detection algorithm to identify
the malicious nodes which inject polluted packets.

Based on our general detection framework, we only focus on
a particular node, say node i, and call the set of nodes which
are in the direct transmission range of node i the neighboring
nodes and also use N i to denote it. As an intermediate
node, node i receives packets from its neighbors, performs
batch verification to verify received packets and forwards the
encoded packet by mixing received packets. We model the
interaction of node i and its neighbors as a repeated process
and time proceeds in rounds. We define one round as the
time duration of performing one batch verification and the
time of receiving the packets that are verified by the batch
verification. At round t, node i receives a set of packets from
its neighbors, and we call the set of neighbors which forward
packets to it the forwarder set, and use F(t) to denote it.
Actually, the forwarder set is the active set we defined in our
general detection framework, we have

A(t) = F(t), t = 1, 2...

After receive multiple packets, node i needs to perform
batch verification to verify them, i.e., to verify the mixture
of the received packets. If the mixed packet is correct, then
node i can forward it to other nodes. Therefore, the total payoff
node i obtains in this round is |F(t)|. On the other hand, if the
mixed packet is not correct, then some of the received packets



must be polluted and node i has no idea which packets are
polluted but can only drop them, so the total payoff it obtains
is −∞. Formally, we have

U(t) =

{
|F(t)|, if the batch verification passes,
−∞, if the batch verification does not pass.

Based on the total payoff node i obtains at round t, the secure
set S(t) can be derived which is either F(t) or ∅ according
to the value of the total payoff. Formally, we have

S(t) =
{
F(t), if U(t) = |F(t)|,
∅, if U(t) = −∞,

t = 1, 2, ... (8)

Now, the detection algorithm can be described as follows.

Alg. A2: Defend Against Pollution Attack in WMNs

t← 0;
M(0) = N i;
while (Pfp(t) > P∗

fp){
/* shrink the malicious set */
t← t+ 1;
M(t)←M(t− 1)− S(t);

}
remove all nodes in M(t);

In this algorithm, the secure set can be derived by Equation
(8) and the probability of false positive Pfp(t) will be derived
in next subsection. Again, the physical meaning of the termi-
nation condition in the while loop is that if the probability of
false positive is not small enough, e.g., it is not smaller than a
predefined threshold P∗

fp, then we need to continue shrinking
the malicious set as some good nodes still remain in it.

C. Performance Analysis

In here, we derive the three measures, probability of false
negative, probability of false positive and expected number of
detection rounds to quantify the performance of Alg. A2.

We assume that node i has N neighbors, i.e., |N i| = N , and
k of them are malicious nodes which inject polluted packets
into the system. Since fairness is a built-in feature in medium
access control (MAC) protocol in wireless networks, a node
cannot monopolize the channel to forward packets. Specifi-
cally, when the communication channel is free, all nodes which
have backlog packets will compete for the channel. Therefore,
a successful forwarding does not depend on whether a node
is malicious or not. We define α as the probability that a
neighbor of node i performs forwarding at each round, which
is called forwarding probability. Note that, in WMNs, when
a source disseminates a file to destinations, it first breaks up
the file into multiple generations, and the source moves to
another generation only when the destinations have received
all packets of one generation. Usually, a generation contains
32 independent packets and a node may perform multiple
verifications during the period of transmitting one generation.
Last but not least, when a node is ready to transmit, it may
perform multiple transmissions. Therefore, α is usually less
than one so that the neighbors of node i can be distinguished
and the malicious set can get shrunk.

Now, we can derive the performance measures of Alg. A2
and the results are stated in Theorem 3. Since the proof is
very similar to the case of P2P networks, we omit it here.
Theorem 3: When Alg. A2 has run for t iterations, probabil-
ity of false negative Pfn(t) = 0 and probability of false pos-
itive Pfp(t) =

∏t
τ=1

S(τ−1)∩S(τ)

S(τ−1)
where S(τ) = N i − S(τ)

and S(τ) is derived by Equation (8). The expected number
of rounds needed for detection until no good node exists
in the malicious set is E[R] =

∑∞
r=1 rP (R = r) where

P (R = r) =
∑r

d=1

(
r−1
d−1

)(
1 − α

)kd(
1 − (1 − α)k

)r−d
[(
1 −

(1− α)d
)N−k −

(
1− (1− α)d−1

)N−k
]
.

V. Case Study: Online Social Networks
Let us apply the general detection framework to OSNs to

identify dishonest recommenders who give wrong recommen-
dations. We first provide a brief background on OSNs and
the shill attack problem, then present a distributed detection
algorithm to identify the dishonest recommenders.

A. Background on OSNs and Shill Attack

Online social networks such as Facebook and Twitter have
attracted a lot of users. Moreover, many users have integrated
these sites into their daily activities, e.g., they interact with
their friends very frequently and they often seek recommen-
dations from their friends before they do purchases. On the
other hand, when one buys a product, she may also make
recommendations on this product to her friends so that her
friends’ decisions are influenced. Also, one may forward
received recommendations to other people, which may also
influence other people’s decisions. Such influence caused
by recommendations are called word-of-mouth effect, and it
makes the purchase behavior spread quickly in an OSN. This
way of advertisement which is based on the word-of-mouth
effect is called the viral marketing, and it is very effective in
increasing revenue for a company.

However, viral marketing also opens door for potential secu-
rity attack as some people may make wrong recommendations
to their friends so as to mislead their purchases. We call such
an attack the shill attack. This attack may be launched by
users in an OSN who are hired by companies to promote
their products, or worse yet, provide wrong recommendations
to badmouth their competitors’ products. If shill attack is
launched in an OSN, due to the misleading recommendations
made by the attackers, a low quality product may still be
purchased but products which have high intrinsic quality may
lose out. We call the users in an OSN who deliberately
make wrong recommendations the dishonest recommenders
or the attackers. Note that, even if a user is honest, she may
also give wrong recommendations to her friends as she may
simply forward received recommendations which are made
by her dishonest friends. Therefore, one cannot determine
whether her friend is honest or not simply based on the
recommendation. The aim of the next subsection is to present
a detection algorithm to identify dishonest recommenders in
OSNs so as to defend against shill attack.



B. Detection Algorithm

In this subsection, we develop a fully distributed detection
algorithm to identify dishonest recommenders in OSNs. We
focus on a particular user, say user i, and use N i to denote
the set of friends of user i. We consider a set of substitutable
products P1, P2, ..., PM , which are produced by firms F1,
F2, ..., FM respectively, and these firms compete in the same
market. Two products are substitutable if they are compatible,
e.g., polo shirts from brand X and brand Y are substitutable
goods from the customers’ points of view. We assume that one
can estimate the quality of a product if she buys it, and let q
be the evaluation function which reveals the intrinsic quality
of a product. Moreover, we assume that each product is either
of high quality or of low quality, formally, we have

q(Pj) =

{
1, if product Pj is of high quality,
0, if product Pj is of low quality.

We model the purchase experience of user i as a repeated
process and time proceeds in rounds. We define one round
as the time duration of purchasing one product. At round t,
user i purchases a product, say Pj , and she may also receive
some recommendations on product Pj from her friends. Some
recommendations may give high rating on Pj and others may
give low rating on Pj . Formally, we define a recommendation
which gives high rating on Pj as positive recommendation and
use RP (Pj) to denote it. Correspondingly, a recommendation
which gives low rating on Pj is defined as negative recom-
mendation and we use RN (Pj) to denote it. We have{

RP (Pj) = H(Pj),
RN (Pj) = L(Pj),

where H(Pj) means giving high rating on product Pj and
L(Pj) means giving low rating on Pj .

To take the intrinsic quality of a product into consideration,
we have the definitions of correct recommendation and wrong
recommendation. Formally, if a recommendation gives high
rating on product Pj if it is of high quality and gives low
rating on Pj if it is of low quality, then it is called a correct
recommendation. Correspondingly, a wrong recommendation
gives high rating on Pj if Pj is of low quality and gives low
rating on Pj if Pj is of high quality. Formally, we have

RC(Pj) =

{
H(Pj), if q(Pj) = 1,
L(Pj), if q(Pj) = 0,

RW (Pj) =

{
H(Pj), if q(Pj) = 0,
L(Pj), if q(Pj) = 1.

Since user i buys product Pj at round t and she may also
receive some recommendations from her friends. To distin-
guish her friends, we define NC(t) as the set of friends who
give her correct recommendations. Correspondingly, NW (t)
and NN (t) are defined as the set of friends who give her
wrong recommendations and no recommendation respectively.
Obviously, we have N i = NC(t) ∪NW (t) ∪NN (t).

For each user, if she is honest, then she will give correct
recommendations to her friends as long as she knows the
intrinsic quality of a product (e.g., she buys the product).

On the other hand, even if she does not know the intrinsic
quality of a product, she may still give recommendations
based on received recommendations from her friends. Hence,
she may make wrong recommendations in this case as she
may be misled by her friends. Therefore, a friend who gives
wrong recommendation is not definitely dishonest, but rather
potentially dishonest. For dishonest users, usually their goal
is to promote a product of low quality and at the same
time, badmouth all other products, so the intuitive strategy
of dishonest users is to give positive recommendations on the
product they aim to promote and give negative recommen-
dations on other products. Note that, dishonest recommenders
may have different types, i.e., they may try to promote different
products. For example, users who are hired by firm Fi try
to promote product Pi, but users who are hired by firm Fj

try to promote Pj . Without loss of generality, we assume
that there are m types of dishonest recommenders who are
hired by firms F1, F2, ..., Fm and try to promote P1, P2,
..., Pm respectively. We assume that the products promoted
by dishonest recommenders are all of low quality. Therefore,
the strategy of dishonest users of type l (1 ≤ l ≤ m) can be
formally described as follows.

RP (Pl) ∧ [∧Mj=1,j ̸=lRN (Pj)]. (9)

To apply our general detection framework, we need to first
determine the secure set at each round. Since we only focus
on a particular honest user i. At round t, we assume that
user i buys product Pj . If Pj is of low quality, then user i
may be influenced by the wrong recommendations received
from her friends when she makes the decision. So the total
payoff user i obtains at this round must be −∞. On the other
hand, if Pj is of high quality, then it means that user i is not
affected by wrong recommendations, so we can ignore the
wrong recommendations and only take the set of friends who
give correct recommendations as the active set, i.e., A(t) =
NC(t). The total payoff user i obtains at this round is |NC(t)|.
Therefore, the secure set is the same as the active set. Formally,
the secure set can be stated as follows.

S(t) =
{
NC(t), if q(Pj) = 1,
∅, if q(Pj) = 0, t = 1, 2, ... (10)

where Pj is the product that user i buys at round t.
Now, the detection algorithm can be described as follows.

Alg. A3: Defend Against Shill Attack in OSNs

t← 0;

M(0) = N i;
while (Pfp(t) > P∗

fp){
/* shrink the malicious set */
t← t+ 1;

M(t)←M(t− 1)− S(t);
}
remove all users in M(t);



C. Performance Analysis

Let us derive the three performance measures to quantify
the performance of Alg. A3. We first consider probability of
false negative and probability of false positive. The results are
stated in Theorem 4 and we omit the proof since its derivation
is similar with the previous applications.
Theorem 4: When Alg. A3 has run for t iterations, probabil-
ity of false negative Pfn(t) = 0 and probability of false pos-
itive Pfp(t) =

∏t
τ=1

S(τ−1)∩S(τ)

S(τ−1)
where S(τ) = N i − S(τ)

and S(τ) is derived by Equation (10).
To derive the expected number of detection rounds until

no honest user exists in the malicious set, note that, an
honest friend will be removed from the malicious set at
some round only when two conditions are satisfied. Firstly,
user i buys a product of high quality at that round. We call
such a round a detectable round and use pd to denote the
probability that a round is detectable. Secondly, the honest
friend must give correct recommendations to user i on the
product user i purchases. In the following, we first derive this
probability, i.e., the probability that an honest friend gives
correct recommendations at each round, and we use phc to
denote it. We assume that, when an honest user does not know
the intrinsic quality of a product and gives recommendations
based on received recommendations, she adopts the majority
rule [3], [19]. Specifically, for an honest user, if more than half
of her friends give her positive (negative) recommendations,
she also gives positive (negative) recommendations to others.
Otherwise, she gives no recommendation. Therefore, an honest
person gives correct recommendations if and only if she
buys a product or more than half of her friends give her
correct recommendations. By employing the local mean field
technique proposed in [17], [22], we can derive phc as stated
in the following lemma.
Lemma 1: If honest users adopt majority rule to provide
recommendations when they do not know the intrinsic quality
of a product, then phc can be derived as follows.

1−E[Y ] = (1−µ)
∞∑
k=0

⌊ 1
2 (k+1)⌋∑

j=0

P1(k + 1)Cj
kE[Y ]j(1−E[Y ])k−j ,

1−phc = (1−µ)
∞∑
k=1

⌊ 1
2k⌋∑

j=0

P0(k)C
j
kE[Y ]j(1− E[Y ])k−j .

where µ is the market share of the product, P0(k) is the degree
distribution of the social network and P1(k) is the degree
distribution of descendant nodes in the social network.

Now, given the probability of a round being detectable,
i.e., pd, and probability of an honest user giving correct
recommendations, i.e., phc, we can derive the expected number
of detection rounds as stated in the following theorem.
Theorem 5: When Alg. A3 is used by user i to identify
dishonest friends, the expected number of detection rounds
is E[R] =

∑∞
r=1 rP (R = r) where P (R = r) =∑r

d=1

(
r−1
d−1

)
pdd(1−pd)r−d

[(
1− (1− phc)

d
)N−k −

(
1− (1−

phc)
d−1

)N−k
]
, where N is the number of friends of user i

and k of them are dishonest.
Proof: Similar with the proof of Theorem 2, we can first derive
the distribution of number of detectable rounds needed for
detection and we also use r.v. D to denote it, we have

P (D ≤ d)=P{after d detectable rounds, no honest
friend exists in the malicious set}

=
(
1− (1− phc)

d
)N−k

.

Again, given the number of detectable rounds D, the condi-
tional distribution P (R = r|D = d) is a negative binomial
distribution. So we have

P (R = r) =
r∑

d=1

P (D = d)P (R = r|D = d)

=
r∑

d=1

(
r − 1

d− 1

)
pdd(1− pd)

r−d

[
P (D ≤ d)− P (D ≤ d− 1)

]
,

where pd is the probability of a round being detectable, i.e.,
probability that the product user i buys is of high quality, and
it can be estimated based on the purchase history of user i.
Now, the expected number of detection rounds, E[R] can be
easily derived as shown in Theorem 5.

VI. Simulation and Model Validation
In this section, we validate our analysis via simulation

so as to further show the effectiveness and efficiency of
our detection algorithms. Since the analysis on Alg. A1 and
Alg. A2 are almost the same and due to page limit, we only
present the results on P2P streaming systems and OSNs.

A. P2P Streaming Systems

In this subsection, we validate our analysis on defending
against pollution attack in P2P streaming systems by using
Alg. A1. In particular, we consider probability of false positive
and the distribution of number of detection rounds.

In this simulation, we assume that peer i has 50 neighbors,
i.e., N i = 50, and five of them are malicious attackers, i.e.,
k = 5. Moreover, at each round, each neighbor of peer i
is chosen to upload with probability 0.1, i.e., the uploading
probability α is set as 0.1. Figure 1a shows the results of prob-
ability of false positive. In this figure, the horizontal axis is the
number of rounds or iterations that Alg. A1 has been executed,
and the vertical axis shows the probability of false positive.
We have two curves in this figure. The curve with stars shows
the theoretic result which is derived in Theorem 1 and the
curve with circles shows the simulation result which is derived
based on the definition, precisely, |M(t)|−k

N−k . We can see that
probability of false positive converges to 0 eventually, which
means that malicious set only contains malicious attackers as
long as detection time is long enough. Moreover, probability
of false positive decreases to a reasonably small value, say 0.1,
even if the algorithm has only run a small number of rounds,



say 50 rounds, which indicates the rationale of the termination
condition in our detection algorithm Alg. A1.
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Fig. 1: Performance of Alg. A1

The result on the distribution of number of detection rounds
is shown in Figure 1b. In this figure, the horizontal axis
represents the number of rounds needed to detect until no
good peer exists in malicious set, and the vertical axis shows
the probability. The curve with stars shows the theoretic
result which is derived in Theorem 2, and the corresponding
expectation is E[R] = 71. The curve with circles shows the
simulation result, which is obtained by running our detection
algorithm 10000 times and in each time, we record the number
of rounds needed for detection. The corresponding expectation
is E[R] = 72. To make the figure be clear, we only show
probabilities when the number of detection rounds is times
of ten. We can see that most of the time, one only needs less
than 100 rounds to detect its malicious neighbors even if it has
fifty neighbors and five of them are malicious. In summary,
the results shown in Figure 1 not only validate our analysis on
the performance of Alg. A1, but also show the effectiveness
and efficiency of our detection algorithm.

B. Online Social Networks

In this subsection, we validate the analysis of Alg. A3 which
defends against shill attack in OSNs. Note that an honest friend
of user i giving correct recommendations does not only depend
on her own purchasing behaviors, but also depends on her
friends’ recommendations, i.e., user i may also be influenced
by her friends’ friends, or even a user which is far away from
user i as wrong recommendations may be spread through the
network. We can not model the underlying network as a star
network. Conversely, we synthesize a dynamically evolving
social network which can simulate the behaviors of users.
We then examine the impact of shill attack and validate the
performance analysis of our detection algorithm.
Synthetic dynamically evolving OSNs: To synthesize a
dynamic OSN to simulate the behaviors of users, we need to
make assumptions on (1) how people make recommendations
to their friends, (2) how people make decisions on purchasing
which product, and (3) how fast the recommendations spread.

Firstly, dishonest users follow the strategy defined in For-
mula (9). For an honest user, if she knows the intrinsic value of
a product, she gives correct recommendations on that product,
otherwise, she gives recommendations by using majority rule.

Specifically, she gives positive (or negative) recommendations
to others if and only if more than half of her friends give her
positive (or negative) recommendations.

Secondly, when an honest user decides to buy a product,
she buys the product with maximum number of effective
recommendations. The number of effective recommendations
is defined as the difference between number of positive rec-
ommendations and number of negative recommendations. The
rational is that one buys a product which receives high rating
as many as possible and low rating as few as possible.

Lastly, we assume that recommendations broadcast much
faster than users’ purchasing rate, Precisely, after a user gives a
recommendation to her friends, her friends update the number
of received recommendations, if majority rule is satisfied, then
they further make recommendations to their friends, and this
process continues until no one in the system can make a
recommendation, and the whole broadcasting process finishes
before the next purchase instance in the whole system.

In this simulation, we employ the GLP model [4] which is
based on preferential attachment [2] to generate a scale-free
graph with power law degree distribution and high clustering
coefficient. The generated graph has around 8,000 nodes,
70,000 edges and clustering coefficient of around 0.3. We
assume that there are five products, P1, ..., P5 and system
starts from the “uniform” state in which all products have
the same market share. We randomly choose an honest user
as the detector, and during one detection round, 10%|V |
purchase instances happen where |V | is the total number users
in the system. One thing we want to emphasize is that the
assumptions in this section are only for the simulation purpose.
Impact of shill attack: To explore the impact of shill attack,
we let the system start from “0” state where no purchase
happens and evolves until 10,000 purchases are made. We
assume that P1 is of low quality and all other products
are of high quality. Our objective is to count what is the
fraction of purchases for each product out of the total 10,000
purchases. We run the simulation multiple times to take the
average value, and the result is shown in Figure 2. We can
see that if no dishonest user exits in the network, product P1

is only purchased with a very small probability. The reason
why the probability is not zero is that if a user receives no
recommendation, then she just randomly purchases a product.
However, if we set 5% of users as dishonest recommenders
and let them promote product P1, then P1 is purchased with
probability greater than 0.15. In a summary, shill attack can
distort the normal sales distribution severely.
Analysis validation: In this simulation, we randomly set
0.1% of users as dishonest recommenders and randomly
choose an honest user who has dishonest friends as the
detector. We first consider probability of false positive, and
the result is shown in Figure 3a. We can see that after only a
small number of rounds (< 10), probability of false positive
quickly converges to 0, which means that the detected users
are really dishonest. In other words, our algorithm is effective
in identifying dishonest recommenders.

The result of the distribution of number of detection rounds
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Fig. 3: Performance of Alg. A3

is shown in Figure 3b. The curve with stars shows the theoretic
result which is derived in Theorem 5, and the curve with cir-
cles shows the simulation result which is obtained by running
our detection algorithm multiple times, and in each time, we
record the number of rounds needed for detection. We can see
that the theoretic result does not fit with the simulation result
very well. The reason is that, the probability of a round being
detectable is estimated based on detection history. Besides, the
probability that an honest user gives correct recommendations
which is derived by using local mean field is an average value
over all users, but in the simulation, the simulation result
is for a particular user which is randomly chosen from the
network. However, if we look at the expectation, the theoretic
result is very close to the simulation result. Last but not
least, our algorithm still works well even without deriving the
performance measure of expected number of rounds, and this
performance measure is only used for estimating the efficiency
of our detection algorithm.

VII. Conclusion
Due to the intrinsic property that nodes need to interact

with each other, interactive networks are vulnerable to vari-
ous attacks which are launched by malicious nodes. In this
work, we develop a general and fully distributed detection
framework to identify malicious nodes in interactive networks.
We illustrate this framework on P2P networks, WMNs and
OSNs, and present three algorithms which can defend against
pollution attacks in P2P streaming systems and WMNs, as
well as shill attacks in OSNs. Our algorithms allow each node
independently perform the detection to identify its malicious
neighbors. Mathematical analysis is provided to quantify the

effectiveness and efficiency of our detection algorithms. We
also validate our models via extensive simulations. Our de-
tection framework can be viewed as an indispensable tool to
maintain the viability of interactive networks.
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